• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂尔多斯盆地绥德1H井8#煤储层孔隙特征及煤岩气成藏特征

    刘翰林 邹才能 邓泽 赵群 周国晓 陈艳鹏 田文广 尹帅 陈朝兵 沈振 孙粉锦

    刘翰林, 邹才能, 邓泽, 赵群, 周国晓, 陈艳鹏, 田文广, 尹帅, 陈朝兵, 沈振, 孙粉锦, 2026. 鄂尔多斯盆地绥德1H井8#煤储层孔隙特征及煤岩气成藏特征. 地球科学, 51(1): 284-302. doi: 10.3799/dqkx.2025.231
    引用本文: 刘翰林, 邹才能, 邓泽, 赵群, 周国晓, 陈艳鹏, 田文广, 尹帅, 陈朝兵, 沈振, 孙粉锦, 2026. 鄂尔多斯盆地绥德1H井8#煤储层孔隙特征及煤岩气成藏特征. 地球科学, 51(1): 284-302. doi: 10.3799/dqkx.2025.231
    Liu Hanlin, Zou Caineng, Deng Ze, Zhao Qun, Zhou Guoxiao, Chen Yanpeng, Tian Wenguang, Yin Shuai, Chen Chaobing, Shen Zhen, Sun Fenjin, 2026. Pore Characteristics and Coalbed Gas Reservoir Formation Characteristics of Coal Reservoir of No.8 Coal Seam in Well Suide 1H, Ordos Basin. Earth Science, 51(1): 284-302. doi: 10.3799/dqkx.2025.231
    Citation: Liu Hanlin, Zou Caineng, Deng Ze, Zhao Qun, Zhou Guoxiao, Chen Yanpeng, Tian Wenguang, Yin Shuai, Chen Chaobing, Shen Zhen, Sun Fenjin, 2026. Pore Characteristics and Coalbed Gas Reservoir Formation Characteristics of Coal Reservoir of No.8 Coal Seam in Well Suide 1H, Ordos Basin. Earth Science, 51(1): 284-302. doi: 10.3799/dqkx.2025.231

    鄂尔多斯盆地绥德1H井8#煤储层孔隙特征及煤岩气成藏特征

    doi: 10.3799/dqkx.2025.231
    基金项目: 

    新型油气勘探开发国家科技重大专项 2025ZD1404200

    中国石油科技项目 2024DJ23

    中国石油科技项目 2023ZZ18

    详细信息
      作者简介:

      刘翰林(1992-),男,高级工程师,博士,主要从事非常规油气地质和油气能源战略方面的研究.ORCID:0009-0004-9513-9829. E-mail:lhldmc@163.com

      通讯作者:

      邓泽,ORCID: 0000-0001-9574-6056.E-mail: dengze@petrochina.com.cn

    • 中图分类号: P618.13

    Pore Characteristics and Coalbed Gas Reservoir Formation Characteristics of Coal Reservoir of No.8 Coal Seam in Well Suide 1H, Ordos Basin

    • 摘要: 绥德地区深部煤岩气目前处于勘探初期,明晰其煤岩气成藏和富集规律对该地区深部煤岩气的高效开发意义重大.以绥德1H井8#煤为研究对象,应用有机岩石学及岩石物理学相关手段,分析并讨论其与邻区储层差异、沉积环境、孔隙结构的主控因素以及煤岩气的赋存特征.结果表明:研究区煤储层沼泽类型主要为湿地森林沼泽和开阔水域沼泽;孔隙主要以微孔为主,灰分含量是煤储层微孔的主控因素;本溪组8#煤储层含气量较高,解吸气是总含气量的主要组成部分;研究区煤储层煤质较好,含气量高,构造平缓,沉积较连续,有利于煤岩气的富集和成藏.明确绥德1H井本溪组8#煤的储层特征与成藏特征,对于深部煤储层的勘探开发具有一定的借鉴意义.

       

    • 图  1  绥德1H井区域构造及地层柱状图

      郭彦如等(2014)修改

      Fig.  1.  Tectonic and strata diagram of the Suide area

      图  2  绥德1H井本溪组8#煤样照片及宏观煤岩结构

      Fig.  2.  Photograph and macroscopic coal structure of No.8 coal sample from the Benxi Formation of Suide 1H Well

      图  3  绥德1H井本溪组8#煤岩储层显微组分特征

      a. T代表结构镜质体,细胞腔显示清楚,多为圆形或椭圆形,大多被挤压而变形;b. TC代表均质镜质体,不显示细胞结构,为完全均一的物质,多呈浅灰色;c. CC代表团块镜质体,为团块状,多呈椭圆形和纺锤形,成群出现于均质体或基质体中;d. DC代表基质镜质体,呈现为均一或不均一的致密状态,其上多见矿物颗粒,没有固定形态.e. VD代表碎屑镜质体,不具有具体的形态,由各类镜质体的碎屑组成;f. ID代表碎屑惰质体,为半丝质体和丝质体的碎屑,无细胞结构,无定形,有微突起;g. Sf代表半丝质体,白色,有微突起,常出现在均质镜质体上;h. F代表丝质体,保存着完好的细胞结构,高突起,细胞腔常被黄铁矿填充

