• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    一种新的基于地震波形指纹的特定地区核爆炸事件快速检测方法

    弓妮 商杰 唐伟 刘哲函 王海军 黄立洪 韩守诚 江宇

    弓妮, 商杰, 唐伟, 刘哲函, 王海军, 黄立洪, 韩守诚, 江宇, 2026. 一种新的基于地震波形指纹的特定地区核爆炸事件快速检测方法. 地球科学, 51(1): 130-145. doi: 10.3799/dqkx.2025.234
    引用本文: 弓妮, 商杰, 唐伟, 刘哲函, 王海军, 黄立洪, 韩守诚, 江宇, 2026. 一种新的基于地震波形指纹的特定地区核爆炸事件快速检测方法. 地球科学, 51(1): 130-145. doi: 10.3799/dqkx.2025.234
    Gong Ni, Shang Jie, Tang Wei, Liu Zhehan, Wang Haijun, Huang Lihong, Han Shoucheng, Jiang Yu, 2026. A Novel Method of Detecting Underground Nuclear Explosion at Specific Site Based on Seismic Waveform Fingerprint. Earth Science, 51(1): 130-145. doi: 10.3799/dqkx.2025.234
    Citation: Gong Ni, Shang Jie, Tang Wei, Liu Zhehan, Wang Haijun, Huang Lihong, Han Shoucheng, Jiang Yu, 2026. A Novel Method of Detecting Underground Nuclear Explosion at Specific Site Based on Seismic Waveform Fingerprint. Earth Science, 51(1): 130-145. doi: 10.3799/dqkx.2025.234

    一种新的基于地震波形指纹的特定地区核爆炸事件快速检测方法

    doi: 10.3799/dqkx.2025.234
    详细信息
      作者简介:

      弓妮(1999-),女,研究员,主要研究方向为基于机器学习的地震信号检测. ORCID:0009-0008-6813-2153. E-mail:gong.ni@ndc.org.cn

      通讯作者:

      王海军,E-mail: wang.haijun@ndc.org.cn

    • 中图分类号: P315

    A Novel Method of Detecting Underground Nuclear Explosion at Specific Site Based on Seismic Waveform Fingerprint

    • 摘要: 核爆炸监测是禁核试核查的关键技术.为监测全球可能发生的核试验,全面禁止核试验条约规定了一套严格的核查机制.其中国际监测系统(International Monitoring System,IMS)的波形数据实时传输至国际数据中心(International Data Centre,IDC)进行处理和分析,分别在大约1 h、4 h和6 h给出三个不同阶段的自动处理结果.对于特定地区的核爆监测,直接依赖IDC结果存在响应滞后和误检率高的问题.本文提出了一种基于地震波形指纹的快速检测方法Seisprint.该方法借鉴音频指纹识别思想,将历史核爆波形作为模板,利用滑动窗口与特征提取将连续波形压缩为多个二进制指纹,通过快速相似性匹配与聚类实现核爆事件自动检测并实时报警.采用朝鲜周边两个IMS地震台站和我国东北地区4个地震台站记录的朝鲜6次地下核试验以及历史天然地震事件数据对Seisprint进行测试.Seisprint生成的指纹可以有效区分核爆与非核爆信号,且具有较强的抗噪性;可在数分钟内完成多个地震台站24小时连续波形数据的处理,实现核爆事件的快速准确检出.结果表明,Seisprint可提高特定地区核爆事件监测的时效性和准确性.

       

    • 图  1  2018-2024年间朝鲜核试验场周边天然地震事件震级分布

      Fig.  1.  Magnitude distribution of earthquakes around the North Korean nuclear test site from 2018 to 2024

      图  2  朝鲜核试验场周边台站位置与事件分布

      Fig.  2.  Station locations and event distribution around the North Korean nuclear test site

      图  3  Seisprint检测流程

      Fig.  3.  Workflow of the Seisprint detection method

      图  4  MDJ台站记录的6次朝鲜地下核爆事件的波形(20 Hz)

      Fig.  4.  Waveforms of six North Korean underground nuclear test events recorded at MDJ station

      图  5  指纹提取步骤

      图a、c、e、g、i为KS31台站记录到的2021年6月13日发生在目标区域的一次天然地震事件,图b、d、f、h、j为KS31台站记录到的朝鲜第二次地下核爆事件;其波形采样率均为100 Hz

      Fig.  5.  Fingerprint extraction steps

      图  6  相似性搜索

      Fig.  6.  Similarity search steps

      图  7  指纹对的相似度矩阵

      Fig.  7.  Similarity matrix of fingerprint pairs

      图  8  不同类型的指纹与模板指纹的相似度分布

      Fig.  8.  Similarity distribution between different types of fingerprints and the template fingerprint

