• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原高速远程滑坡研究:从地质现象到动力学机理

    王玉峰 程谦恭 林棋文 李坤 史安文 李天话 明杰 宋章 牛富俊 李传宝

    王玉峰, 程谦恭, 林棋文, 李坤, 史安文, 李天话, 明杰, 宋章, 牛富俊, 李传宝, 2025. 青藏高原高速远程滑坡研究:从地质现象到动力学机理. 地球科学, 50(10): 4071-4095. doi: 10.3799/dqkx.2025.207
    引用本文: 王玉峰, 程谦恭, 林棋文, 李坤, 史安文, 李天话, 明杰, 宋章, 牛富俊, 李传宝, 2025. 青藏高原高速远程滑坡研究:从地质现象到动力学机理. 地球科学, 50(10): 4071-4095. doi: 10.3799/dqkx.2025.207
    Wang Yufeng, Cheng Qiangong, Lin Qiwen, Li Kun, Shi Anwen, Li Tianhua, Ming Jie, Song Zhang, Niu Fujun, Li Chuanbao, 2025. Research on Rock Avalanches in Tibetan Plateau: From Field Observations to Dynamic Mechanisms. Earth Science, 50(10): 4071-4095. doi: 10.3799/dqkx.2025.207
    Citation: Wang Yufeng, Cheng Qiangong, Lin Qiwen, Li Kun, Shi Anwen, Li Tianhua, Ming Jie, Song Zhang, Niu Fujun, Li Chuanbao, 2025. Research on Rock Avalanches in Tibetan Plateau: From Field Observations to Dynamic Mechanisms. Earth Science, 50(10): 4071-4095. doi: 10.3799/dqkx.2025.207

    青藏高原高速远程滑坡研究:从地质现象到动力学机理

    doi: 10.3799/dqkx.2025.207
    基金项目: 

    国家自然科学基金资助项目 42322702

    国家自然科学基金资助项目 U2244229

    国家自然科学基金资助项目 42207203

    新型交叉学科培育基金项目 2682025ZD002

    详细信息
      作者简介:

      王玉峰(1986-),女,博士,教授,博士生导师,主要从事高速远程滑坡动力学机理研究. E-mail:wangyufeng@swjtu.edu.cn

      通讯作者:

      程谦恭(1962-),男,博士,教授,博士生导师,主要从事高速远程滑坡动力学机理研究. E-mail: chengqiangong@swjtu.edu.cn

    • 中图分类号: P642

    Research on Rock Avalanches in Tibetan Plateau: From Field Observations to Dynamic Mechanisms

    • 摘要: 青藏高原是地球圈层作用最活跃、内外动力耦合作用最强烈、全球气候变化最敏感、地质灾害活动最剧烈的地区,区内构造-气候-地质灾害协同演化过程显著,是国际上高速远程滑坡动力学机理研究的天然实验室.为探秘高速远程滑坡的超常运动特性,研究团队一直致力于青藏高原及其邻区高速远程滑坡工程地质调查和动力学机理研究.基于前期研究成果,阐明了高速远程滑坡的术语由来及其基本特征,重点概述了研究团队在高速远程滑坡动力学研究领域的新发现、新认识、新观点,亦即:揭示高速远程滑坡体积效应呈现本质;提出高速远程滑坡是破碎流的新观点;提出自激振动悬浮减阻新机理;提出高速远程滑坡停积就位新模式等,这些成果体现了从野外地质现象到科学理论建立的滑坡动力学研究范式.最后,对未来青藏高原高速远程滑坡研究进行了深入思考和展望,以期为推动活跃造山带高速远程滑坡动力学机理研究和制定风险防控策略提供参考.

       

    • 图  1  瑞士Elm高速远程滑坡堆积体及其剖面图

      据Heim(1932

      Fig.  1.  Plan and longitudinal views of the Elm rock avalanche

      图  2  高速远程滑坡流动性表征指标

      Fig.  2.  Mobility characteristics of rock avalanche

      图  3  青藏高原及其邻区重大滑坡空间分布

      Fig.  3.  Spatial distribution of mega-rockslide, rock avalanches, and rock-ice avalanche in Tibetan Plateau and its adjacent regions

      图  4  青藏高原及其邻区典型高速远程滑坡

      a.乱石包滑坡(Wang et al.,2018b);b.尼续村滑坡(Wang et al.,2019a);c.塔合曼滑坡(Wang et al.,2020);d.阿拉苏滑坡(Lin et al.,2024);e.依买克滑坡(Shi et al.,2023

      Fig.  4.  Typical rock avalanches in Tibetan Plateau and its adjacent regions

      图  5  高速远程滑坡“体积效应”研究

      Fig.  5.  Research on the volume effect of rock avalanches

      图  6  依买克滑坡多层次、多尺度、多样化的剪切带(Shi et al., 2024a)

      a~b.滑坡体多层剪切带及其剪切剖面示意图;c~i.滑坡内部差异性剪切及局部网结状剪切带和剪切透镜体

      Fig.  6.  The multistoried, multiscale, and multistyle shear structures within the Iymek rock avalanche deposit

      图  7  高速远程滑坡剪切破碎相的时空演化特征(Shi et al., 2024a)

      a.剪切组构细微观演化特征;b.滑坡整体宏观相态演化

      Fig.  7.  The evolution processes of shear-induced fragmentation during rock avalanche

      图  8  高速远程滑坡“自激振动悬浮减阻机理”理论模型研究

      Fig.  8.  Conceptual model for the self-exited vibration effect of rock avalanches

      图  9  高速远程滑坡自激振动悬浮减阻机理实验研究

      Fig.  9.  Experimental study on the self-excited vibration effect of rock avalanches

      图  10  不同下伏层控制下平面撒开型高速远程滑坡停积就位模型

      a.软弱下伏层高速远程滑坡平面特征;b.坚硬下伏层高速远程滑坡平面特征;c.软弱下伏层高速远程滑坡剖面特征;d.坚硬下伏层高速远程滑坡剖面特征

      Fig.  10.  Emplacement models of unconfined rock avalanches under the control of varying substrate conditions