      Fig.  3.  Microscopic composition characteristics of coal in Benxi Formation No.8 coal reservoir of Suide 1H Well

      图  4  绥德1H井本溪组8#煤岩储层核磁共振T2谱图

      a. 8-2-1样品;b. 8-2-3样品;c. 8-2-4样品;d. 8-2-7样品;e. 8-3-2样品;f. 8-4-1样品

      Fig.  4.  Nuclear magnetic resonance T2 spectrum of coal in Benxi Formation No.8 coal reservoir of Suide 1H Well

      图  5  孔隙体积占比随孔径变化

      Fig.  5.  Changes in pore volume with pore size

      图  6  绥德1H井本溪组8#煤岩储层孔隙特征分析

      a. 低温氮气吸附曲线;b. 低压二氧化碳吸附曲线;c. 低温氮气吸附实验孔比表面积和孔体积随孔径变化;d. 低压二氧化碳实验比表面积和孔体积随孔径变化

      Fig.  6.  Analysis of coal pore characteristics in Benxi Formation No.8 coal reservoir of Suide 1H Well

      图  7  绥德1H井本溪组8#煤储层含气量(m3/t)随深度变化

      Fig.  7.  Change in gas content (m3/t) with depth in Benxi Formation No.8 coal reservoir of Suide 1H well

      图  8  绥德1H井本溪组8#煤储层TPI-GI煤相图

      Fig.  8.  TPI-GI coal phase diagram of Benxi Formation No.8 coal reservoir in Suide 1H Well

      图  9  绥德1H井本溪组8#煤储层煤相参数分析

      Fig.  9.  Coal phase parameter analysis of Benxi Formation No.8 coal reservoir in Suide 1H Well

      图  10  绥德1H井本溪组8#煤有机岩石及孔隙特征

      Fig.  10.  Organic petrological and pore characteristics of Benxi Formation No.8 coal in Suide 1H Well

      图  11  绥德1H井本溪组8#煤镜质组、灰分与孔体积关系

      Fig.  11.  Relationship between vitrinite, ash content and pore volume of Benxi Formation No.8 coal in Suide 1H Well

      图  12  绥德1H井本溪组8#煤镜质组、灰分与孔比表面积关系

      Fig.  12.  Relationship between vitrinite, ash content and pore specific surface area of Benxi Formation No.8 coal in Suide 1H Well

      图  13  绥德1H井本溪组8#煤含气量分布

      Fig.  13.  Gas content distribution of No.8 coal in Benxi Formation of Suide 1H Well

      图  14  绥德1H井本溪组8#煤微孔占比和灰分含量与总含气量和解吸气量关系

      Fig.  14.  Relationship between the proportion of micropores, ash content, total gas content, and desorption gas content of No.8 coal in Benxi Formation of Suide 1H Well

      表  1  绥德1H井本溪组8#煤岩工业分析

      Table  1.   Industrial analysis of No.8 coal in the Benxi Formation of the Suide 1H Well

      样品 深度(m) Mad(%) Ad(%) Vdaf(%) FCdaf(%) Ro (%) TOC(%) St, d(%)
      8-1-1 2 353.30 0.64 7.98 8.70 91.30 2.00 34.73 2.95
      8-2-1 2 355.31 0.80 8.57 8.42 91.58 2.15 33.36 2.73
      8-2-2 2 355.66 0.82 3.23 8.02 91.98 1.95 32.72 2.78
      8-2-3 2 356.04 0.92 2.35 8.37 91.63 2.07 35.52 3.40
      8-2-4 2 356.41 0.80 3.41 8.56 91.44 2.02 34.13 2.87
      8-2-5 2 356.78 0.70 2.96 8.32 91.68 2.09 35.76 3.09
      8-2-6 2 357.15 0.84 4.74 10.16 89.84 2.03 34.33 3.43
      8-2-7 2 357.53 1.00 2.42 8.01 91.99 2.21 33.43 3.03
      8-2-8 2 357.89 0.95 4.67 8.84 91.16 2.25 32.79 2.45
      8-3-1 2 358.20 0.86 4.98 8.21 91.79 2.14 32.07 3.63
      8-3-2 2 358.47 0.75 3.72 8.06 91.94 2.04 34.53 2.74
      8-4-1 2 359.20 0.75 14.20 10.27 89.73 1.99 33.66 4.40
      8-4-2 2 359.50 1.01 8.08 8.67 91.33 2.17 34.49 2.50
      8-4-3 2 359.87 0.79 13.51 9.39 90.61 2.34 30.53 1.93
      注:Mad. 水分(空气干燥基);Ad. 灰分(干燥基);Vdaf. 挥发分(干燥无灰基);FCdaf. 固定碳(干燥无灰基);Ro. 镜质体反射率(平均);TOC. 有机碳含量;St, d. 全硫(干燥基).
      下载: 导出CSV

