Identification of Astronomical Cycles and Prediction of High-Quality Reservoir Development in Lacustrine Carbonates: A Case Study of the Fourth Member of Shahejie Formation in Leijia Area, Western Sag
-
摘要: 辽河坳陷西部凹陷雷家地区沙四段发育多套湖相碳酸盐岩,地质条件优越,具有良好资源前景,是目前该区的致密油勘探主要层系.为厘清优质储层特征和明确勘探目标,基于旋回地层学、钻测录井、地震反演以及分析测试数据识别了该区的天文旋回和分析了优质储层特征,并对优质储层“甜点”进行了预测.研究发现:(1)沙四段存在~6个长偏心率周期,~19个短偏心率周期,并弄清长偏心率旋回与该区油层组之间的关系;(2)雷家地区沙四段优质储层岩性以白云岩为主,白云石晶粒细小,多在1~3 μm分布,晶间孔隙及构造缝发育,微孔隙集中分布在0.3~0.4 μm,有效喉道长度分布在1~20 μm,孔隙体积主要分布在0.5~4.0 μm3,原油轻质组分主要赋存于裂缝和白云石晶间孔隙中,此类岩石致密且性脆,主要分布在杜三油层;(3)使用多参数融合的方法对单井进行了评价,建立储层评价标准,结合叠前地震反演资料,明确了优质储层“甜点”在层序格架内的分布规律,并进行了平面预测.研究成果进一步系统梳理了西部凹陷雷家地区沙四段地层、碳酸盐岩沉积储层特征并联合叠前地震反演有效识别该区甜点分布范围,为该区致密油勘探提供可靠的地质依据.Abstract: Multiple sets of lacustrine carbonate rocks are developed in the fourth member of the Shahejie Formation (Es4) in the Leijia area of the western sag of the Liaohe Depression. With favorable geological conditions and promising resource potential, this interval currently serves as the primary target for tight oil exploration in the region. To clarify the characteristics of high-quality reservoirs and define exploration targets, this study integrates cyclostratigraphy, drilling, logging, seismic inversion, and analytical testing data to identify astronomical cycles and analyze reservoir properties, aiming to predict the distribution of high-quality "sweet spot" reservoirs. The main findings are as follows.(1) The Es4 member contains approximately six long eccentricity cycles and nineteen short eccentricity cycles, and the relationship between long eccentricity cycles and oil-bearing intervals in the area is elucidated. (2) High-quality reservoirs in the Leijia area are dominated by dolomite, characterized by fine dolomite crystals (mostly 1-3 μm), well-developed intercrystalline pores and structural fractures, micropores mainly distributed in the 0.3-0.4 μm range, effective throat lengths ranging from 1 to 20 μm, and pore volumes primarily between 0.5-4.0 μm3. Light oil components are mainly hosted within fractures and intercrystalline pores. These tight and brittle dolomites are primarily developed within the Du-3 oil layer. (3) A single-well evaluation was conducted using a multi-parameter fusion method to establish reservoir evaluation criteria. Combined with pre-stack geological inversion data, the study clarified the distribution pattern of high-quality sweet spots within the sequence stratigraphic framework and carried out planar prediction. This research systematically refines the stratigraphy and sedimentary reservoir characteristics of lacustrine carbonates in the Es4 member of the western sag, and effectively identifies sweet spot distribution using pre-stack seismic inversion, providing a robust geological basis for tight oil exploration in the area.