      表  1  主要高速远程滑坡动力学机理(王玉峰等, 2021

      Table  1.   The main dynamic mechanism of high-speed long-distance landslides (modified by Wang et al., 2021)

      运动学
      机理分类
      主要理论 主要内容 提出者及文献来源
      摩擦生热
      减阻机理
      热熔融减阻效应
      热孔压减阻效应
      热分解减阻效应
      滑坡运动过程中基底层强烈摩擦生热会引起液态水膨胀或汽化以及矿物的热分解,产生超孔隙水压力或气压力,抵消部分上覆荷载,实现减阻;或者摩擦产生高温熔融润滑减阻 Erismann(1979); Habib(1975); Wang et al.(2017); Mitchell et al.(2015); Hu et al.(2018)
      滑带液化
      减阻机理
      不排水荷载效应
      滑动液化观点
      滑坡运动过程中由于剪切或者振动,使得滑面孔隙水压力升高,有效应力降低,滑坡滑动阻力减小 Hutchinson and Bhandari(1971); Seed(1968); Sassa(1988)
      动力破碎
      减阻机理
      块体破碎扩离效应
      动力破碎效应
      颗粒力链破碎模型
      在滑体的高速运动过程中,滑体内部会产生强烈的碎屑化,产生弥散应力,抵消部分上覆荷载,实现减阻 Davies et al.(1999); Davies and McSaveney(2009); De Blasio(2014)
      底部裹挟
      减阻机理
      裹挟减阻效应 滑体高速运动过程中会对沿途软弱下伏层产生铲刮与裹挟作用,降低滑体底面摩阻力,促进滑体的运动 Iverson et al.(2011); Iverson(2012)
      剪切振动
      减阻机理
      声波流态化
      底部高剪切导致流态化
      基底压力波导致流态化
      自激振动能
      高速运动滑体会与下伏层之间产生强烈的碰撞与剪切作用,引起滑体机械能向振动能转化,在滑体底部产生明显的振动波,使颗粒发生稀疏化,产生悬浮减阻效应,促进滑体的运动 Melosh(1979); Davies(1982); Foda(1994);
      Kobayashi(1994); Wang et al.(2015)
      动量传递
      远程机理
      动量传递效应
      块体运动模型
      滑体前后不同碎屑块体之间的频繁碰撞所导致的动量传递过程,可使得滑体前部碎屑运动的更远 Heim(1932); Eisbacher(1979);
      成都地质学院工程地质研究室(1989);
      Miao et al.(2001)
      下载: 导出CSV
    • Aaron, J., McDougall, S., 2019. Rock Avalanche Mobility: The Role of Path Material. Engineering Geology, 257: 105126. https://doi.org/10.1016/j.enggeo.2019.05.003
      Abele, G. 1974. Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpenvereinshefte, Deutscher Alpenverein.
      Allstadt, K. E., Matoza, R. S., Lockhart, A. B., et al., 2018. Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes. Journal of Volcanology and Geothermal Research, 364: 76-106. https://doi.org/10.1016/j.jvolgeores.2018.09.007
      Azam, M. F., Kargel, J. S., Shea, J. M., et al., 2021. Glaciohydrology of the Himalaya-Karakoram. Science, 373(6557): eabf3668. https://doi.org/10.1126/science.abf3668
      Bahavar, M., Allstadt, K. E., Van Fossen, M., et al., 2019. Exotic Seismic Events Catalog (ESEC) Data Product. Seismological Research Letters, 90(3): 1355-1363. https://doi.org/10.1785/0220180402
      Cagnoli, B., 2023. Slope-Break Collisions: Comment on "Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests" by K. Li et al. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024799. https://doi.org/10.1029/2022JB024799
      Campbell, C. S., Cleary, P. W., Hopkins, M., 1995. Large-Scale Landslide Simulations: Global Deformation, Velocities and Basal Friction. Journal of Geophysical Research: Solid Earth, 100(B5): 8267-8283. https://doi.org/10.1029/94JB00937
      Chen, D. L., Xu, B. Q., Yao, T. D., et al., 2015. Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Chinese Science Bulletin, 60(32): 3025-3035, 1-2(in Chinese).
      Cheng, Q. G., Peng, J. B., Hu, G. T., 1999. Dynamics of High-Speed Rock Landslide. Southwest Jiaotong University Press, Chengdu(in Chinese).
      Cheng, Q. G., Wang, Y. F., Lin, Q. W., et al., 2024. Consideration on Dynamics of Rock Avalanches in the Himalayan Orogenic Belt. Acta Geologica Sinica, 98(11): 3238-3254(in Chinese with English abstract).
      Cheng, Q. G., Zhang, Z. Y., Huang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84(in Chinese with English abstract).
      Collins, G. S., Melosh, H. J., 2003. Acoustic Fluidization and the Extraordinary Mobility of Sturzstroms. Journal of Geophysical Research: Solid Earth, 108(B10): 2003JB002465. https://doi.org/10.1029/2003JB002465
      Cook, K. L., Dietze, M., 2022. Seismic Advances in Process Geomorphology. Annual Review of Earth and Planetary Sciences, 50: 183-204. https://doi.org/10.1146/annurev-earth-032320-085133
      Corominas, J., 1996. The Angle of Reach as a Mobility Index for Small and Large Landslides. Canadian Geotechnical Journal, 33(2): 260-271. https://doi.org/10.1139/t96-005
      Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones DE Mutatione Climatis, 10(2): 103-109(in Chinese with English abstract).
      Davies, T. R. H., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24. https://doi.org/10.1007/BF01239474
      Davies, T. R. H., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/cgj-36-6-1096
      Davies, T. R. H., McSaveney, M. J., Reznichenko, N. V., 2019. What Happens to Fracture Energy in Brittle Fracture? Revisiting the Griffith Assumption. Solid Earth, 10(4): 1385-1395. https://doi.org/10.5194/se-10-1385-2019
      Davies, T. R. H., Reznichenko, N. V., McSaveney, M. J., 2020. Energy Budget for a Rock Avalanche: Fate of Fracture-Surface Energy. Landslides, 17(1): 3-13. https://doi.org/10.1007/s10346-019-01224-5
      Davies, T. R., McSaveney, M. J., 2009. The Role of Rock Fragmentation in the Motion of Large Landslides. Engineering Geology, 109(1-2): 67-79. https://doi.org/10.1016/j.enggeo.2008.11.004