      图  9  模板波形(a)与加噪后SNR=2 dB的波形(b)

      图中显示为1~2 Hz滤波后的波形,红色虚线为P波到时

      Fig.  9.  Original seismic waveform (a) and noise-added waveform with SNR=2 dB (b)

      图  10  KDN台站指纹精度与基线相似度分布(SNR=2 dB)

      Fig.  10.  Distribution of fingerprint accuracy and baseline similarity at station KDN (SNR=2 dB)

      图  11  不同信噪比下的PR曲线

      Fig.  11.  PR curves under different signal-to-noise ratios

      图  12  检测事件的多台站波形

      图a~c为报警事件,图d~f为其余候选事件

      Fig.  12.  Multi-station waveforms of detected events

      表  1  朝鲜2006-2017年6次核试验(用NKT1-NKT6表示)以及NKT6后发生的3次余震事件(用PEV1-PEV3表示)参数

      Table  1.   Parameters of the six nuclear test events in North Korea from 2006 to 2017 (denoted as NKT1-NKT6) and three subsequent aftershock events following NKT6 (denoted as PEV1-PEV3)

      朝鲜地区事件 日期 UTC时间 纬度 经度 震级(mb)
      NKT1 2006/10/09 01:35:28 41.29° 129.09° 4.1
      NKT2 2009/05/25 00:54:43 41.31° 129.04° 4.5
      NKT3 2013/02/12 02:57:51 41.30° 129.06° 4.9
      NKT4 2016/01/06 01:30:01 41.30° 129.05° 4.8
      NKT5 2016/09/09 00:30:01 41.30° 129.05° 5.1
      NKT6 2017/09/03 03:30:01 41.32° 129.03° 6.1
      PEV1 2017/09/03 03:38:32 41.30° 129.07° 4.1
      PEV2 2017/09/23 08:29:16 41.23° 129.35° 3.4
      PEV3 2017/10/12 16:41:08 41.33° 129.17° 2.9
      下载: 导出CSV

      表  2  Seisprint算法关键参数

      Table  2.   Key parameters of the Seisprint algorithm

      Seisprint参数名称 参数值
      时频谱图窗口长度(s) 6
      时频谱图窗口间隔(s) 0.2
      采样率(Hz) 20
      频谱图像长度(采样点数) 64
      频谱图像间隔(采样点数) 5
      频谱图像宽度(采样点数) 32
      稀疏度参数K 800
      指纹长度 4 096
      哈希签名长度$ p $ 400
      哈希表个数$ l $ 100
      相似度阈值$ v $ 2
      多台站关联阈值 4/6
      下载: 导出CSV

      表  3  检测事件多台站互相关检测结果

      Table  3.   Cross-correlation detection results of events at multiple stations

      事件时间 MDJ CN2 KS31 USA0B YNB KDN 平均互相关系数 判定结果
      2013/02/12/02:58:56 0.72 0.66 0.49 0.63 0.68 0.62 0.63 真实核爆
      2016/09/09/00:30:46 0.91 0.76 0.67 0.25 0.90 0.67 0.69 真实核爆
      2016/09/09/11:56:38 0.20 0.20 0.22 0.20 0.18 0.32 0.22 误判
      2016/09/15/19:54:32 0.22 0.32 0.25 0.23 0.28 0.33 0.27 误判
      2016/09/19/11:37:57 0.15 0.21 0.26 0.12 0.17 0.26 0.195 误判
      2017/09/03/03:30:43 0.63 0.58 0.62 0.57 0.62 0.61 0.605 真实核爆
      下载: 导出CSV