      表  2  绥德1H井本溪组8#煤岩储层显微组分分析(无矿物质基)

      Table  2.   Microscopic component analysis of No.8 coal reservoir in Benxi Formation of Suide 1H Well (no mineral content)

      样品 镜质组(%) 惰质组(%)
      T TC CC DC VD 合计 F Sf ID Ma 合计
      8-1-1 17.97 17.51 0.77 15.21 1.23 52.69 7.22 22.43 17.67 - 47.31
      8-2-1 11.38 19.76 - 28.94 3.99 64.07 4.19 10.98 20.76 - 35.93
      8-2-2 16.05 23.79 1.74 20.70 2.51 64.80 2.71 18.38 14.12 - 35.20
      8-2-3 11.32 42.59 - 20.78 4.32 79.01 0.21 10.08 10.70 - 20.99
      8-2-4 6.51 43.49 0.57 28.74 6.51 85.82 1.72 6.51 5.94 0.19 14.18
      8-2-5 3.45 31.09 1.34 14.98 24.95 75.81 - 4.61 19.58 - 24.19
      8-2-6 1.99 38.12 2.39 19.56 18.98 81.04 - 6.19 12.77 - 18.96
      8-2-7 8.28 43.52 2.12 21.66 5.94 81.53 0.85 7.86 9.77 - 18.47
      8-2-8 0.98 49.42 0.98 17.39 15.04 83.81 0.19 3.36 12.64 - 16.19
      8-3-1 17.01 27.41 2.46 18.15 18.33 83.36 0.18 4.17 12.29 - 16.64
      8-3-2 24.74 22.47 0.21 20.41 6.80 74.64 1.03 11.34 12.99 - 25.36
      8-4-1 12.97 29.58 1.34 24.62 14.69 83.20 0.57 3.25 12.98 - 16.80
      8-4-2 17.88 20.04 3.94 8.25 16.69 66.80 - 11.39 21.81 - 33.20
      8-4-3 11.18 21.34 1.02 22.97 24.80 81.30 0.41 3.86 14.43 - 18.70
      注:T. 结构镜质体;TC. 均质镜质体;CC. 团块镜质体;DC. 基质镜质体;VD. 碎屑镜质体;F. 丝质体;Sf. 半丝质体;ID. 碎屑惰质体;Ma. 粗粒体.
      下载: 导出CSV

      表  3  绥德1H井本溪组8#煤岩储层核磁共振谱图分析

      Table  3.   Nuclear magnetic resonance spectroscopy analysis of coal in Benxi Formation 8 # coal reservoir of Suide 1H Well

      样品 表面弛豫率
      (μm/s)
      孔隙体积占比(%)
      微孔 中孔 大孔
      8-2-1 0.710 9 78.18 7.24 14.57
      8-2-3 0.747 8 78.70 3.52 17.77
      8-2-4 0.753 8 52.52 11.25 36.23
      8-2-7 0.658 3 86.73 3.10 10.17
      8-3-2 0.647 4 72.56 9.81 17.63
      8-4-1 0.880 5 82.47 5.78 11.75
      下载: 导出CSV

      表  4  绥德1H井本溪组8#煤岩储层孔比表面积分析

      Table  4.   Analysis of coal pore specific surface area in Benxi Formation No.8 coal reservoir of Suide 1H Well

      样品 孔比表面积(m2/g) 孔比表面积贡献率(%)
      微孔 中孔 大孔 微孔 中孔 大孔
      8-1-1 152.060 0.578 0.052 99.59 0.38 0.03
      8-2-1 152.160 1.976 0.084 98.66 1.28 0.06
      8-2-2 162.830 0.717 0.033 99.54 0.44 0.02
      8-2-3 166.200 0.967 0.061 99.39 0.58 0.04
      8-2-4 155.246 1.271 0.059 99.15 0.81 0.04
      8-2-5 160.886 0.248 0.038 99.82 0.15 0.02
      8-2-6 154.130 0.231 0.023 99.84 0.15 0.02
      8-2-7 163.770 0.547 0.037 99.64 0.33 0.02
      8-2-8 152.980 0.449 0.035 99.68 0.29 0.02
      8-3-1 156.310 0.547 0.045 99.62 0.35 0.03
      8-3-2 165.590 1.898 0.073 98.82 1.13 0.04
      8-4-1 135.780 0.655 0.046 99.49 0.48 0.03
      8-4-2 157.360 1.634 0.046 98.94 1.03 0.03
      8-4-3 136.580 0.382 0.032 99.70 0.28 0.02
      下载: 导出CSV

      表  5  绥德1H井本溪组8#煤岩储层孔体积分析

      Table  5.   Coal pore volume analysis of Benxi Formation No.8 coal reservoir in Suide 1H Well