      De Blasio, F. V., 2011. Granular Flows and Rock Avalanches. In: De Blasio, F. V., ed., Introduction to the Physics of Landslides. Springer Netherlands, Dordrecht, 159-222. https://doi.org/10.1007/978-94-007-1122-8_6
      De Blasio, F. V., 2014. Friction and Dynamics of Rock Avalanches Travelling on Glaciers. Geomorphology, 213: 88-98. https://doi.org/10.1016/j.geomorph.2014.01.001
      Deboeuf, S., Lajeunesse, E., Dauchot, O., et al., 2006. Flow Rule, Self-Channelization and Levees in Unconfined Granular Flows. Physical Review Letters, 97(15): 158303. https://doi.org/10.1103/PhysRevLett.97.158303
      Delannay, R., Valance, A., Mangeney, A., et al., 2017. Granular and Particle-Laden Flows: From Laboratory Experiments to Field Observations. Journal of Physics D: Applied Physics, 50(5): 053001. https://doi.org/10.1088/1361-6463/50/5/053001
      Deng, Q. D., Cheng, S. P., Ma, J., et al., 2014. Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(7): 2025-2042(in Chinese with English abstract).
      Denlinger, R. P., 2014. Simulation of Initiation, Transport, and Deposition of Granular Avalanches: Current Progress and Future Challenges. Procedia IUTAM, 10: 363-371. https://doi.org/10.1016/j.piutam.2014.01.031
      Dubey, S., Sattar, A., Goyal, M. K., et al., 2023. Mass Movement Hazard and Exposure in the Himalaya. Earth's Future, 11(9): e2022EF003253. https://doi.org/10.1029/2022EF003253
      Dufresne, A., Davies, T. R. H., 2009. Longitudinal Ridges in Mass Movement Deposits. Geomorphology, 105(3-4): 171-181. https://doi.org/10.1016/j.geomorph.2008.09.009
      Dufresne, A., Dunning, S. A., 2017. Process Dependence of Grain Size Distributions in Rock Avalanche Deposits. Landslides, 14(5): 1555-1563. https://doi.org/10.1007/s10346-017-0806-y
      Edwards, A. N., Rocha, F. M., Kokelaar, B. P., et al., 2023. Particle-Size Segregation in Self-Channelized Granular Flows. Journal of Fluid Mechanics, 955: A38. https://doi.org/10.1017/jfm.2022.1089
      Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334. https://doi.org/10.1139/t79-032
      Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416-1419. https://doi.org/10.1126/science.1232887
      Engineering Geology Research Office, Chengdu College of Geology, 1989. Study on the Major Engineering Problems in Longyang Gorge Hydropower Station. Press of Chengdu University of Science and Technology, Chengdu, 52-116(in Chinese).
      Erismann, T. H., 1979. Mechanisms of Large Landslides. Rock Mechanics, 12(1): 15-46. https://doi.org/10.1007/BF01241087
      Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018RG000626
      Félix, G., Thomas, N., 2004. Relation between Dry Granular Flow Regimes and Morphology of Deposits: Formation of Levées in Pyroclastic Deposits. Earth and Planetary Science Letters, 221(1-4): 197-213. https://doi.org/10.1016/S0012-821X(04)00111-6
      Feng, Z. Y., Cheng, Q. G., Wang, Y. F., et al., 2023. The state-of-Art and Future Developmnet of Friction Heating Inducded Weakening Mechanisms of Rock Avalanches. Journal of Engineering Geology, 31(3): 999-1017(in Chinese with English abstract).
      Foda, M. A., 1994. Landslides Riding on Basal Pressure Waves. Continuum Mechanics and Thermodynamics, 6(1): 61-79. https://doi.org/10.1007/BF01138307
      Forterre, Y., Pouliquen, O., 2008. Flows of Dense Granular Media. Annual Review of Fluid Mechanics, 40: 1-24. https://doi.org/10.1146/annurev.fluid.40.111406.102142
      Gray, J. M. N. T., 2018. Particle Segregation in Dense Granular Flows. Annual Review of Fluid Mechanics, 50: 407-433. https://doi.org/10.1146/annurev-fluid-122316-045201
      Habib, P., 1975. Production of Gaseous Pore Pressure during Rock Slides. Rock Mechanics, 7(4): 193-197. https://doi.org/10.1007/BF01246865
      Han, X. D., Yang, X. Y., Sun, X. J., et al., 2024. Quantitative Prediction Model of Dynamic Erosion Process for Long Run-out Accumulation Landslides. Rock and Soil Mechanics, 45(4): 1190-1200(in Chinese with English abstract). doi: 10.26599/RSM.2024.9435612
      He, K., Wang, Y. F., Cheng, Q. G., et al., 2024. Research on the Substrate Entrainment Dynamics of Rock Avalanches: State-of-the-Art. Journal of Engineering Geology, 32(3): 904-917(in Chinese with English abstract).
      Heim, A., 1932. Bergsturz und Menschenleben. Zütich, Naturforschenden Gesellschaft. Translated by Skermer, N. S., 1989. Landslides and Human Lives. B C. Bitech Publishers, Vancouver.
      Hermanns, R. L., Penna, I. M., Oppikofer, T., et al., 2022. Rock Avalanche. In: Shroder, J. J. F., ed., Treatise on Geomorphology. Elsevier, Amsterdam, 85-105. https://doi.org/10.1016/b978-0-12-818234-5.00183-8
      Hewitt, K., 2002. Styles of Rock-Avalanche Depositional Complexes Conditioned by Very Rugged Terrain, Karakoram Himalaya, Pakistan. In: Evans, S. G., DeGraff, J. V., eds., Catastrophic Landslides: Effects, Occurrence and Mechanisms. The Geological Society of America. Press, USA, 345-378.
