• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地铁深基坑近接高铁降水耦合影响与协同控制

    王晓睿 李汶蔚 张坤 张华青

    王晓睿, 李汶蔚, 张坤, 张华青, 2025. 地铁深基坑近接高铁降水耦合影响与协同控制. 地球科学, 50(12): 5000-5011. doi: 10.3799/dqkx.2025.197
    引用本文: 王晓睿, 李汶蔚, 张坤, 张华青, 2025. 地铁深基坑近接高铁降水耦合影响与协同控制. 地球科学, 50(12): 5000-5011. doi: 10.3799/dqkx.2025.197
    Wang Xiaorui, Li Wenwei, Zhang Kun, Zhang Huaqing, 2025. Research on Coupling Effects and Collaborative Control of Dewatering in Metro Deep Foundation Pits Adjacent to High-Speed Railways. Earth Science, 50(12): 5000-5011. doi: 10.3799/dqkx.2025.197
    Citation: Wang Xiaorui, Li Wenwei, Zhang Kun, Zhang Huaqing, 2025. Research on Coupling Effects and Collaborative Control of Dewatering in Metro Deep Foundation Pits Adjacent to High-Speed Railways. Earth Science, 50(12): 5000-5011. doi: 10.3799/dqkx.2025.197

    地铁深基坑近接高铁降水耦合影响与协同控制

    doi: 10.3799/dqkx.2025.197
    基金项目: 

    河南省重点研发专项项目 251111240800

    河南省重点研发项目 241111321300

    详细信息
      作者简介:

      王晓睿(1975-)男,教授,博士,从事岩土工程、城市地下工程技术方面的研究. ORCID:0009-0005-0848-2352. E-mail:wangxiaorui@ncwu.edu.cn

      通讯作者:

      李汶蔚, E-mail:liwenwei0114@163.com

    • 中图分类号: TU443

    Research on Coupling Effects and Collaborative Control of Dewatering in Metro Deep Foundation Pits Adjacent to High-Speed Railways

    • 摘要: 针对地铁深基坑降水对邻近高铁桥梁桩基变形与安全运营的影响,开展渗流-应力耦合作用下的桩-土相互作用机理研究,并提出有效的协同控制措施.通过现场预降水试验,监测不同降深条件下桥桩周边地下水位、地表沉降变化;运用Abaqus进行数值模拟,建立渗流-应力耦合模型,分析不同降水深度对桩基侧摩阻力、中性点位置的影响,并与现场实验数据对比总结变化规律.随着降水深度增加,渗流场扰动区逐渐扩展至桩基,并在桩基附近形成绕桩渗流的模式;桩基变形呈非线性增长,降深超过10 m后沉降变形与横向变形显著加大;桩身上部负摩阻力增大,中性点下移,桩底正摩阻力增强.地铁深基坑近接高铁降水时桥桩变形受降水深度影响较大,可采用多级降水、止水帷幕、实时水位监测与回灌等协同控制措施,控制桥桩变形,保障高铁运营安全.

       

    • 图  1  基坑水位及地质剖面(单位:mm)

      Fig.  1.  Water level and geological profile of the foundation pit

      图  2  基坑与桥梁位置平面

      Fig.  2.  Plan of foundation pit and bridge location

      图  3  降水前后桩基受力图

      Fig.  3.  Stress on pile foundation before and after precipitation

      图  4  不同降深引起观测井水位变化

      Fig.  4.  Changes in water level in observation wells caused by different depths

      图  5  不同降深引起周边地表沉降变化分析

      Fig.  5.  Analysis of changes in surrounding surface subsidence caused by different depths

      图  6  数值模型建立示意

      Fig.  6.  Schematic diagram of numerical model establishment

      图  7  不同降深引起桩基及周边土体的位移云图(单位:mm)

      Fig.  7.  Cloud map of displacement of pile foundation and surrounding soil caused by different depths

      图  8  不同降深引起桥桩沉降云图(单位:mm)