      样品 孔体积(10-2 cm3/g) 孔体积贡献率(%)
      微孔 中孔 大孔 微孔 中孔 大孔
      8-1-1 3.40 0.19 0.15 90.78 5.10 4.12
      8-2-1 3.40 0.44 0.25 83.25 10.74 6.00
      8-2-2 3.70 0.18 0.10 92.99 4.49 2.52
      8-2-3 3.60 0.27 0.19 88.79 6.61 4.60
      8-2-4 3.37 0.30 0.18 87.66 7.78 4.56
      8-2-5 3.33 0.12 0.12 93.28 3.49 3.23
      8-2-6 3.30 0.10 0.07 95.11 2.80 2.08
      8-2-7 3.40 0.17 0.11 92.30 4.64 3.06
      8-2-8 3.20 0.16 0.11 92.36 4.51 3.12
      8-3-1 3.20 0.18 0.14 90.87 5.25 3.88
      8-3-2 3.70 0.39 0.21 85.99 9.07 4.94
      8-4-1 2.90 0.19 0.14 89.76 6.03 4.21
      8-4-2 3.80 0.29 0.14 89.84 6.88 3.28
      8-4-3 3.00 0.13 0.10 92.85 4.08 3.08
      下载: 导出CSV

      表  6  绥德1H井本溪组8#煤储层含气量(m3/t)分析

      Table  6.   Gas content (m3/t) analysis of No.8 coal reservoir in Benxi Formation of Suide 1H Well

      样品 保压气(Q0 损失气(Q1 解吸气(Q2 残余气(Q3 总含气量
      8-1-1 0.00 4.88 22.03 0.54 27.45
      8-2-1 0.91 6.83 20.84 0.59 29.17
      8-2-2 0.87 5.24 21.16 0.69 27.96
      8-2-3 0.84 7.15 18.39 0.48 26.86
      8-2-4 0.84 4.56 21.04 0.32 26.76
      8-2-5 0.86 6.54 19.91 0.23 27.54
      8-2-6 0.80 3.39 21.05 0.38 25.62
      8-2-7 0.84 6.02 19.65 0.53 27.04
      8-2-8 0.85 5.91 20.06 0.48 27.30
      8-3-1 0.00 0.98 7.52 0.06 8.56
      8-3-2 0.00 2.70 20.33 0.17 23.20
      8-4-1 1.19 2.39 22.08 0.31 25.97
      8-4-2 1.11 1.38 21.56 0.24 24.29
      8-4-3 0.56 0.54 10.76 0.35 12.21
      下载: 导出CSV

      表  7  绥德地区与邻区煤储层特征对比

      Table  7.   Comparison of coal reservoir characteristics between Suide area and nearby areas

      地区 煤储层 深度(m) 镜质组(%) 惰质组(%) Ro, max(%) 含气量(m3/t)
      绥德地区 本溪组8#煤 2 353~2 360 75.56 24.44 2.34 8.56~29.17
      榆林地区 本溪组8#煤 2 500~3 200 66.96 24.26 1.77 15.40~23.63
      大宁‒吉县地区 太原组8#煤 1 888~2 277 82.20 11.60 2.15 23.67~37.64
      延川南地区 山西组2#煤 1 500~1 800 72.00 18.00 2.35 8~22
      保德区块 太原组8和9#煤 1 000~1 200 69.00 22.00 1.11 0~12
      神府南区 太原组8和9#煤 2 000 75.32 24.67 1.40 7.94~21.13
      临兴东区 本溪组8和9#煤 1 800~2 200 70.18 20.77 1.87 11.28~22.44
      注:数据来源:李清, 2014; 李可心, 2020; 刘迈杰, 2021; 姚红生等, 2022; 唐淑玲等, 2023; 周龙刚, 2023; 王成旺等, 2024; 赵伟波等, 2024b
      下载: 导出CSV

      表  8  绥德1H井本溪组8#煤储层煤相参数统计(无矿物质基)

      Table  8.   Statistics of coal phase parameters of Benxi Formation No.8 coal reservoir in Suide 1H Well (no mineral content)