      Hewitt, K., 2006. Rock Avalanches with Complex Run out and Emplacement, Karakoram Himalaya, Inner Asia. Landslides from Massive Rock Slope Failure. In: Evans, S. G., Scarascia, M. G., Strom, A., et al., eds., Nato Science Series Ⅳ. Springer, Dordrecht, 521-550.
      Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2): 1-38. https://doi.org/10.1016/j.earscirev.2007.10.002
      Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815(in Chinese with English abstract).
      Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129. https://doi.org/10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2
      Hu, W., Huang, R. Q., McSaveney, M., et al., 2018. Mineral Changes Quantify Frictional Heating during a Large Low-Friction Landslide. Geology, 46(3): 223-226. https://doi.org/10.1130/g39662.1
      Hu, W., Xu, Q., McSaveney, M., et al., 2022. Fluid-Like Behavior of Crushed Rock Flows. Journal of Geophysical Research: Earth Surface, 127(10): e2021JF006523. https://doi.org/10.1029/2021JF006523
      Hugonnet, R., McNabb, R., Berthier, E., et al., 2021. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature, 592(7856): 726-731. https://doi.org/10.1038/s41586-021-03436-z
      Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y
      Hutchinson, J. N., 2006. Massive Rock Slope Failure: Perspectives and Retrospectives on State-of-the-Art. In: Evans, S. G., Mugnozza, G. S., Strom, A., et al., eds., Landslides from Massive Rock Slope Failure. Springer Netherlands, Dordrecht, 619-662. https://doi.org/10.1007/978-1-4020-4037-5_32
      Hutchinson, J. N., Bhandari, R. K., 1971. Undrained Loading, a Fundamental Mechanism of Mudflows and Other Mass Movements. Géotechnique, 21(4): 353-358. https://doi.org/10.1680/geot.1971.21.4.353
      Iverson, R. M., 2012. Elementary Theory of Bed-Sediment Entrainment by Debris Flows and Avalanches. Journal of Geophysical Research: Earth Surface, 117(F3): F03006. https://doi.org/10.1029/2011JF002189
      Iverson, R. M., 2015. Scaling and Design of Landslide and Debris-Flow Experiments. Geomorphology, 244: 9-20. https://doi.org/10.1016/j.geomorph.2015.02.033
      Iverson, R. M., 2016. Comment on "The Reduction of Friction in Long-Runout Landslides as an Emergent Phenomenon" by Brandon C. Johnson et al. Journal of Geophysical Research: Earth Surface, 121(11): 2238-2242. https://doi.org/10.1002/2016JF003979
      Iverson, R. M., George, D. L., 2016. Modelling Landslide Liquefaction, Mobility Bifurcation and the Dynamics of the 2014 Oso Disaster. Géotechnique, 66(3): 175-187. https://doi.org/10.1680/jgeot.15.lm.004
      Iverson, R. M., Reid, M. E., Logan, M., et al., 2011. Positive Feedback and Momentum Growth during Debris-Flow Entrainment of Wet Bed Sediment. Nature Geoscience, 4(2): 116-121. https://doi.org/10.1038/ngeo1040
      Jerolmack, D. J., Daniels, K. E., 2019. Viewing Earth's Surface as a Soft-Matter Landscape. Nature Reviews Physics, 1(12): 716-730. https://doi.org/10.1038/s42254-019-0111-x
      Johnson, B. C., Campbell, C. S., Melosh, H. J., 2016. The Reduction of Friction in Long Runout Landslides as an Emergent Phenomenon. Journal of Geophysical Research: Earth Surface, 121(5): 881-889. https://doi.org/10.1002/2015JF003751
      Johnson, B., 1978. Blackhawk Landslide, California, U. S. A. In: Voight, B., ed., Rockslides and Avalanches, 1- Natural Phenomena. Elsevier, Amsterdam, 481-504. https://doi.org/10.1016/b978-0-444-41507-3.50022-2
      Johnson, C. G., Kokelaar, B. P., Iverson, R. M., et al., 2012. Grain-Size Segregation and Levee Formation in Geophysical Mass Flows. Journal of Geophysical Research: Earth Surface, 117(F1): F01032. https://doi.org/10.1029/2011JF002185
      Kobayashi, Y., 1994. Effect of Basal Guided Waves on Landslides. Pure and Applied Geophysics, 142(2): 329-346. https://doi.org/10.1007/BF00879308
      Kokelaar, B. P., Graham, R. L., Gray, J. M. N. T., et al., 2014. Fine-Grained Linings of Leveed Channels Facilitate Runout of Granular Flows. Earth and Planetary Science Letters, 385: 172-180. https://doi.org/10.1016/j.epsl.2013.10.043
      Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3-4): 301-331. https://doi.org/10.1016/S0013-7952(01)00090-4
      Li, J. J., Fang, X. M., 1998. Study on Uplift of Qinghai-Tibet Plateau and Environmental Change. Chinese Science Bulletin, 43(15): 1569-1574(in Chinese). doi: 10.1360/csb1998-43-15-1569
      Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912(in Chinese with English abstract).
      Li, K., Wang, Y. F., Cheng, Q. G., et al., 2022. Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB022905. https://doi.org/10.1029/2021JB022905
      Li, K., Wang, Y. F., Cheng, Q. G., et al., 2023. Basal Stress Fluctuation: Reply to Comment by Cagnoli on "Slope-Break Collisions: Comment on 'Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests' by K. Li et al. ". Journal of Geophysical Research: Solid Earth, 128(2): e2022JB025804. https://doi.org/10.1029/2022JB025804