-
图 1 渤海湾盆地辽河坳陷西部凹陷综合地质背景
a.渤海湾盆地简图;b.辽河坳陷构造区划图;c.西部凹陷构造简图及研究区位置;d.雷15井岩性柱状图;e.西部凹陷新生界年龄分;据梁鸿德等(1992);姚益民(1994);辽河油气区编纂委员会(2022)
Fig. 1. Comprehensive geological background map of the western sag of the Liaohe Depression in the Bohai bay basin
图 2 雷家地区沙四段旋回地层学分析结果
a.雷53井岩性剖面、层序、小层以及油层组划分以及它们之间的对应关系;b.雷53井GR的偏心率滤波曲线,长偏心率滤波带宽为0.017 883±0.001 490 cycles/m,短偏心率滤波带宽为0.055 885±0.001 482 cycles/m;c.雷53井GR的2π MTM谱分析图;d.雷53井GR的eFFT分析;滑动窗口为69.9 m;e.雷93井GR的2π MTM谱分析图;f.雷88-H501导井GR的2π MTM谱分析图;g.雷37井GR的2π MTM谱分析图;h.雷97井GR的2π MTM谱分析图;i.45.4~43.0 Ma沉积时期的ETP曲线的2π MTM谱分析
Fig. 2. Cyclostratigraphic analysis results of the fourth member of the Shahejie Formation in the Leijia area
图 4 碳酸盐岩岩心和镜下特征
a.纹层状泥质白云岩,白云石颗粒大小1~3 μm,晶间孔发育,雷57井,2 355.31 m,氩离子抛光扫描电镜;b.泥晶白云岩,裂缝发育,被方解石、方沸石充填,雷14井,2 766.61 m;铸体片,(+);c.泥质云岩,泥质纹层与白云石纹层互层,裂缝发育,雷37井,2 815.5 m,铸体片,(-);d.泥质云岩,压溶缝,雷97井,3 278 m,普通片,(+);e.褐灰色块状泥质白云岩,溶蚀孔洞发育,雷84井,2 649.5 m,岩心;f.泥晶云岩,泥质条带状富集,雷29-15井,2 541.68 m,普通片,(+);g.泥晶云岩,多期裂缝发育,见石膏晶模孔,雷84井,2 649.5 m,铸体片,(-);h.同(g),(+);i.含泥泥晶云岩,裂缝被方沸石充填,雷18井,2 444.4 m,铸体片,(-);j.同(j),(+);k.方沸石质云岩,方沸石与白云石均匀混合,可见长英质颗粒,裂缝发育,雷37井,2 702.5 m,铸体片,(-);l.同(k),(+)
Fig. 4. Core and petrographic characteristics of carbonate rocks
图 5 储集空间类型及发育特征
a.长英质矿物晶间孔隙,雷88-59-85井,3 484.68 m;b.黏土矿物粒间孔隙,雷21-11井,2 130.9 m;c.方解石晶间孔隙,雷37井,2 700.5 m;d.方解石晶间孔隙,雷37井,2 700.5 m;e.方沸石晶间孔隙,雷97井,3 278 m;f.黄铁矿晶间孔隙,雷15井,2 636 m;g.粒间溶蚀扩大孔,雷21-11井,2 183.82 m,铸体片,(-);h.晶模孔被方沸石充填,雷36井,2 562.6 m,铸体片,(-);i.白云石晶间溶孔,雷18井,2 466.65 m,铸体片,(-);j.有机质孔,曙150井,3 712.5 m,氩离子抛光SEM;k.方沸石晶内溶孔,雷57井,2 355.31 m,SEM;l.白云石晶内溶孔,雷88井,2 569.73 m,SEM;m.高角度构造缝和溶洞,雷29-15井,2 585.5 m,岩心;n.高角度构造缝和溶洞,雷21-11井,2 183.82 m,岩心;o.溶蚀缝和溶洞,雷57井,2 355.6 m,岩心;p.灰白色泥质云岩,溶洞,雷57井,2 365.7 m,岩心;q.灰色泥质云岩,溶洞沿裂缝走向发育,雷57井,2 363.62 m,岩心;r.层理缝,雷14井,2 771.1 m,铸体片,(-);s.多期裂缝,层理缝和高角度构造裂缝,形成裂缝网络,雷36井,2 685.47 m,铸体片,(-);t.压溶缝,雷15井,2 638.11 m,铸体片,(-);u.裂缝发育,被方解石充填,雷15井,2 610.06 m,岩心;v.裂缝被方解石(一期)和方沸石(二期)充填,雷18井,2 446.65 m,铸体片,(-);w.裂缝被方解石和方沸石充填,雷14井,2 766.61 m,铸体片,(-)
Fig. 5. Types and development characteristics of reservoir spaces
图 7 雷57井岩心纳米CT扫描结果
a.孔隙空间分布图;b.样品扫描3D灰度图;c.微孔隙分布在多个区间,峰值主要分布在300 μm,600~3 000 μm区间;d. 孔隙表面积双峰分布,峰值分别为2 μm2和20 μm2;e.孔隙体积呈双峰分布,峰值分别为0.2 μm3和2 μm3;f.孔隙多为孤立微孔,2~3个微孔组成的微孔体,配位数分布在1~3;g.微孔隙集中分布在0.3~0.4 μm;h.有效喉道长度分布在1~20 μm;i.孔隙体积主要分布在0.5~4.0 μm3
Fig. 7. Nano-CT scanning results of core samples from Well Lei 57
图 9 白云岩样品原油赋存状态及激光共聚焦分析结果
a.灰黄色白云岩,油斑,雷29-15井,2 612 m,岩心;b.灰褐色泥质云岩,富含油,雷88井,2 575.65 m,岩心;c.白云岩,原油赋存与晶间孔和溶蚀孔中,雷84井,2 647.3 m,铸体片,(-);d.方沸石质云岩,棕褐色为原油赋存于裂缝中,曙99井,3 038.38 m,铸体片,(-);e.雷57井2 355.21 m样品的荧光全貌;f.雷57井2 355.21 m样品的荧光薄片;g.雷57井2 355.21 m样品的激光共聚焦;h.雷57井2 355.21 m样品的轻重组分赋存孔隙分布;i.雷21-11井2 183.82 m样品的荧光全貌;j.雷21-11井2 183.82 m样品的荧光薄片;k.雷21-11井2 183.82 m样品的激光共聚焦;l.雷21-11井2 183.82 m样品的轻重组分赋存孔隙分布
Fig. 9. Crude oil occurrence states and laser confocal microscopy results in dolomite samples
图 12 雷53井北纬65度日照量对照关系(Laskar et al., 2011; Li et al., 2025)
Fig. 12. Relationship between solar insolation at 65°N of Well Lei 53 (Laskar et al., 2011; Li et al., 2025)
表 1 雷93井、雷88-501导井、雷97井和雷53井MTM频谱分析结果