      表  4  三种方法的事件检测结果

      Table  4.   Event detection results of the three methods

      检测方法 日期 时间 时间误差(s)
      Seisprint 2013‒02‒12 02:57:56 +5
      2016‒09‒09 00:30:46 +45
      2017‒09‒03 03:30:43 +42
      NET-VISA 2013‒02‒12 02:57:50 ‒1
      2016‒09‒09 00:30:04 +3
      2016‒09‒09 00:30:12 /
      2017‒09‒03 03:30:01 0
      2017‒09‒03 03:30:05 /
      波形互相关 2013‒02‒12 23:58:34 /
      2013‒02‒12 02:58:00 +9
      2016‒09‒09 00:30:11 +10
      2017‒09‒03 03:30:09 +8
      2017‒09‒03 23:58:15 /
      下载: 导出CSV
    • Ali, S. M., Qorbani, E., Le Bras, R., et al., 2025. Interactive Analysis of the Results of NET-VISA, a Bayesian Inference System, in CTBTO's International Data Centre Bulletin Production. Acta Geophysica, 73(1): 71-81. https://doi.org/10.1007/s11600-024-01398-0
      Arora, N. S., 2012. Model-Based Bayesian Seismic Monitoring (Dissertation). EECS Department, University of California, Berkeley.
      Arora, N. S., Russell, S. J., Sudderth, E. B., 2009. Vertically Integrated Seismological Analysis Ⅱ: Inference. In: American Geophysical Union (AGU) Fall Meeting 2009. Bayesian Logic, Inc., San Francisco.
      Arora, N. S., Russell, S. J., Sudderth, E. B., 2013. NET-VISA: Network Processing Vertically Integrated Seismic Analysis. Bulletin of the Seismological Society of America, 103(2A): 709-729. https://doi.org/10.1785/0120120107
      Asada, M., 2002. CTBT: Legal Questions Arising from Its Non-Entry-into-Force. Journal of Conflict and Security Law, 7(1): 85-122. https://doi.org/10.1093/jcsl/7.1.85
      Bauer, S., O'Reilly, C., 2016. The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO): Current and Future Role in the Verification Regime of the Nuclear-Test-Ban Treaty. In: Black-Branch, J., Fleck, D., eds., Nuclear Non-Proliferation in International Law. T. M. C. Asser Press, The Hague. https://doi.org/10.2312/GFZ.NMSOP-2_ch17
      Bergen, K. J., Beroza, G. C., 2019. Earthquake Fingerprints: Extracting Waveform Features for Similarity-Based Earthquake Detection. Pure and Applied Geophysics, 176(3): 1037-1059. https://doi.org/10.1007/s00024-018-1995-6
      Bobrov, D., Bormann, P., Coyne, J., et al., 2012. CTBTO: Goals, Networks, Data Analysis and Data Availability. In: Bormann, P., ed., New Manual of Seismological Observatory Practice 2 (NMSOP-2). Deutsches GeoForschungs Zentrum GFZ, Potsdam. https://doi.org/10.1016/B978-0-12-466606-1.X5000-4
      Bobrov, D., Kitov, I., Zerbo, L., 2014. Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre. Pure and Applied Geophysics, 171(3): 439-468. https://doi.org/10.1007/s00024-012-0626-x
      Bobrov, D. I., Kitov, I. O., Rozhkov, M. V., et al., 2016. Towards Global Seismic Monitoring of Underground Nuclear Explosions Using Waveform Cross Correlation. Part Ⅱ: Synthetic Master Events. Seismic Instruments, 52(3): 207-223. https://doi.org/10.3103/S0747923916030038
      Cohen, E., Datar, M., Fujiwara, S., et al., 2001. Finding Interesting Associations without Support Pruning. IEEE Transactions on Knowledge and Data Engineering, 13(1): 64-78. https://doi.org/10.1109/69.908981
      Gibbons, S. J., Ringdal, F., 2006. The Detection of Low Magnitude Seismic Events Using Array-Based Waveform Correlation. Geophysical Journal International, 165(1): 149-166. https://doi.org/10.1111/j.1365-246X.2006.02865.x
      Gibbons, S. J., Ringdal, F., 2012. Seismic Monitoring of the North Korea Nuclear Test Site Using a Multichannel Correlation Detector. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1897-1909. https://doi.org/10.1109/TGRS.2011.2170429
      Gionis, A., Indyk, P., Motwani, R., 1999. Similarity Search in High Dimensions via Hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases (VLDB'99). Morgan Kaufmann Publishers Inc., San Francisco, 518-529.
      He, X., Zhao, L. F., Xie, X. B., et al., 2018. High-Precision Relocation and Event Discrimination for the 3 September 2017 Underground Nuclear Explosion and Subsequent Seismic Events at the North Korean Test Site. Seismological Research Letters, 89(6): 2042-2048. https://doi.org/10.1785/0220180164