      Fig.  8.  Settlement displacement nephograms of pile foundation induced by different drawdown depths

      图  9  不同降深引起桩基横向位移云图(单位:mm)

      Fig.  9.  Cloud map of lateral displacement of pile foundation caused by different depths

      图  10  不同降深引起侧摩阻力变化

      Fig.  10.  Changes in lateral friction caused by different depth reductions

      图  11  胡庄站邻近高铁桥墩竖向位移监测结果

      Fig.  11.  Monitoring results of vertical displacement of high-speed railway bridge piers near Huzhuang Station

      表  1  土层的物理力学特性

      Table  1.   Physical and mechanical feature of soil layers

      部件名称 埋深
      (m)
      密度
      (g/cm³)
      压缩模量
      (MPa)
      渗透系数
      (m/d)
      黏聚力
      (kPa)
      内摩擦角
      (°)
      1杂填土 3.5 1.70 8.1 / 10 15.5
      31黏质粉土 6.8 1.82 7.7 0.6 10.5 22
      22粉质黏土 5 1.83 4.2 0.05 19.5 11
      31D细砂 16 1.92 22 14 2 28
      23黏质粉土 17 1.88 13.3 0.5 13.5 23.5
      下载: 导出CSV
    • Hao, X., 2023. Analysis of the Effect of Subway Pit Precipitation on Pile Foundation Deformation and Surface Settlement of Adjacent High-Speed Rail Bridges (Dissertation). North China University of Water Resources and Electric Power, Zhengzhou(in Chinese with English abstract).
      He, H. W., Sun, F. C., Li, M. L., 2023. Current Status and Future Development of Integrated Transportation Technology in China. Strategic Study of CAE, 25(6): 202-211(in Chinese with English abstract). doi: 10.15302/J-SSCAE-2023.06.012
      Huang, Q., Wu, Y. Q., Huang, S. W., et al., 2025. Numerical Tests on Dynamic Response of Embankment with Pile-Supported Foundation for High-Speed Railway in Soft Ground Using Soil–Water Coupling Elastoplastic FEM. Scientific Reports, 15: 5651. https://doi.org/10.1038/s41598-025-89619-4
      Leung, C. F., Liao, B. K., Chow, Y. K., et al., 2004. Behavior of Pile Subject to Negative Skin Friction and Axial Load. Soils and Foundations, 44(6): 17-26. https://doi.org/10.3208/sandf.44.6_17
      Lin, C., Jiang, R., Xiao, S. C., et al., 2023. Study on Influence Mechanism and Control Technology of Shield Proximity Construction on Bearing Capacity of Friction Pile Foundation. Chinese Journal of Geotechnical Engineering, 45(Suppl. 2): 241-246(in Chinese with English abstract).
      Liu, Y. G., 2014. Analysis on Influence Imposed by Exploiting Groundwater on Bridges Pile Foundation of High-Speed Railway (Dissertation). Central South University, Changsha(in Chinese with English abstract).
      Liu, Y., Xiang, B. H., Fu, M. F., 2019. Influence of Dewatering in Deep Excavation on Adjacent Pile Considering Water Insulation Effect of Retaining Structures. Geotechnical and Geological Engineering, 37(6): 5123-5130. https://doi.org/10.1007/s10706-019-00966-2
      Ong, D. E. L., Leung, C. F., Chow, Y. K., 2009. Behavior of Pile Groups Subject to Excavation-Induced Soil Movement in Very Soft Clay. Journal of Geotechnical and Geoenvironmental Engineering, 135(10): 1462-1474. https://doi.org/10.1061/(asce)gt.1943-5606.0000095
      Ren. L., Wang, X. R., Jing, L. H., et al., 2025. Deformation Law of the Main Canal Bottom Plate under Coupling Effect of Main Canal Leakage and Shield Tunneling. Earth Science, 50(6): 2387-2399 (in Chinese with English abstract).
      Wang, X. R., Qin, W. X., Yu, H. C., 2024. Research on Dynamic Response Law of Shield Tunnel and Surrounding Soil Based on Vibration Action of Subway Train. Earth Science, 49(12): 4673-4689(in Chinese with English abstract).
      Wu, H., Yao, S. Y., Xue, X. Q., et al., 2019. Analysis on Influence of Foundation Pit Dewatering and Excavation on Adjacent Bridge Piles Based on Seepage Stress Coupling. Journal of Highway and Transportation Research and Development, 36(10): 59-66(in Chinese with English abstract).
      Xia, L. N., 2007. Theoretical and Field Test Study on Behavior of Negative Skin Friction in Piles (Dissertation). Central South University, Changsha(in Chinese with English abstract).
      Yang, Q. Y., Chen, S., 2025. Research on the Deformation Mechanism and Law Caused by the Influence of Seepage on Foundation Pit Dewatering. Frontiers in Earth Science, 12: 1523165. https://doi.org/10.3389/feart.2024.1523165
      Zeng, C. F., Sun, H. Y., Xue, X. L., et al., 2023. Responses of Adjacent Building Pile Foundation to Dewatering in Multi-Aquifer System. China Civil Engineering Journal, 56(8): 164-173, 183(in Chinese with English abstract).
      Zhang, R. J., 2011. Analysis of Excavation-Induced Additional Responses of Adjacent On-Service Pile Foundations (Dissertation). Huazhong University of Science and Technology, Wuhan(in Chinese with English abstract).
      Zhang, S. P., 2025. Research on the Difficulties and Technical Measures of Crossing Existing Traffic Lines in Road and Bridge Engineering Construction. Engineering Construction, (1): 102-104(in Chinese with English abstract).
      Zheng, C. Z., 2016. Effects of Deep Foundation Pit Dewatering on Existing High- Speed Railway Bridge Pile Foundation (Dissertation). Southeast University, Nanjing(in Chinese with English abstract).
      郝鑫, 2023. 地铁车站基坑降水对临近高铁桥梁桩基变形影响分析(硕士学位论文). 郑州: 华北水利水电大学.
      何洪文, 孙逢春, 李梦林, 2023. 我国综合交通工程科技现状及未来发展. 中国工程科学, 25(6): 202-211.
      林超, 姜蓉, 肖树聪, 等, 2023. 盾构近接施工对摩擦桩基承载性能的影响机制及控制技术研究. 岩土工程学报, 45(S2): 241-246.
      刘御刚, 2014. 抽降水对高速铁路桥梁桩基的影响分析(硕士学位论文). 长沙: 中南大学.
      任磊, 王晓睿, 景来红, 等, 2025. 盾构掘进与干渠渗漏耦合作用下干渠变形规律. 地球科学, 50(6): 2387-2399. doi: 10.3799/dqkx.2024.309
      王晓睿, 秦文茜, 于怀昌, 2024. 地铁列车振动作用下盾构隧道及周边土体动力响应规律. 地球科学, 49(12): 4673-4689. doi: 10.3799/dqkx.2023.075
      吴昊, 姚顺意, 薛勋强, 等, 2019. 基于渗流应力耦合的基坑降水及开挖对邻近桥桩的影响分析. 公路交通科技, 36(10): 59-66.
      夏力农, 2007. 桩基负摩阻力特性的理论与试验研究(硕士学位论文). 长沙: 中南大学.
      曾超峰, 孙海昱, 薛秀丽, 等, 2023. 多含水层体系基坑抽水诱发邻近建筑桩基受力变形特性. 土木工程学报, 56(8): 164-173, 183.
      章荣军, 2011. 土体开挖引起的邻近受荷桩基附加响应分析(硕士学位论文). 武汉: 华中科技大学.
      张仕鹏, 2025. 道路桥梁工程跨越既有交通线路施工的难点及技术措施研究. 工程建设, (1): 102-104.
      郑灿政, 2016. 深基坑工程降水对既有高铁桥梁桩基的影响研究(硕士学位论文). 南京: 东南大学.
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  114
    • HTML全文浏览量:  10
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-28
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回