Table 1. MTM spectral analysis results for wells Lei 93, Lei 88-501dao, Lei 97, and Lei 53
ETP 雷93 雷88-H501导 雷37 雷97 雷53 置信度超90%周期(ka) 置信度超90%周期(ka) 峰值比 置信度超90%周期(ka) 峰值比 置信度超90%周期(ka) 峰值比 置信度超90%周期(ka) 峰值比 置信度超90%周期(ka) 峰值比 405.00 52.91 405.00 35.18 405.00 49.44 405.00 73.98 405.00 55.92 405.00 129.09 17.24 131.97 11.18 128.74 \ \ 22.02 120.54 17.89 129.60 96.81 15.66 119.85 6.65 76.54 16.29 133.41 19.07 104.38 12.34 89.38 51.52 7.56 57.86 \ \ 5.67 46.48 \ \ 6.75 48.91 39.88 5.27 40.36 3.30 37.97 5.41 44.30 7.14 39.09 5.70 41.27 28.65 3.41 26.10 \ \ \ \ 4.84 26.51 \ \ 23.27 \ \ 2.00 22.98 2.83 23.19 \ \ \ \ 21.99 \ \ 1.77 20.40 2.54 20.77 \ \ 3.06 22.19 18.85 2.44 18.64 1.66 19.10 2.31 18.93 3.77 20.66 2.83 20.51 表 2 各井白云岩样品REE+Y经PAAS标准化后的数据
Table 2. PAAS-normalized REE+Y data of dolomite samples from each well
井号 深度(m) REE+Y La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu 雷88-59-85 3 504.20 0.232 0.252 0.263 0.259 0.298 0.412 0.372 0.291 0.290 0.284 0.275 0.271 0.272 0.275 0.257 雷97 2 926.00 0.388 0.394 0.381 0.371 0.415 0.559 0.455 0.360 0.372 0.354 0.349 0.336 0.340 0.345 0.329 雷40 2 588.55 0.272 0.289 0.264 0.263 0.322 0.418 0.326 0.307 0.322 0.337 0.313 0.311 0.305 0.290 0.270 高34 2 710.90 0.218 0.219 0.216 0.212 0.247 0.289 0.246 0.201 0.203 0.201 0.189 0.185 0.186 0.186 0.169 雷29-15 2 585.00 0.651 0.780 0.716 0.707 0.914 1.133 0.801 0.696 0.650 0.573 0.564 0.513 0.476 0.436 0.379 雷14-35 2 766.61 0.161 0.178 0.172 0.175 0.222 0.295 0.243 0.209 0.233 0.259 0.230 0.237 0.247 0.249 0.233 雷37 2 700.50 0.271 0.274 0.234 0.225 0.259 0.315 0.251 0.209 0.208 0.211 0.194 0.191 0.190 0.192 0.193 雷93 3 081.06 0.290 0.272 0.267 0.254 0.295 0.372 0.285 0.257 0.257 0.248 0.238 0.234 0.232 0.222 0.202 雷88 2 569.73 0.545 0.610 0.636 0.682 0.860 1.054 0.859 0.630 0.574 0.467 0.467 0.416 0.392 0.374 0.320 雷84 2 655.50 0.647 0.644 0.609 0.584 0.747 0.928 0.708 0.647 0.624 0.612 0.587 0.574 0.583 0.580 0.520 表 3 白云岩样品压汞参数统计
Table 3. Statistical summary of mercury injection parameters for dolomite samples
压汞参数 平均值(最小值~最大值) 排驱压力(MPa) 3.037(0.008~20.064) 孔喉平均半径(μm) 5.557(0.025~30.770) 变异系数 1.303(0.162~5.300) 最大汞饱和度(%) 52.840(2.40~96.06) 最大孔喉半径(μm) 32.377(0.037~92.053) 均质系数 0.267(0.031~0.790) 退汞效率(%) 31.99(5.63~97.84) 峰态 6.381(1.751~26.062) 分选系数 7.644(0.004~35.345) 表 4 西部凹陷雷家地区沙四段储层“甜点”评价标准
Table 4. Evaluation criteria for reservoir "sweet spots" in Es4, Leijia area, western sag
储层类型 地质品质 工程品质 含油饱和度(%) TOC(%) S1(mg/g) 孔隙度(%) 优势岩性厚度(m) 脆性矿物含量(%) 杨氏模量(GPa) 地层压力系数 Ⅰ类 ≥60 ≥3 ≥4 ≥6 ≥30 ≥60 ≥30 1.2 Ⅱ类 40 ~60 1.5 ~3 2 ~4 3 ~6 10 ~30 40 ~60 20 ~30 1 ~1.2 Ⅲ类 < 40 < 1.5 < 2 < 3 < 10 < 40 < 20 < 1 -
Bao, R., Sheng, X. F., Meng, X. Q., et al., 2023.100 k. y. Pacing of the East Asian Summer Monsoon over the Past Five Glacial Cycles Inferred from Land Snails. Geology, 51(2): 179-183. https://doi.org/10.1130/g50243.1 Bau, M., Balan, S., Schmidt, K., et al., 2010. Rare Earth Elements in Mussel Shells of the Mytilidae Family as Tracers for Hidden and Fossil High-Temperature Hydrothermal Systems. Earth and Planetary Science Letters, 299(3-4): 310-316. https://doi.org/10.1016/j.epsl.2010.09.011 