      Li, K., Wang, Y. F., Lin, Q. W., et al., 2021. Experiments on Granular Flow Behavior and Deposit Characteristics: Implications for Rock Avalanche Kinematics. Landslides, 18(5): 1779-1799. https://doi.org/10.1007/s10346-020-01607-z
      Li, L. P., Lan, H. X., 2022. Complexities of Landslide Moving Path: A Review and Perspective. Earth Science, 47(12): 4663-4680(in Chinese with English abstract).
      Li, T. D., 1995. The Uplifting Process and Mechanism of the Qinhai-Tibet Plateau. Acta Geoscientica Sinica, 16(1): 1-9(in Chinese with English abstract).
      Li, T. H., Cheng, Q. G., Wang, Y. F., et al., 2022. Review on Landquakes Related to Rock Avalanche Kinematics. Journal of Engineering Geology, 30(6): 1929-1946(in Chinese with English abstract).
      Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2024. Experiments on Landquakes Generated by Free-Falling Granular Masses: Implications for Rockfall Impact Dynamics. Earth and Space Science, 11(6): e2023EA003402. https://doi.org/10.1029/2023EA003402
      Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2025. Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF008015. https://doi.org/10.1029/2024JF008015
      Liang, X. F, Chen, L., Tian, X. B., et al., 2023. Uplifting Mechanism of the Tibetan Plateau Inferred from the Characteristics of Crustal Structures. Scientia Sinica (Terrae), 53(12): 2808-2829(in Chinese). doi: 10.1360/SSTe-2023-0027
      Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019JB019296
      Lin, Q. W., Cheng, Q. G., Li, K., et al., 2023. Review on Fragmentation-Related Dynamics of Rock Avalanches. Journal of Engineering Geology, 31(3): 815-829(in Chinese with English abstract).
      Lin, Q. W., Cheng, Q. G., Xie, Y., et al., 2021. Simulation of the Fragmentation and Propagation of Jointed Rock Masses in Rockslides: DEM Modeling and Physical Experimental Verification. Landslides, 18(3): 993-1009. https://doi.org/10.1007/s10346-020-01542-z
      Lin, Q. W., Wang, Y. F., Cheng, Q. G., et al., 2024. The Alasu Rock Avalanche in the Tianshan Mountains, China: Fragmentation, Landforms, and Kinematics. Landslides, 21(3): 439-459. https://doi.org/10.1007/s10346-023-02167-8
      Lin, Q. W., Wang, Y. F., Xie, Y., et al., 2022. Multiscale Effects Caused by the Fracturing and Fragmentation of Rock Blocks during Rock Mass Movement: Implications for Rock Avalanche Propagation. Natural Hazards and Earth System Sciences, 22(2): 639-657. https://doi.org/10.5194/nhess-22-639-2022
      Longchamp, C., Abellan, A., Jaboyedoff, M., et al., 2016. 3-D Models and Structural Analysis of Rock Avalanches: The Study of the Deformation Process to Better Understand the Propagation Mechanism. Earth Surface Dynamics, 4(3): 743-755. https://doi.org/10.5194/esurf-4-743-2016
      McSaveney, M. J., Davies, T. R. H., 2009. Surface Energy is not One of the Energy Losses in Rock Comminution. Engineering Geology, 109(1-2): 109-113. https://doi.org/10.1016/j.enggeo.2008.11.001
      Melosh, H. J., 1979. Acoustic Fluidization: A New Geologic Process? Journal of Geophysical Research: Solid Earth, 84(B13): 7513-7520. https://doi.org/10.1029/JB084iB13p07513
      Miao, T. D., Liu, Z. Y., Niu, Y. H., et al., 2001. A Sliding Block Model for the Runout Prediction of High-Speed Landslides. Canadian Geotechnical Journal, 38(2): 217-226. https://doi.org/10.1139/t00-092
      Mitchell, T. M., Smith, S. A. F., Anders, M. H., et al., 2015. Catastrophic Emplacement of Giant Landslides Aided by Thermal Decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 411: 199-207. https://doi.org/10.1016/j.epsl.2014.10.051
      Neuendorf, K. K. E., Mehl Jr., J. P., Jackson, J. A., 2011. Glossary of Geology. American Geosciences Institute, Virginia.
      Pan, G. T., Liu, Y. P., Zheng, L. L., et al., 2013. The Collison Tectonic and Effection on Qinghai-Tibet Plateau. Guangdong Science & Technology Press, Guangzhou(in Chinese).
      Pei, Y. Q., Qiu, H. J., Zhu, Y. R., et al., 2023. Elevation Dependence of Landslide Activity Induced by Climate Change in the Eastern Pamirs. Landslides, 20(6): 1115-1133. https://doi.org/10.1007/s10346-023-02030-w
      Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract).
      Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 457-466(in Chinese with English abstract).
      Petley, D. N., 2013. Characterizing Giant Landslides. Science, 339(6126): 1395-1396. https://doi.org/10.1126/science.1236165
      Pollet, N., Schneider, J. L. M., 2004. Dynamic Disintegration Processes Accompanying Transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221(1-4): 433-448. https://doi.org/10.1016/S0012-821X(04)00071-8
      Pudasaini, S. P., Krautblatter, M., 2021. The Mechanics of Landslide Mobility with Erosion. Nature Communications, 12: 6793. https://doi.org/10.1038/s41467-021-26959-5
      Qi, T. J., Meng, X. M., Zhao, Y., et al., 2025. Ancient Very Large and Giant Landslides on the Eastern Margin of the Qinghai-Tibet Plateau, China. Engineering Geology, 346: 107889. https://doi.org/10.1016/j.enggeo.2024.107889