      Kafka, A. L., 1990. Rg as a Depth Discriminant for Earthquakes and Explosions: A Case Study in New England. Bulletin of the Seismological Society of America, 80(2): 373-394. https://doi.org/10.1785/bssa0800020373
      Le Bras, R., Arora, N., Kushida, N., et al., 2021. NET-VISA from Cradle to Adulthood. A Machine-Learning Tool for Seismo-Acoustic Automatic Association. Pure and Applied Geophysics, 178(7): 2437-2458. https://doi.org/10.1007/s00024-020-02508-x
      Li, J., 2021. Key Technologies for Intelligent Processing of Seismic Data from Global Sparse Networks (Dissertation). Beijing University of Posts and Telecommunications, Beijing (in Chinese with English abstract).
      Li, Z. F., Zhan, Z. W., 2018. Pushing the Limit of Earthquake Detection with Distributed Acoustic Sensing and Template Matching: A Case Study at the Brady Geothermal Field. Geophysical Journal International, 215(3): 1583-1593. https://doi.org/10.1093/gji/ggy359
      Liu, J. Q., Liu, C., Zhang, Y., et al., 2019. The Moment Tensor of ML3.4 Earthquake on September 23, 2017, Democratic People's Republic of Korea (DPRK). Chinese Journal of Geophysics, 62(2): 534-543 (in Chinese with English abstract).
      Mallat, S., 2009. Wavelet Bases. In: Mallat, S., ed., A Wavelet Tour of Signal Processing (Third Edition). Academic Press, Boston, 263-376. https://doi.org/10.1109/GCCE.2015.7398648
      Muir, J., Fernando, B., Barrett, E., 2023. False Positives Are Common in Single-Station Template Matching. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.385
      Richards, P. G., Kim, W. Y., 2005. Equivalent Volume Sources for Explosions at Depth: Theory and Observations. Bulletin of the Seismological Society of America, 95(2), 401-407. https://doi.org/10.1785/0120040034
      Rong, K. X., Yoon, C. E., Bergen, K. J., et al., 2018. Locality-Sensitive Hashing for Earthquake Detection: A Case Study of Scaling Data-Driven Science. Proceedings of the VLDB Endowment, 11(11): 1674-1687. https://doi.org/10.14778/3236187.3236214
      Senobari, N. S., Funning, G. J., Keogh, E., et al., 2018. Super-Efficient Cross-Correlation (Sec-C): A Fast Matched Filtering Code Suitable for Desktop Computers. Seismological Research Letters, 90 (1): 322-334. https://doi.org/10.1785/0220180122
      Sugita, D., Ito, Y., 2015. Study of Web Service Estimation Using only Ethernet Frame Header or IP Packet Header. In: Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE). IEEE, Osaka. _ext_link_paichu__
      Wang, J., Liu, J. M., Li, J., et al., 2021. Progress and Testing of NET-VISA Software. Progress in Earthquake Sciences, 51(6): 274-278 (in Chinese with English abstract).
      Yao, J. Y., Tian, D. D., Lu, Z., et al., 2018. Triggered Seismicity after North Korea's 3 September 2017 Nuclear Test. Seismological Research Letters, 89(6): 2085-2093. https://doi.org/10.1785/0220180135
      Yoon, C. E., O'Reilly, O., Bergen, K. J., et al., 2015. Earthquake Detection through Computationally Efficient Similarity Search. Science Advances, 1(11): e1501057. https://doi.org/10.1126/sciadv.1501057
      Zhao, D. P., Liu, X. Q., Li, H., et al., 2012. Detection of Regional Seismic Events by Kurtosis Method and Automatic Identification of Direct P-Wave First Motion by Kurtosis-AIC Method. Journal of Seismological Research, 35(2): 220-225, 295 (in Chinese with English abstract).
      Zhao, L. F., Xie, X. B., He, X., et al., 2017. Seismological Discrimination and Yield Estimation of the 3 September 2017 Democratic People's Republic of Korea(DPRK) Underground Nuclear Test. Chinese Science Bulletin, 62(35): 4163-4168 (in Chinese). doi: 10.1360/N972017-00979
      李健, 2021. 面向全球稀疏台网的地震数据智能处理关键技术研究(博士学位论文). 北京: 北京邮电大学.
      刘俊清, 刘财, 张宇, 等, 2019.2017年9月23日朝鲜ML3.4地震矩张量反演. 地球物理学报, 62(2): 534-543.
      王娟, 刘俊民, 李健, 等, 2021. NET-VISA软件研发进展与性能测试. 地震科学进展, 51(6): 274-278.
      赵大鹏, 刘希强, 李红, 等, 2012. 峰度和AIC方法在区域地震事件和直达P波初动自动识别方面的应用. 地震研究, 35(2): 220-225, 295.
      赵连锋, 谢小碧, 何熹, 等, 2017. 2017年9月3日朝鲜地下核试验的地震学鉴别和当量估计. 科学通报, 62(35): 4163-4168.
    • 加载中
    图(12) / 表(4)
    计量
    • 文章访问数:  108
    • HTML全文浏览量:  5
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-01
    • 刊出日期:  2026-01-25

    目录

      /

      返回文章
      返回