Berger, A., 2021. Milankovitch, the Father of Paleoclimate Modeling. Climate of the Past, 17(4): 1727-1733. https://doi.org/10.5194/cp-17-1727-2021 Chen, J. D., 1982. Block Faulting Differential Actvities and Subtle Traps. Petroleum Geology & Expeximent, 4(4): 254-262(in Chinese with English abstract). Chen, Z. J., 2018. Characteristics and Genetic Analysis of Analcime-Bearing Rocks in the Fourth Member of the Shahejie Formation, Western Sag of the Liaohe Depression (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract). Debruyne, D., Hulsbosch, N., Muchez, P., 2016. Unraveling Rare Earth Element Signatures in Hydrothermal Carbonate Minerals Using a Source-Sink System. Ore Geology Reviews, 72: 232-252. https://doi.org/10.1016/j.oregeorev.2015.07.022 Deng, D. Z., Zhao, Y. H., Riel, B., et al., 2025. Quantification and Unsupervised Clustering Analysis of Morphological Characteristics of Seamounts in South China Sea Basin. Earth Science, 50(1): 217-233(in Chinese with English abstract) Du, J. M., Long, P. Y., Yang, P., et al., 2020. Characteristics of Carbonate Reservoir and Its Forming Conditions in Continental Lake Basin of China. Advances in Earth Science, 35(1): 52-69(in Chinese with English abstract) Editorial Committee of Liaohe Oil and Gas Area, 2022. Petroleum Geology of China (Vol. 4): Liaohe Oil and Gas Area. Petroleum Industry Press, Beijing(in Chinese). Fan, X. J., Teng, X. H., Wang, C. L., et al., 2025. Sedimentary Environment and Organic Matter Enrichment Mechanism of the Lower Member of the Xingouzui Formation in the Jianghan Basin during the Early Eocene. Earth Science, 50(5): 1953-1967(in Chinese with English abstract) Fang, R., Dai, Z. Y., Chen, Z. J., et al., 2020. Characteristics and Genesis of Analcites in Different Occurrence States: A Case Study of the Fourth Member of Shahejie Formation in the Leijia Area of the Western Liaohe Depression. Acta Mineralogica Sinica, 40(6): 734-746(in Chinese with English abstract) Frei, R., Døssing, L. N., Gaucher, C., et al., 2017. Extensive Oxidative Weathering in the Aftermath of a Late Neoproterozoic Glaciation: Evidence from Trace Element and Chromium Isotope Records in the Urucum District (Jacadigo Group) and Puga Iron Formations (Mato Grosso Do Sul, Brazil). Gondwana Research, 49: 1-20. https://doi.org/10.1016/j.gr.2017.05.003 Guan, X., Liu, Y. W., Ren, C. Y., et al., 2023. Characterization and Comparison of Pore Structure and Connectivity of Anthracite Based on CT Three-Dimensional Reconstruction. Unconventional Oil & Gas, 10(1): 69-76(in Chinese with English abstract) Huang, L., 2016. Reservoir Characteristics and Genetic Mechanism of Lacustrine Carbonate: A Case Study of the Fourth Member of the Shahejie Formation, Western Sag, Liaohe Depression (Dissertation). Southwest Petroleum University, Chengdu(in Chinese with English abstract) Ikotun, A. M., Ezugwu, A. E., Abualigah, L., et al., 2023. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Information Sciences, 622: 178-210. https://doi.org/10.1016/j.ins.2022.11.139 Jiao, M. Y., Yuan, Y. J., Wang, J., et al., 2024. Impacts of Major Geologic Events on Sedimentary Paleoenvironments and Organic Matter Enrichment of Shales during the Ordovician-Silurian Boundary: A Case Study of Shales of Wufeng-Longmaxi Formation in Middle and Upper Yangtze Regions. Unconventional Oil & Gas, 11(5): 82-94(in Chinese with English abstract). Laskar, J., Fienga, A., Gastineau, M., et al., 2011. La2010: A New Orbital Solution for the Long-Term Motion of the Earth. Astronomy & Astrophysics, 532: A89. https://doi.org/10.1051/0004-6361/201116836 Li, M. S., Hinnov, L., Kump, L., 2019. Acycle: Time-Series Analysis Software for Paleoclimate Research and Education. Computers & Geosciences, 127: 12-22. https://doi.org/10.1016/j.cageo.2019.02.011 Li, Q. H., Xiao, H., Liang, C. Y., et al., 2023. Study on Compressibility Evaluation of Shale Oil Reservoir in Fu2 Section. Unconventional Oil & Gas, 10(5): 134-144(in Chinese with English abstract) Li, T., Dai, Z. Y., Li, Y., et al., 2022. Genesis of Lacustrine Dolomites of the Fourth Member of Paleogene Shahejie Formation in Leijia Area, Western Liao Depression. Lithologic Reservoirs, 34(2): 75-85(in Chinese with English abstract) Li, T. J., 2016. Discussion on Lithology Prediction Methods for Tight and Complex Reservoirs: A Case Study of Dolomite in the Fourth Member of the Shahejie Formation, Leijia Area, Western Sag of the Liaohe Depression. Petroleum Geology and Engineering, 30(4): 71-74(in Chinese). Li, X. G., Jin, K., Zhou, Y., 2016. Lacustrine Carbonate Reservoir Properties of Sha4 in Leijia. Special Oil & Gas Reservoirs, 23(4): 25-28, 152 (in Chinese with English abstract). Li, Y., Li, X., Zhang, T., et al., 2025. Identification of Astronomical Cycles in Fine-Grained Rocks and Their Application in High-Resolution Stratigraphic Correlation: A Case Study of the Fourth Member of the Shahejie Formation in the Leijia Area, Western Sag of the Liaohe Depression, China. Geological Journal, 60: 1515-1531. https://doi.org/10.1002/gj.5140 Li, Y., Li, X. G., Zhang, T. S., et al., 2024. Identification of Astronomical Cycles in Fine-Grained Rocks and Their Application in Fine Stratigraphic Division: A Case Study of the Fourth Member of the Shahejie Formation in the Leijia Area, Western Sag of the Liaohe Depression. Acta Sedimentologica Sinica (in press)1-19(in Chinese with English abstract). Liang, D. G., Ran, L. H., Dai, D. S., et al., 2011. A Re-Recognition of the Prospecting Potential of Jurassic Large-Area and Non-Conventional Oils in the Central-Northern Sichuan Basin. Acta Petrolei Sinica, 32(1): 8-17(in Chinese with English abstract). Liang, H. D., Shen, S. W., Liu, X. T., et al., 1992. The Age of the Vocanic Rocks and Their Geological Time in Liaohe Depression. Acta Petrolei Sinica, 13(2): 35-41(in Chinese with English abstract). Liu, S. J., Cao, Y. C., Liang, C., 2019. Lithologic Characteristics and Sedimentary Environment of Fine-Grained Sedimentary Rocks of the Paleogene in Dongying Sag, Bohai Bay Basin. Journal of Palaeogeography, 21(3): 479-489(in Chinese with English