      Rocha, F. M., Johnson, C. G., Gray, J. M. N. T., 2019. Self-Channelisation and Levee Formation in Monodisperse Granular Flows. Journal of Fluid Mechanics, 876: 591-641. https://doi.org/10.1017/jfm.2019.518
      Roverato, M., Cronin, S., Procter, J., et al., 2015. Textural Features as Indicators of Debris Avalanche Transport and Emplacement, Taranaki Volcano. Geological Society of America Bulletin, 127(1-2): 3-18. https://doi.org/10.1130/b30946.1
      Sassa, K., 1988. Geotechnical Model for the Motion of Landslides. In: Proceedings of the 5th International Symposium on Landsides. Balkema, Rotterdam, 37-56.
      Savage, S. B., Hutter, K., 1989. The Motion of a Finite Mass of Granular Material down a Rough Incline. Journal of Fluid Mechanics, 199: 177-215. https://doi.org/10.1017/S0022112089000340
      Savage, S. B., Lun, C. K. K., 1988. Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids. Journal of Fluid Mechanics, 189: 311-335. https://doi.org/10.1017/S002211208800103X
      Seed, H. B., 1968. The Fourth Terzaghi Lecture: Landslides during Earthquakes Due to Liquefaction. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122. https://doi.org/10.1061/jsfeaq.0001182
      Shea, T., van Wyk de Vries, B., 2008. Structural Analysis and Analogue Modeling of the Kinematics and Dynamics of Rockslide Avalanches. Geosphere, 4(4): 657-686. https://doi.org/10.1130/GES00131.1
      Shi, A. W., Cheng, Q. G., Wang, Y. F., et al., 2024. State of the Art on Fluidized Geomorphology of Rock Avalanche. Journal of Engineering Geology, 32(3): 978-995(in Chinese with English abstract).
      Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2023. The Largest Rock Avalanche in China at Iymek, Eastern Pamir, and Its Spectacular Emplacement Landscape. Geomorphology, 421: 108521. https://doi.org/10.1016/j.geomorph.2022.108521
      Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024a. Distinctive Shear Zones Demonstrate Pervasive Laminar Cataclastic Flow Throughout the Gigantic Iymek Rock Avalanche. Geomorphology, 452: 109109. https://doi.org/10.1016/j.geomorph.2024.109109
      Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024b. Observations of Avalanche-Substrate Interactions in the Iymek Rock Avalanche deposit: A Possible Causative Mechanism. Engineering Geology, 341: 107710. https://doi.org/10.1016/j.enggeo.2024.107710
      Shreve, R. L., 1959. Geology and Mechanics of the Blackhawk Rockslide, Lucerne Valley, California (Dissertation). California Institute of Technology, California.
      Shreve, R. L., 1966. Sherman Landslide, Alaska. Science, 154(3757): 1639-1643. https://doi.org/10.1126/science.154.3757.1639
      Shreve, R. L., 1968a. The Blackhawk Landslide. Geological Society of America Bulletin, Special Paper, 108: 1-47.
      Shreve, R. L., 1968b. Leakage and Fluidization in Air-Layer Lubricated Avalanches. Geological Society of America Bulletin, 79(5): 653-658. https://doi.org/10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2
      Shreve, R. L., 1987. Blackhawk Landslide, Southwestern San Bernardino County, California. In: Mason, L. H., ed., Cordilleran Section of the Geological Society of America. Geological Society of America, California, 109-114. https://doi.org/10.1130/0-8137-5401-1
      Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
      Stanley, T. A., Soobitsky, R. B., Amatya, P. M., et al., 2024. Landslide Hazard is Projected to Increase across High Mountain Asia. Earth's Future, 12(10): e2023EF004325. https://doi.org/10.1029/2023EF004325
      Staron, L., Lajeunesse, E., 2009. Understanding How Volume Affects the Mobility of Dry Debris Flows. Geophysical Research Letters, 36(12): L12402. https://doi.org/10.1029/2009GL038229
      Strom, A., Li, L., Lan, H. X., 2019. Rock Avalanche Mobility: Optimal Characterization and the Effects of Confinement. Landslides, 16(8): 1437-1452. https://doi.org/10.1007/s10346-019-01181-z
      Strom, A. L., 1994. Mechanisms of Stratification and Abnormal Crushing of Rockslide Deposits. In: Oliveira, R., ed., 7th International Association for Engineering Geology and the Environment (IAEG) Congress. Balkema, Lisbon, Portugal, 1287-1295.
      Strom, A. L., 2018. Rockslides and Rock Avalanches of Central Asia. Elsevier, Amsterdam.
      Tahmasebi, P., 2023. A State-of-the-Art Review of Experimental and Computational Studies of Granular Materials: Properties, Advances, Challenges, and Future Directions. Progress in Materials Science, 138: 101157. https://doi.org/10.1016/j.pmatsci.2023.101157
      Tang, H. M., 2025. Mechanism of the Coevolution of Landslides and River Valleys in the Three Gorges Reservoir Area. Chinese Science Bulletin, 70(21): 3505-3515(in Chinese with English abstract). doi: 10.1360/TB-2024-1225
      Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608(in Chinese with English abstract).
      Teng, J. W., Zhang, Z. J., Zhang, B. M., et al., 1997. Environmental Change and the Uplift of Tibetan Plateau. Earth Science Frontiers, 4(S1): 247-254(in Chinese with English abstract).
      The Second Tibetan Plateau Scientific Expedition and Research, 2000. Geological Evolution of Karakorum Mountain-Kunlun Mountain Area. Science Press, Beijing(in Chinese).
      Tian, H. R., 2023. Study on Accumulation Characteristics of High-Speed Remote Landslide Based on UAV Photogrammetry (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract).
      Voigtländer, A., Houssais, M., Bacik, K. A., et al., 2024. Soft Matter Physics of the Ground beneath Our Feet. Soft Matter, 20(30): 5859-5888. https://doi.org/10.1039/D4SM00391H
      Wang, C. S., Ding, X. L., 1998. The New Researching Progress of Tibet Plateau Uplift. Advances in Earth Science, 13(6): 526-532(in Chinese with English abstract).
      Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Temporal and Spatial Pattern of Cenozoic Tectonic Uplift in Qinghai-Tibet Plateau. Scientia Sinica (Terrae), 41(3): 332-349(in Chinese). doi: 10.1360/zd-2011-41-3-332
      Wang, Y. F., Chen, P. H., Qian, J. Z., et al., 2025. Geomorphic and Geologic Controls on Large-Scale Landslides in the Himalayan Region of China. Landslides, 22(5): 1725-1741. https://doi.org/10.1007/s10346-024-02447-x
      Wang, Y. F., Dong, J. J., Cheng, Q. G., 2018a. Normal Stress-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for the Rock Avalanche Volume Effect. Journal of Geophysical Research: Solid Earth, 123(4): 3270-3282. https://doi.org/10.1002/2018JB015602
      Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018b. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05.025
      Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., et al., eds., Progress in Landslide Research and Technology, Volume 2 Issue 2, 2023. Cham: Springer Nature Switzerland: 55-111. https://doi.org/10.1007/978-3-031-44296-4_2
      Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019a. Characteristics and Transport Mechanism of the Nyixoi Chongco Rock Avalanche on the Tibetan Plateau, China. Geomorphology, 343: 92-105. https://doi.org/10.1016/j.geomorph.2019.07.002
      Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019b. Sedimentary Deformation Structures in the Nyixoi Chongco Rock Avalanche: Implications on Rock Avalanche Transport Mechanisms. Landslides, 16(3): 523-532. https://doi.org/10.1007/s10346-018-1117-7
      Wang, Y. F., Cheng, Q. G., Yuan, Y. Q., et al., 2020. Emplacement Mechanisms of the Tagarma Rock Avalanche on the Pamir-Western Himalayan Syntaxis of the Tibetan Plateau, China. Landslides, 17(3): 527-542. https://doi.org/10.1007/s10346-019-01298-1
      Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181. https://doi.org/10.1139/cgj-2013-0284
      Wang, Y. F., Dong, J. J., Cheng, Q. G., 2017. Velocity-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for Rock Avalanche Hypermobility? Journal of Geophysical Research: Solid Earth, 122(3): 1648-1676. https://doi.org/10.1002/2016JB013624
      Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181(in Chinese with English abstract).
      Wu, Z. H., 2024. The Earthquake-Controlling Process of Continental Collision-Extrusion Active Tectonic System around the Qinghai-Tibet Plateau: A Case Study of Strong Earthquakes since 1990. Journal of Geomechanics, 30(2): 189-205(in Chinese with English abstract).
      Xu, Z. Q., Li, G. W., Zhang, Z. M., et al., 2022. Review Ten Key Geological Issues of the Tibetan Plateau—Commemoration of the Centennial Anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65-94(in Chinese with English abstract).
      Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau—The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17(in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2024. Himalayan Orogeny Dynamics. Geological Publishing House, Beijing (in Chinese).
      Yao, T. D., Piao, S. L., Shen, M. G., et al., 2017. Chained Impacts on Modern Environment of Interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 32(9): 976-984(in Chinese with English abstract).
      Yao, T. D., Yu, W. S., Wu, G. J., et al., 2019. Glacier Anomalies and Relevant Disaster Risks on the Tibetan Plateau and Surroundings. Chinese Science Bulletin, 64(27): 2770-2782(in Chinese). doi: 10.1360/TB-2019-0246
      Yin, Y. P., Zhu, S. N., Li, B., 2021. High-Level Remote Geological Disasters in Qinghai-Tibet Plateau. Science Press, Beijing (in Chinese).
      Yuan, D. Y., Feng, J. G., Zheng, W. J., et al., 2020. Migration of Large Earthquakes in Tibetan Block Area and Disscussion on Major Active Region in the Future. Seismology and Geology, 42(2): 297-315(in Chinese with English abstract).
      Zeng, Q. L., Zhang, L. Q., Davies, T., et al., 2019. Morphology and Inner Structure of Luanshibao Rock Avalanche in Litang, China and Its Implications for Long-Runout Mechanisms. Engineering Geology, 260: 105216. https://doi.org/10.1016/j.enggeo.2019.105216
      Zhang, T. G., Wang, W. C., An, B. S., et al., 2023. Enhanced Glacial Lake Activity Threatens Numerous Communities and Infrastructure in the Third Pole. Nature Communications, 14: 8250. https://doi.org/10.1038/s41467-023-44123-z