      样品 镜质组(%) 惰质组(%) GI TPI GWI V/I F/M OI
      8-1-1 52.69 47.31 1.11 1.87 1.04 1.11 1.91 0.21
      8-2-1 64.07 35.93 1.78 0.86 2.16 1.78 0.86 0.26
      8-2-2 64.80 35.20 1.84 1.56 1.30 1.84 1.63 0.16
      8-2-3 79.01 20.99 3.76 1.79 1.40 3.76 1.79 0.12
      8-2-4 85.82 14.18 6.05 1.39 2.38 6.05 1.41 0.07
      8-2-5 75.81 24.19 3.13 0.64 0.63 3.13 0.66 0.24
      8-2-6 81.04 18.96 4.27 0.86 1.16 4.27 0.90 0.15
      8-2-7 81.53 18.47 4.41 1.53 1.76 4.41 1.62 0.11
      8-2-8 83.81 16.19 5.18 1.17 1.29 5.18 1.20 0.14
      8-3-1 83.36 16.64 5.01 0.95 0.65 5.01 1.00 0.14
      8-3-2 74.64 25.36 2.94 1.47 0.71 2.94 1.48 0.15
      8-4-1 83.20 16.80 4.95 0.86 1.01 4.95 0.89 0.15
      8-4-2 66.80 33.20 2.01 0.97 0.47 2.01 1.05 0.28
      8-4-3 81.30 18.70 4.35 0.58 0.85 4.35 0.59 0.17
      注:GI.凝胶化指数;TPI.结构保存指数;GWI.地下水指数;V/I.镜惰比;F/M.骨基比;OI.氧化指数.
      下载: 导出CSV
    • Cao, Y. T., 2024. Geological Characteristics and Cavitation-Unloading Development Model of Deep Coal-Derived Gas in the Eastern Yulin Block, Ordos Basin (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).
      Chen, L., Fan, S. W., Li, H. T., et al., 2017. Pore Structure Characteristics of Coal and Its Influences to Gas Bearing. Coal Science and Technology, 45(11): 126-132 (in Chinese with English abstract).
      Cheng, J., Zhou, X. J., Liu, C. Y., et al., 2023. Strategic Prospect Selection of Key Exploration Areas in the Central and Western Large Basins. Petroleum Geology and Experiment, 45(2): 229-237 (in Chinese with English abstract).
      Duan, D. J., Zhao, C. L., Qin, S. J., et al., 2011. Coal Petrological and Coal Facies Characteristics of the No. 2 Seam from Huangling Mine, Shanxi Province, China. Energy Exploration & Exploitation, 29(5): 647-665. https://doi.org/10.1260/0144-5987.29.5.647
      Fan, Q. Z., Cai, Y. D., Bei, J. H., et al., 2020. Pore and Fracture Structure of Coal Reservoir Constrained by Coal Metamorphism. Geoscience, 34(2): 273-280 (in Chinese with English abstract).
      Guo, Q. L., Littke, R., Zieger, L., 2018. Petrographical and Geochemical Characterization of Sub-Bituminous Coals from Mines in the Cesar-Ranchería Basin, Colombia. International Journal of Coal Geology, 191: 66-79. https://doi.org/10.1016/j.coal.2018.03.008
      Guo, X. J., Wang, L., Yao, X. Z., et al., 2025. Deep Coal Geological Characteristics and Main Controlling Factors of CBM Enrichment: A Case Study of Block M in the Eastern Ordos Basin. Petroleum Geology & Experiment, 47(1): 17-26 (in Chinese with English abstract).
      Guo, Y. R., Zhao, Z. Y., Xu, W. L., et al., 2014. Sequence Stratigraphy of the Ordovician System in the Ordos Basin. Acta Sedimentologica Sinica, 32(1): 44-60 (in Chinese with English abstract).
      He, Z. T., Li, Y., Hou, Y. T., et al., 2025. Coalbed Methane Geological Characteristics and Enrichment Controlling Factors of the Benxi Formation No. 8 Coal Seam in the Ordos Basin. Natural Gas Geoscience, 1-26 (in Chinese with English abstract). https://link.cnki.net/urlid/62.1177.TE.20250529.1650.005
      Hou, Y. T., Zhou, G. X., Huang, D. J., et al., 2024. Geological Characteristics of Coal-Rock Gas Accumulation in the Nalinhe Area, Ordos Basin. Oil & Gas Geology, 45(6): 1605-1616 (in Chinese with English abstract).
      Li, B., Yang, F., Zhang, H. J., et al., 2024. Research on High-Efficiency Development Technology of Deep CBM in the Shenfu Block. Coal Geology & Exploration, 52(8): 57-68 (in Chinese with English abstract).
      Li, K. X., 2020. Reservoir Characteristics and Gas-Water Production Mechanism of Deep CBM in the Linxing West Area (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).