abstract). Liu, S. X., Liu, X. D., 2021. Research on Density-Based K-Means Clustering Algorithm. Journal of Physics: Conference Series, 2137(1): 012071. https://doi.org/10.1088/1742-6596/2137/1/012071 Liu, X. L., 2020. Fluid Charging Periods of Lacustrine Carbonate Rock for the Leijia Area in Liaohe Western Depression. Fault-Block Oil & Gas Field, 27(4): 432-437(in Chinese with English abstract). Liu, Z., Zhang, J. H., Wang, J., et al., 2022. Review and Prospect of Research on Lacustrine Carbonate Rocks. Oil Geophysical Prospecting, 57(2): 487-497(in Chinese with English abstract). Lü, X. D., Tong, G. H., Wang, P. H., 2003. Reservoir Characteristics and Prediction for the South of Gaosheng Oilfield. Special Oil & Gas Reservoirs, 10(6): 26-29(in Chinese with English abstract). Luan, X. W., Kong, X. X., Zhang, J. L., et al., 2024. Astronomical Forcing of Origins of Eocene Carbonate-Bearing Finegrained Sedimentary Rock in Dongying Sag. Acta Sedimentologica Sinica, 42(2): 688-700(in Chinese with English abstract). Mann, M. E., Lees, J. M., 1996. Robust Estimation of Background Noise and Signal Detection in Climatic Time Series. Climatic Change, 33(3): 409-445. https://doi.org/10.1007/BF00142586 Meng, W. G., Chen, Z. Y., Zhao, H. M., 2010. Main Factors Controlling Hydrocarbon and Distribution Rules of Subtle Reservoirs in Shuguang-Leijia Area of Western Sag of Liaohe Oilfield. China Petroleum Exploration, 15(3): 1-7(in Chinese with English abstract). Meyers, S. R., 2015. The Evaluation of Eccentricity-Related Amplitude Modulation and Bundling in Paleoclimate Data: An Inverse Approach for Astrochronologic Testing and Time Scale Optimization. Paleoceanography, 30(12): 1625-1640. https://doi.org/10.1002/2015pa002850 Reijmer, J. J. G., Blok, C. N., El-Husseiny, A., et al., 2022. Petrophysics and Sediment Variability in a Mixed Alluvial to Lacustrine Carbonate System (Miocene, Madrid Basin, Central Spain). The Depositional Record, 8(1): 317-339. https://doi.org/10.1002/dep2.158 Robbins, L. J., Lalonde, S. V., Planavsky, N. J., et al., 2016. Trace Elements at the Intersection of Marine Biological and Geochemical Evolution. Earth-Science Reviews, 163: 323-348. https://doi.org/10.1016/j.earscirev.2016.10.013 Shan, J. F., Huang, S. Q., Li, L., 2014. Sedimentary Environment of Lacustrine Carbonate Rocks in Leijia Area in West Sag of Liaohe Depression. Special Oil & Gas Reservoirs, 21(5): 7-11(in Chinese with English abstract). Shi, J. Y., Jin, Z. J., Liu, Q. Y., et al., 2023. Application of Astronomical Cycles in Shale Oil Exploration and in High-Precision Stratigraphic Isochronous Comparison of Organic-Rich Fine-Grain Sedimentary Rocks. Earth Science Frontiers, 30(4): 142-151(in Chinese with English abstract) Shi, Z., Xia, G. Q., Hao, X. W., et al., 2025. Carbon and Oxygen Isotopic Composition and Palaeoenvironment Characteristics of Eocene-Miocene Lacustrine Carbonate Rocks in the Tuotuohe Basin, Qingzang(Xizang) Plateau. Sedimentary Geology and Tethyan Geology, 45(2): 233-248(in Chinese with English abstract). Song, B. R., Han, H. D., Cui, X. D., et al., 2015. Petrogenesis Analysis of Lacustrine Analcite Dolostone of the Member 4 of Paleogene Shahejie Formation in Liaohe Depression, Bohai Bay Basin. Journal of Palaeogeography, 17(1): 33-44(in Chinese with English abstract) Talbot, M. R., 1990. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chemical Geology: Isotope Geoscience Section, 80(4): 261-279. https://doi.org/10.1016/0168-9622(90)90009-2 Tan, F. L., Sun, X. M., Cao, J. Z., et al., 2024. Sweet Spot Prediction and Main Geological Factors Analysis of Shale Oil Reservoirs Based on Factor Analysis. Unconventional Oil & Gas, 11(6): 67-74(in Chinese with English abstract). Tian, J., Wu, H. C., Huang, C. J., et al., 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568 (in Chinese with English abstract) Wang, D. W., Li, J. Y., Liu, D., et al., 2024. Characterization of Capillary Pressure Curve and Pore Throat Distribution Based on Reservoir Physical Parameters. Unconventional Oil & Gas, 11(4): 1-9(in Chinese with English abstract). Wang, S., Liu, C., Xing, S. J., 2022. Review on K-Means Clustering Algorithm. Journal of East China Jiaotong University, 39(5): 119-126(in Chinese with English abstract). Wu, J., Jiang, Z. X., Tong, J. H., et al., 2016. Sedimentary Environment and Control Factors of Fine-Grained Sedimentary Rocks in the Upper Fourth Member of Paleogene Shahejie Formation, Dongying Sag. Acta Petrolei Sinica, 37(4): 464-473(in Chinese with English abstract). Wu, S. Q., Guo, L. B., Xu, S., et al., 2025. Lithofacies Types and Reservoir Characteristics of Lacustrine Carbonate Rocks in the Third Member of Qianjiang Formation, Qianjiang Sag. China Petroleum Exploration, 30(2): 42-53(in Chinese with English abstract). Xu, S., Gou, Q. Y., 2023. The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review. Energies, 16(4): 1661. https://doi.org/10.3390/en16041661 Yan, W. P., Yang, T., Li, X., et al., 2014. Geological Characteristics and Hydrocarbon Exploration Potential of Lacustrine Carbonate Rock in China. China Petroleum Exploration, 19(4): 11-17 (in Chinese with English abstract). Yao, Y. M., 1994. The Bohai Gulf Basin (Vol. 4): Tertiary in Petroliferous Regions of China. China Petroleum Industry Press, Beijing(in Chinese). Zhang, Y. R., Zhang, G. L., Yang, J., et al., 2024. A Study on Mineralogical and In-Situ Geochemical Characteristics of Pyrite under Different Sedimentary Environments in the South China Sea. Journal of Palaeogeography, 26(6): 1498-1515, 1543-1545(in Chinese with English abstract) Zhao, H. M., 2012. Characteristics of Mixed Sedimentation in the Member 4 of Shahejie Formation of Paleogene at Leijia Area of Western Sag of Liaohe Oilfield. Acta Sedimentologica Sinica, 30(2): 283-290(in Chinese with English abstract). Zhao, X. Z., Zeng, J. H., Han, G. M., et al., 2020. Charging Characteristics and Accumulation Process of Deep Low-Permeability (Tight) Sand Gas Reservoirs in Banqiao Sag, Huanghua Depression. Oil & Gas Geology, 41(5): 913-927(in Chinese with English abstract) Zhao, Y. Y., Li, S. Z., Li, D., et al., 2019. Rare Earth Element Geochemistry of Carbonate and Its Paleoenvironmental Implications. Geotectonica et Metallogenia, 43(1): 141-167(in Chinese with English abstract). 