      Zhang, Y. S., Du, G. L., Guo, C. B., et al., 2021. Research on Typical Geomechanical Model of High-Position Landslides on the Sichuan-Tibet Traffic Corridor. Acta Geologica Sinica, 95(3): 605-617(in Chinese with English abstract).
      Zhao, B., Su, L. J., Wang, Y. S., et al., 2023. Insights into Some Large-Scale Landslides in Southeastern Margin of Qinghai-Tibet Plateau. Journal of Rock Mechanics and Geotechnical Engineering, 15(8): 1960-1985. https://doi.org/10.1016/j.jrmge.2022.09.005
      Zhao, B., Zhang, Q., Wang, L. J., et al., 2025. Preliminary Analysis of Failure Characteristics of the 2025 Junlian Rock Avalanche, China. Landslides, 22(8): 2593-2605. https://doi.org/10.1007/s10346-025-02556-1
      Zhong, D. L., Ding, L., 1996. Discussion on Uplift Process and Mechanism of Qinghai-Tibet Plateau. Science in China (Ser. D), 26(4): 289-295(in Chinese).
      Zhong, Y., Allen, S. K., Zheng, G. X., et al., 2024. Large Rock and Ice Avalanches Frequently Produce Cascading Processes in High Mountain Asia. Geomorphology, 449: 109048. https://doi.org/10.1016/j.geomorph.2023.109048
      Zhu, L., Tang, X., He, S. M., et al., 2025. Geomorphology and Sedimentology of the Nyixoi Chongco Rock Avalanche and Implications for Emplacement Mechanisms. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF007666. https://doi.org/10.1029/2024JF007666
      Zou, Q., Guo, X. J., Luo, Y., et al., 2021. Spatial Pattern and Response of Landslide and Debris Flow Risks in China-Pakistan Economic Corridor. Bulletin of Chinese Academy of Sciences, 36(2): 160-169(in Chinese with English abstract).
      陈德亮, 徐柏青, 姚檀栋, 等, 2015. 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 60(32): 3025-3035, 1-2.
      成都地质学院工程地质研究室, 1989. 龙羊峡水电站重大工程地质问题研究. 成都: 成都科技大学出版社, 52-116.
      程谦恭, 彭建兵, 胡广韬, 等, 1999. 高速岩质滑坡动力学. 成都: 西南交通大学出版社.
      程谦恭, 王玉峰, 林棋文, 等, 2024. 喜马拉雅造山带高速远程滑坡动力学机理研究的思考. 地质学报, 98(11): 3238-3254.
      程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84.
      崔鹏, 陈容, 向灵芝, 等, 2014. 气候变暖背景下青藏高原山地灾害及其风险分析. 气候变化研究进展, 10(2): 103-109.
      邓起东, 程绍平, 马冀, 等, 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57(7): 2025-2042.
      冯止依, 程谦恭, 王玉峰, 等, 2023. 高速远程滑坡摩擦生热减阻机理研究现状及展望. 工程地质学报, 31(3): 999-1017.
      韩旭东, 杨秀元, 孙秀娟, 等, 2024. 高位堆积体远程滑坡动力侵蚀过程量化预测模型. 岩土力学, 45(4): 1190-1200.
      何可, 王玉峰, 程谦恭, 等, 2024. 高速远程滑坡底部裹挟机理研究现状及展望. 工程地质学报, 32(3): 904-917.
      侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815.
      李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究. 科学通报, 43(15): 1569-1574.
      李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169
      李郎平, 兰恒星, 2022. 滑坡运动路径复杂度研究: 综述与展望. 地球科学, 47(12): 4663-4680. doi: 10.3799/dqkx.2021.224
      李廷栋, 1995. 青藏高原隆升的过程和机制. 地球学报, 16(1): 1-9.
      李天话, 程谦恭, 王玉峰, 等, 2022. 高速远程滑坡滑震研究述评. 工程地质学报, 30(6): 1929-1946.
      梁晓峰, 陈凌, 田小波, 等, 2023. 青藏高原地壳结构特征指示的高原隆升机制. 中国科学: 地球科学, 53(12): 2808-2829.
      林棋文, 程谦恭, 李坤, 等, 2023. 高速远程滑坡碎屑化运动机理研究综述. 工程地质学报, 31(3): 815-829.
      潘桂棠, 刘宇平, 郑来林, 等, 2013. 青藏高原碰撞构造与效应. 广州: 广东科技出版社.
      彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389.
      彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3): 457-466.
      史安文, 程谦恭, 王玉峰, 等, 2024. 高速远程滑坡流态化地貌研究综述. 工程地质学报, 32(3): 978-995.
      唐辉明, 2025. 三峡库区滑坡与河谷协同演化机制. 科学通报, 70(21): 3505-3515.
      唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608. doi: 10.3799/dqkx.2022.461
      滕吉文, 张中杰, 张秉铭, 等, 1997. 青藏高原的隆升与环境变化. 地学前缘, 4(增刊1): 247-254.
      田浩然, 2023. 基于无人机摄影测量的高速远程滑坡堆积特征研究(硕士学位论文). 成都: 西南交通大学.
      王成善, 丁学林, 1998. 青藏高原隆升研究新进展综述. 地球科学进展, 13(6): 526-532.
      王国灿, 曹凯, 张克信, 等, 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 41(3): 332-349.
      王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展. 地球科学与环境学报, 43(1): 164-181.
      吴中海, 2024. 青藏高原陆陆碰撞-挤出活动构造体系控震作用: 以1990年以来强震活动为例. 地质力学学报, 30(2): 189-205.
      许志琴, 李广伟, 张泽明, 等, 2022. 再探青藏高原十大关键地学科学问题: 《地质学报》百年华诞纪念. 地质学报, 96(1): 65-94.
      许志琴, 李海兵, 杨经绥, 2006. 造山的高原: 青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17.
      许志琴, 杨经绥, 李海兵等, 2024. 喜马拉雅造山动力学. 北京: 地质出版社.
      姚檀栋, 朴世龙, 沈妙根, 等, 2017. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应. 中国科学院院刊, 32(9): 976-984.
      姚檀栋, 余武生, 邬光剑, 等, 2019. 青藏高原及周边地区近期冰川状态失常与灾变风险. 科学通报, 64(27): 2770-2782.
      殷跃平, 朱赛楠, 李滨, 等, 2021. 青藏高原高位远程地质灾害. 北京: 科学出版社.
      袁道阳, 冯建刚, 郑文俊, 等, 2020. 青藏地块区大地震迁移规律与未来主体活动区探讨. 地震地质, 42(2): 297-315.
      张永双, 杜国梁, 郭长宝, 等, 2021. 川藏交通廊道典型高位滑坡地质力学模式. 地质学报, 95(3): 605-617.
      中国科学院青藏高原综合科学考察队, 2000. 喀喇昆仑山-昆仑山地区地质演化. 北京: 科学出版社.
      钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑: 地球科学), 26(4): 289-295.
      邹强, 郭晓军, 罗渝, 等, 2021. 中巴经济走廊滑坡泥石流灾害格局与风险应对. 中国科学院院刊, (362): 160-169.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  19
    • HTML全文浏览量:  9
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-15
    • 网络出版日期:  2025-10-31
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回