      Li, Q., 2014. Coal Facies of No. 2 Coal in Yanchuannan Coal Field of Shanxi: Significance for Constituencies of Coalbed Methane Exploitation. Petroleum Geology & Experiment, 36(2): 245-248 (in Chinese with English abstract).
      Li, S., Tang, D. Z., Xu, H., et al., 2016. Progress in Geological Researches on the Deep Coalbed Methane Reservoirs. Earth Science Frontiers, 23(3): 10-16 (in Chinese with English abstract).
      Li, X. C., Li, Z. B., Zhang, L., et al., 2019. Pore Structure Characterization of Various Rank Coals and Its Effect on Gas Desorption and Diffusion. Journal of China Coal Society, 44(S1): 142-156 (in Chinese with English abstract).
      Liu, H. L., Zou, C. N., Yin, S., et al., 2024. Formation, Distribution, Sweet Spot Evaluation and Prospect of Coal-Derived Gas in China. Natural Gas Industry, 44(10): 1-21 (in Chinese with English abstract).
      Liu, M. J., 2021. Study on Coal Reservoir Physical Properties and Gas Adsorption-Desorption Characteristics in the Baode Block (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liu, Y. L., Tang, D. Z., Xu, H., et al., 2016. Study on Microscopic Pores Structure and Adsorption Characteristics of Different Lithotypes. Coal Engineering, 48(11): 107-110 (in Chinese with English abstract).
      Ma, J. L., Gao, Z., Zhang, J. W., et al., 2017. Research on Macreal Characteristics and Palaeoenvironment of No. 6 Coal from Nanyangpo Mine in Yinshan Coalfield. Coal Technology, 36(12): 93-95 (in Chinese with English abstract).
      Nie, W. C., Zhang, T. S., Wang, M. W., et al., 2024. Fractal Characteristics and Interfering Factors of Microscopic Pores in Marine-Continental Transitional Coal Shale: A Case Study of the Taiyuan Formation in the Northern Qinshui Basin. Acta Sedimentologica Sinica, 42(3): 1047-1057 (in Chinese with English abstract).
      Qin, L., Li, S. G., Zhai, C., et al., 2020. Joint Analysis of Pores in Low, Intermediate, and High Rank Coals Using Mercury Intrusion, Nitrogen Adsorption, and Nuclear Magnetic Resonance. Powder Technology, 362: 615-627. https://doi.org/10.1016/j.powtec.2019.12.019
      Qin, Y., 2023. Research Progress on Deep Coalbed Methane Geology in China. Acta Petrolei Sinica, 44(11): 1791-1811 (in Chinese with English abstract).
      Shi, Y. J., He, Y. F., Wan, J. B., et al., 2024. The Primary Controlling Factors of the Occurrence State of Deep High-Rank Coalbed Methane in Eastern Ordos Basin. Frontiers in Earth Science, 12: 1-14. https://doi.org/10.3389/feart.2024.1340523
      Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
      Sing, K. S. W., Williams, R. T., 2004. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. SAGE Publications, 22: 773-782.
      Tang, S. L., Tang, D. Z., Yang, J. S., et al., 2023. Pore Structure Characteristics and Gas Storage Potential of Deep Coal Reservoirs in the Daning-Jixian Block, Ordos Basin. Acta Petrolei Sinica, 44(11): 1854-1866 (in Chinese with English abstract).
      Wang, C. W., Liu, X. W., Li, S. G., et al., 2024. Main Controlling Factors of Deep CBM Enrichment and Geo-Engineering Sweet Spot Evaluation in the Daning-Jixian Block. Journal of Xi'an Shiyou University (Natural Science), 39(4): 1-9 (in Chinese with English abstract).
      Wang, G., Chen, X. C., Cheng, W. M., et al., 2024. Multi-Scale Characterization of Coal Pores and Fractures and Their Influence on Permeability: A Case Study of 14 Large Coal Bases in China. Journal of Chongqing University, 47(4): 34-50 (in Chinese with English abstract).
      Wang, X. L., Pan, J. N., Wang, K., et al., 2020. Characterizing the Shape, Size, and Distribution Heterogeneity of Pore-Fractures in High Rank Coal Based on X-Ray CT Image Analysis and Mercury Intrusion Porosimetry. Fuel, 282: 118754. https://doi.org/10.1016/j.fuel.2020.118754
      Wang, Z. Z., Wu, P., Sun, Q., et al., 2024. Production Characteristics and Influencing Factors of Deep CBM Wells in the Linxing Block. Coal Geology & Exploration, 52(8): 69-78 (in Chinese with English abstract).
      Wei, Q., Li, X. Q., Hu, B. L., et al., 2019. Reservoir Characteristics and Coalbed Methane Resource Evaluation of Deep-Buried Coals: A Case Study of the No. 13-1 Coal Seam from the Panji Deep Area in Huainan Coalfield, Southern North China. Journal of Petroleum Science and Engineering, 179: 867-884. https://doi.org/10.1016/j.petrol.2019.04.100
      Xing, L. R., Zhang, Z., Ren, J. S., et al., 2024. Comparative Analysis of Physical Properties of Deep and Shallow CBM Reservoirs in the Junggar Basin. China Coal, 50(9): 9-17 (in Chinese with English abstract).
      Xu, F. Y., Wang, C. W., Xiong, X. Y., et al., 2022. Deep(Layer) Coalbed Methane Reservoir Forming Modes and Key Technical Countermeasures: Taking the Eastern Margin of Ordos Basin as an Example. China Offshore Oil and Gas, 34(4): 30-42 (in Chinese with English abstract).
      Xu, Z. W., Xin, M. R., Wang, Y. T., et al., 2022. Biochemical Mechanism of Soil Organic Carbon Decomposition in Peatland during Water Table Change: A Review. Acta Ecologica Sinica, 42(19): 7729-7739 (in Chinese with English abstract).
      Yang, C. Y., Chang, H. Z., Shao, X. H., et al., 2019. Study on Micro-Pore Characteristics of Different Coal Body Structures by Scanning Electron Microscopy. Coal Science and Technology, 47(12): 194-200 (in Chinese with English abstract).
      Yang, Q., Li, J., Tian, W. G., et al., 2020. Characteristics on Pore Structures on Full Scale of Lignite and Main Controlling Factors in Hailar Basin. Natural Gas Geoscience, 31(11): 1603-1614 (in Chinese with English abstract).
      Yang, Y. H., Li, M. X., Zhang, H., et al., 2024. Evaluation of Controlling Factors and Favorable Zones for Coalbed Methane Enrichment and High Production in the Mid-Deep Southern Qinshui Basin. Natural Gas Geoscience, 35(10): 1740-1749 (in Chinese with English abstract).
      Yao, H. S., Chen, Z. L., He, X. P., et al., 2022. "Effective Support" Concept and Innovative Practice of Deep CBM in South Yanchuan Gas Field of the Ordos Basin. Natural Gas Industry, 42(6): 97-106 (in Chinese with English abstract).
      Zhai, C., Sun, Y., Fan, Y. R., et al., 2022. Application and Prospect of Low-Field Nuclear Magnetic Resonance Technology in Accurate Characterization of Coal Pore Structure. Journal of China Coal Society, 47(2): 828-848 (in Chinese with English abstract).
      Zhai, Y. Q., Li, M., Pan, J. N., et al., 2020. Coal Facies Evolution of Permian Coal Seams in the Southern Pingdingshan Coalfield. Coal Science and Technology, 48(6): 191-198 (in Chinese with English abstract).
      Zhang, J. Z., Li, X. Q., Zou, X. Y., et al., 2021. Pore Structure Characteristics and Their Influence on Gas-Bearing Property of Marine-Continental Transitional Coal Measure Shales. Geochimica, 50(5): 478-491 (in Chinese with English abstract).
      Zhao, W. B., Liu, H. L., Wang, H. C., et al., 2024a. Discussion on Pore Characteristics and Forming Mechanism of Coal in the Deep Area, Ordos Basin: Case Study of No. 8 Coal Seam in Well M172 of Yulin Area. Natural Gas Geoscience, 35(2): 202-216 (in Chinese with English abstract).
      Zhao, W. B., Liu, H. L., Wang, H. C., et al., 2024b. Microscopic Pore Characteristics of Coal Seam and the Controlling Effect of Sedimentary Environment on Pore Structure in No. 8 Coal. Coal Science and Technology, 52(6): 142-154 (in Chinese with English abstract).
      Zheng, S. J., Yao, Y. B., Liu, D. M., et al., 2019. Nuclear Magnetic Resonance Surface Relaxivity of Coals. International Journal of Coal Geology, 205: 1-13. https://doi.org/10.1016/j.coal.2019.02.010
      Zhou, D. H., Chen, G., Chen, Z. L., et al., 2022. Exploration and Development Progress, Key Evaluation Parameters and Prospect of Deep CBM in China. Natural Gas Industry, 42(6): 43-51 (in Chinese with English abstract).
      Zhou, L. G., 2023. Prediction of Deep Coalbed Methane Favorable Area in South Shenfu Area of Ordos Basin. Shandong Coal Science and Technology, 41(6): 173-176 (in Chinese with English abstract).
      曹煜彤, 2024. 鄂尔多斯盆地榆林东区深部煤系气地质特征及造穴卸压开发模式(硕士学位论文). 徐州: 中国矿业大学.
      陈亮, 樊少武, 李海涛, 等, 2017. 煤体孔隙结构特征及其对含气性的影响. 煤炭科学技术, 45(11): 126-132.
      程建, 周小进, 刘超英, 等, 2023. 中西部大盆地重点勘探领域战略选区研究. 石油实验地质, 45(2): 229-237.
      樊祺章, 蔡益栋, 贝金翰, 等, 2020. 煤岩演化程度对煤储层孔裂隙结构的控制作用. 现代地质, 34(2): 273-280.
      郭晓娇, 王雷, 姚仙洲, 等, 2025. 深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例. 石油实验地质, 47(1): 17-26.
      郭彦如, 赵振宇, 徐旺林, 等, 2014. 鄂尔多斯盆地奥陶系层序地层格架. 沉积学报, 32(1): 44-60.
      何智同, 李勇, 侯雨庭, 等. 2025. 鄂尔多斯盆地本溪组8#煤煤岩气地质特征及富集控制因素. 天然气地球科学: 1-26. https://link.cnki.net/urlid/62.1177.TE.20250529.1650.005
      侯雨庭, 周国晓, 黄道军, 等, 2024. 鄂尔多斯盆地纳林河地区煤岩气成藏地质特征. 石油与天然气地质, 45(6): 1605-1616.
      李斌, 杨帆, 张红杰, 等, 2024. 神府区块深部煤层气高效开发技术研究. 煤田地质与勘探, 52(8): 57-68.
      李可心, 2020. 临兴西深部煤层气储层特征及气水产出机理(硕士学位论文). 徐州: 中国矿业大学.
      李清, 2014. 山西延川南煤层气田2号煤层煤相研究——煤层气开发选区意义. 石油实验地质, 36(2): 245-248.
      李松, 汤达祯, 许浩, 等, 2016. 深部煤层气储层地质研究进展. 地学前缘, 23(3): 10-16.
      李祥春, 李忠备, 张良, 等, 2019. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响. 煤炭学报, 44(S1): 142-156.
      刘翰林, 邹才能, 尹帅, 等, 2024. 中国煤系气形成分布、甜点评价与展望. 天然气工业, 44(10): 1-21.
      刘迈杰, 2021. 保德区块煤储层物性及气体吸附解吸特性研究(硕士学位论文). 北京: 中国地质大学.
      刘玉龙, 汤达祯, 许浩, 等, 2016. 煤岩类型控制下的微观孔隙结构及吸附特征研究. 煤炭工程, 48(11): 107-110.
      马家亮, 高政, 张佳为, 等, 2017. 阴山矿区南阳坡6#煤的煤岩特征及古环境研究. 煤炭技术, 36(12): 93-95.
      聂万才, 张廷山, 王铭伟, 等, 2024. 海陆过渡相煤系页岩孔隙分形特征及影响因素——以沁水盆地北部太原组为例. 沉积学报, 42(3): 1047-1057.
      秦勇, 2023. 中国深部煤层气地质研究进展. 石油学报, 44(11): 1791-1811.
      唐淑玲, 汤达祯, 杨焦生, 等, 2023. 鄂尔多斯盆地大宁‒吉县区块深部煤储层孔隙结构特征及储气潜力. 石油学报, 44(11): 1854-1866.
      王成旺, 刘新伟, 李曙光, 等, 2024. 大宁‒吉县区块深部煤层气富集主控因素分析及地质工程甜点区评价. 西安石油大学学报(自然科学版), 39(4): 1-9.
      王刚, 陈雪畅, 程卫民, 等, 2024. 煤孔裂隙多尺度表征及其对渗透率的影响分析——以中国14个大型煤炭基地为例. 重庆大学学报, 47(4): 34-50.
      王志壮, 吴鹏, 孙强, 等, 2024. 临兴区块深部煤层气井生产特征及影响因素. 煤田地质与勘探, 52(8): 69-78.
      邢丽茹, 张洲, 任峻杉, 等, 2024. 准噶尔盆地深部与浅部煤层气储层物性特征对比分析. 中国煤炭, 50(9): 9-17.
      徐凤银, 王成旺, 熊先钺, 等, 2022. 深部(层)煤层气成藏模式与关键技术对策——以鄂尔多斯盆地东缘为例. 中国海上油气, 34(4): 30-42.
      徐志伟, 辛沐蓉, 王钰婷, 等, 2022. 水位影响泥炭沼泽土壤有机碳分解的生物化学机制研究进展. 生态学报, 42(19): 7729-7739.
      杨昌永, 常会珍, 邵显华, 等, 2019. 扫描电镜下不同煤体结构煤微孔隙特征研究. 煤炭科学技术, 47(12): 194-200.
      杨青, 李剑, 田文广, 等, 2020. 海拉尔盆地褐煤全孔径结构特征及影响因素. 天然气地球科学, 31(11): 1603-1614.
      杨延辉, 李梦溪, 张辉, 等, 2024. 沁水盆地南部中深部煤层气富集高产控制因素与有利区评价. 天然气地球科学, 35(10): 1740-1749.
      姚红生, 陈贞龙, 何希鹏, 等, 2022. 深部煤层气"有效支撑"理念及创新实践——以鄂尔多斯盆地延川南煤层气田为例. 天然气工业, 42(6): 97-106.
      翟成, 孙勇, 范宜仁, 等, 2022. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望. 煤炭学报, 47(2): 828-848.
      翟迎铨, 李猛, 潘结南, 等, 2020. 平顶山煤田南部二叠系煤层煤相演化规律研究. 煤炭科学技术, 48(6): 191-198.
      张吉振, 李贤庆, 邹晓艳, 等, 2021. 海陆过渡相煤系页岩孔隙结构特征及其对含气性的影响. 地球化学, 50(5): 478-491.
      赵伟波, 刘洪林, 王怀厂, 等, 2024a. 鄂尔多斯盆地深部本溪组煤孔隙特征及成因探讨——以榆林M172井8#煤为例. 天然气地球科学, 35(2): 202-216.
      赵伟波, 刘洪林, 王怀厂, 等, 2024b. 煤层微观孔隙特征及沉积环境对孔隙结构的控制作用——以鄂尔多斯盆地8号煤层为例. 煤炭科学技术, 52(6): 142-154.
      周德华, 陈刚, 陈贞龙, 等, 2022. 中国深层煤层气勘探开发进展、关键评价参数与前景展望. 天然气工业, 42(6): 43-51.
      周龙刚, 2023. 鄂尔多斯盆地神府南区深部煤层气有利区预测. 山东煤炭科技, 41(6): 173-176.
    • 加载中
    图(14) / 表(8)
    计量
    • 文章访问数:  118
    • HTML全文浏览量:  14
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-24
    • 刊出日期:  2026-01-25

    目录

      /

      返回文章
      返回