陈景达, 1982. 块断运动与隐蔽圈闭: 以辽河西部凹陷为例. 石油实验地质, 4(4): 254-262. 谌治君, 2018. 辽河西部凹陷沙四段含方沸石岩类特征及其成因分析(学位论文). 成都: 西南石油大学. 邓达振, 赵阳慧, Riel, B., 等, 2025. 南海海盆海山形态特征的定量化和无监督聚类分析. 地球科学, 50(1): 217-233. doi: 10.3799/dqkx.2023.218 杜江民, 龙鹏宇, 杨鹏, 等, 2020. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件. 地球科学进展, 35(1): 52-69. 范晓杰, 滕晓华, 王春连, 等, 2025. 早始新世江汉盆地新沟嘴组下段沉积环境与有机质富集机理. 地球科学, 50(5): 1953-1967. doi: 10.3799/dqkx.2024.136 方锐, 代宗仰, 谌治君, 等, 2020. 不同赋存状态方沸石的特征与成因: 以辽河西部凹陷雷家地区古近系沙四段为例. 矿物学报, 40(6): 734-746. 关欣, 刘育伟, 任重阳, 等, 2023. 基于CT三维重构的无烟煤孔隙结构及连通性特征对比表征. 非常规油气, 10(1): 69-76. 黄蕾, 2016. 湖相碳酸盐岩储层及成因机理研究: 以辽河西部凹陷沙四段为例(博士学位论文). 成都: 西南石油大学. 焦梦妍, 袁玉洁, 王俊, 等, 2024. 奥陶纪/志留纪之交时期重大地质事件对沉积古环境及页岩有机质富集的影响: 以中上扬子地区五峰组—龙马溪组页岩为例. 非常规油气, 11(5): 82-94. 李泉辉, 肖晖, 梁朝阳, 等, 2023. 阜二段页岩油储层可压性评价研究. 非常规油气, 10(5): 134-144. 李甜, 代宗仰, 李阳, 等, 2022. 辽河西部凹陷雷家地区古近系沙四段湖相白云岩成因. 岩性油气藏, 34(2): 75-85. 李铁军, 2016. 致密复杂储层岩性预测方法探讨: 以辽河西部凹陷雷家地区沙四段白云岩为例. 石油地质与工程, 30(4): 71-74. 李晓光, 金科, 周艳, 2016. 雷家地区沙四段湖相碳酸盐岩油气藏特征分析. 特种油气藏, 23(4): 25-28. 李阳, 李晓光, 张廷山, 等, 2024. 细粒岩天文旋回识别及在精细地层划分上的应用: 以辽河西部凹陷雷家地区沙四段为例. 沉积学报(待刊). 梁狄刚, 冉隆辉, 戴弹申, 等, 2011. 四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识. 石油学报, 32(1): 8-17. 梁鸿德, 申绍文, 刘香婷, 等, 1992. 辽河断陷火山岩地质年龄及地层时代. 石油学报, 13(2): 35-41. 辽河油气区编纂委员会, 2022. 中国石油地质志(卷四)辽河油气区. 2版. 北京: 石油工业出版社. 刘姝君, 操应长, 梁超, 2019. 渤海湾盆地东营凹陷古近系细粒沉积岩特征及沉积环境. 古地理学报, 21(3): 479-489. 刘晓丽, 2020. 辽河西部凹陷雷家地区湖相碳酸盐岩流体充注期次. 断块油气田, 27(4): 432-437. 刘震, 张军华, 王静, 等, 2022. 湖相碳酸盐岩研究进展及展望. 石油地球物理勘探, 57(2): 487-497. 栾旭伟, 孔祥鑫, 张金亮, 等, 2024. 天文旋回约束下东营凹陷中始新统含碳酸盐细粒沉积岩成因分析. 沉积学报, 42(2): 688-700. 吕小东, 佟国辉, 王佩虎, 2003. 高升油田南部储层特征及储层预测. 特种油气藏, 10(6): 26-29. 孟卫工, 陈振岩, 赵会民, 2010. 辽河西部凹陷曙光—雷家地区隐蔽油气藏主控因素及分布规律. 中国石油勘探, 15(3): 1-7. 单俊峰, 黄双泉, 李理, 2014. 辽河坳陷西部凹陷雷家湖相碳酸盐岩沉积环境. 特种油气藏, 21(5): 7-11. 石巨业, 金之钧, 刘全有, 等, 2023. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用. 地学前缘, 30(4): 142-151. 石柱, 夏国清, 郝夏炜, 等, 2025. 青藏高原沱沱河盆地始新世—中新世湖相碳酸盐岩碳氧同位素特征与古环境意义. 沉积与特提斯地质, 45(2): 233-248. 宋柏荣, 韩洪斗, 崔向东, 等, 2015. 渤海湾盆地辽河坳陷古近系沙河街组四段湖相方沸石白云岩成因分析. 古地理学报, 17(1): 33-44. 谭伏霖, 孙晓梦, 曹健志, 等, 2024. 基于因子分析的页岩油储层"甜点"预测与主控地质因素分析. 非常规油气, 11(6): 67-74. 田军, 吴怀春, 黄春菊, 等, 2022. 从40万年长偏心率周期看米兰科维奇理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248 王大为, 李金宜, 刘东, 等, 2024. 基于储层物性参数的毛管压力曲线和孔喉分布表征. 非常规油气, 11(4): 1-9. 王森, 刘琛, 邢帅杰, 2022. K-means聚类算法研究综述. 华东交通大学学报, 39(5): 119-126. 吴靖, 姜在兴, 童金环, 等, 2016. 东营凹陷古近系沙河街组四段上亚段细粒沉积岩沉积环境及控制因素. 石油学报, 37(4): 464-473. 吴世强, 郭丽彬, 徐尚, 等, 2025. 潜江凹陷潜江组三段湖相碳酸盐岩岩相类型及储层特征. 中国石油勘探, 30(2): 42-53. 闫伟鹏, 杨涛, 李欣, 等, 2014. 中国陆上湖相碳酸盐岩地质特征及勘探潜力. 中国石油勘探, 19(4): 11-17. 姚益民, 1994. 中国油气区第三系(Ⅳ): 渤海湾盆地油气区分册. 北京: 石油工业出版社. 张雅茹, 张广璐, 杨俊, 等, 2024. 南海不同沉积环境黄铁矿的矿物学及原位微区地球化学研究. 古地理学报, 26(6): 1498-1515, 1543-1545. 赵会民, 2012. 辽河西部凹陷雷家地区古近系沙四段混合沉积特征研究. 沉积学报, 30(2): 283-290. 赵贤正, 曾溅辉, 韩国猛, 等, 2020. 渤海湾盆地黄骅坳陷板桥凹陷深层低渗透(致密)砂岩气藏充注特征及成藏过程. 石油与天然气地质, 41(5): 913-927. 赵彦彦, 李三忠, 李达, 等, 2019. 碳酸盐(岩)的稀土元素特征及其古环境指示意义. 大地构造与成矿学, 43(1): 141-167. -




下载: