• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    瑞士瓦莱州Blatten高位远程崩滑碎屑流成灾特征与级联放大效应

    李滨 高杨 庄宇 刘晓杰 张晗 秦林鹏 郭桢 殷跃平

    李滨, 高杨, 庄宇, 刘晓杰, 张晗, 秦林鹏, 郭桢, 殷跃平, 2025. 瑞士瓦莱州Blatten高位远程崩滑碎屑流成灾特征与级联放大效应. 地球科学, 50(12): 4950-4969. doi: 10.3799/dqkx.2025.239
    引用本文: 李滨, 高杨, 庄宇, 刘晓杰, 张晗, 秦林鹏, 郭桢, 殷跃平, 2025. 瑞士瓦莱州Blatten高位远程崩滑碎屑流成灾特征与级联放大效应. 地球科学, 50(12): 4950-4969. doi: 10.3799/dqkx.2025.239
    Li Bin, Gao Yang, Zhuang Yu, Liu Xiaojie, Zhang Han, Qin Linpeng, Guo Zhen, Yin Yueping, 2025. Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps. Earth Science, 50(12): 4950-4969. doi: 10.3799/dqkx.2025.239
    Citation: Li Bin, Gao Yang, Zhuang Yu, Liu Xiaojie, Zhang Han, Qin Linpeng, Guo Zhen, Yin Yueping, 2025. Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps. Earth Science, 50(12): 4950-4969. doi: 10.3799/dqkx.2025.239

    瑞士瓦莱州Blatten高位远程崩滑碎屑流成灾特征与级联放大效应

    doi: 10.3799/dqkx.2025.239
    基金项目: 

    国家重点研发计划项目课题 2024YF1700302

    国家自然科学基金 42177172

    详细信息
      作者简介:

      李滨(1981-),男,研究员.主要从事地质灾害防灾减灾方面的研究.ORCID:0000-0002-2646-6533.E-mail:libin1102@163.com

      通讯作者:

      高杨, 研究员, 主要从事地质灾害防灾减灾方面的研究. ORCID: 0000-0002-7098-0476.E-mail: 737263992@qq.com

    • 中图分类号: P642

    Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps

    • 摘要: 2025年5月28日瑞士瓦莱州布拉滕村(Blatten)上游发生高位远程冰岩崩事件,滑体体积为830万m3,运动距离为3 300 m,堆积面积为2.66 km2,滑坡堆积导致1人遇难,300名居民撤离,隆扎河堰塞断流.综合遥感调查、滑震信号解译和动力学数值模拟等方法,揭示了瑞士Blatten高位远程冰岩碎屑流动力成灾过程与级联放大效应.结果表明:(1)瑞士Blatten滑坡发生过程主要呈现为高位冰岩崩加载-冰川融化变形-高位远程碎屑流成灾3个地质演化阶段;(2)该滑坡具有强烈的级联放大效应,上部危岩体逐渐垮塌堆积于Birch冰川之上,随着冰川上覆堆积逐渐积累和冰川强度的逐渐弱化,最终发生整体失稳,造成了此次巨大规模成灾;(3)冰屑和融水显著降低了滑体运动阻力,促进碎屑流低摩阻远程致灾.综上研究,认为在高位远程滑坡调查、风险评估与早期预警中,应充分考虑多次小滑坡累积成大灾的级联放大效应,该级联放大效应将大幅提高灾害的破坏力和危害性.瑞士Blatten滑坡为我国西部山区城镇风险区划和重大工程建设中面临的高位远程地质灾害风险提供了重要警示作用.

       

    • 图  1  瑞士瓦莱州Blatten滑坡地理位置与地质图

      Fig.  1.  Location and geological map of the Blatten avalanche in Valais, Switzerland

      图  2  瑞士瓦莱州Blatten滑坡附近比奇峰气象台站数据

      Fig.  2.  Meteorological data from the Bietschhorn station near the Blatten avalanche

      图  3  瑞士瓦莱州Blatten滑坡全貌与多时序遥感影像(收集于 https://www.rapidmapping.admin.ch/index_de.html)

      Fig.  3.  Overview and multi-temporal remote sensing images of the Blatten avalanche

      图  4  瑞士瓦莱州Blatten滑坡平面分区与横剖面图

      Fig.  4.  Zone division and cross-sectional profiles of the Blatten avalanche

      图  5  高位物源区(冰岩崩区)影像对比分析

      Fig.  5.  Image analysis of the collapse area

      图  6  高位物源区(冰碛物区)影像对比分析

      Fig.  6.  Images of the debris-covered glacier

      图  7  流通区与洒落区遥感影像及现场照片

      Fig.  7.  Remote sensing images and field observations of the propagation and deposit area

      图  8  堆积区影像对比分析图(收集于 https://www.rapidmapping.admin.ch/index_de.html)

      Fig.  8.  Image analysis of the deposit area

      图  9  距离滑坡源区最近台站的能量-时间关系

      Fig.  9.  Energy-Time relationship at the station closest to the avalanche area

      图  10  基于地震信号反演灾害事件的力-时间函数以及对应的原始地震信号的时频谱

      Fig.  10.  Force-time function and time-frequency spec-rum of the Blatten avalanche-induced seismic signals

      图  11  Blatten冰岩崩运动关键节点视频影像

      Fig.  11.  Recorded video of the Blatten avalanche

      图  12  瑞士Blatten滑坡2024-01-03至2025-05-21时间序列InSAR形变监测

      Fig.  12.  Time-series InSAR deformation monitoring of the Blatten landslide, Switzerland, from 2024-01-03 to 2025-05-21

      图  13  瑞士Blatten滑坡的高位冰岩崩滑加载阶段

      Fig.  13.  Loading phase of the rock-ice collapse onto the glacier

      图  14  瑞士Blatten滑坡的冰碛物坡体变形阶段

      Fig.  14.  Deformation of the debris-covered glacier

      图  15  瑞士Blatten滑坡的高位远程崩滑阶段

      Fig.  15.  Rapid movement and long runout of the Blatten avalanche

      图  16  Blatten滑坡模拟结果

      Fig.  16.  Modeling results of the Blatten avalanche

      图  17  Blatten滑坡速度与体积分数演化规律

      Fig.  17.  Evolution of velocity and volume fraction of the Blatten avalanche

      图  18  Blatten滑坡(Google Earth影像)与中国色东普滑坡(Planet影像)对比

      Fig.  18.  Comparison between the Blatten avalanche and the Sedongpu landslide in China

      表  1  数值模拟参数

      Table  1.   Modeling parameters for the Blatten avalanche

      几何参数 滑体参数 边界参数 算法参数
      滑体体积
      (万m3)
      密度
      (kg/m3)
      内聚力(Pa) 内摩
      擦角(°)
      泊松比 摩擦系数 孔隙水压力系数 临界体积分数(浓密/稀疏/超稀疏)(%)
      830 2 730 40 000 35 0.25 0.5 0.7 0.57/0.02
      下载: 导出CSV

      表  2  阿尔卑斯与喜马拉雅典型高位远程冰岩碎屑流灾害数据对比

      Table  2.   Comparison of typical long-runout rock-ice avalanches between the Alps and Himalayas

      滑坡名称 灾害时间
      (年-月-日)
      体积方量
      (万m3)
      坠落高差(m) 冰碛物区长(m)/坡率(‰) 运动距离(m3) 最大运动速度(m/s) 成灾模式
      瑞士Blatten滑坡 2025-05-28 820 1 700 630/470 3 300 > 30 高位冰岩崩-冰碛物融化变形-远程运动堆积
      中国色东普碎屑流 2018-10-27 3 000 2 778 4 300/260 9 700 > 100 高位冰岩崩-冲击铲刮-远程运动堆积
      下载: 导出CSV
    • Deng, Y., Gao, Q. Y., Wang, X., et al., 2025. A Large⁃Scale Rock Avalanche⁃Debris Flow Cascading Hazard in the Sedongpu Catchment, Southeastern Tibetan Plateau. Landslides, 22(1): 109-120. https://doi.org/10.1007/s10346⁃024⁃02382⁃x
      Dong, Z. B., Su, L. J., Hu, B. L., et al., 2024. Friction Behaviors and Flow Resistances of Rock⁃Ice Avalanches. Cold Regions Science and Technology, 220: 104130. https://doi.org/10.1016/j.coldregions.2024.104130
      Duncan, J. M., Wright, S. G., Brandon, T. L., 2014. Soil Strength and Slope Stability. John Wiley & Sons, Hoboken, N. J. .
      Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416-1419. https://doi.org/10.1126/science.1232887
      Fan, X. M., Feng, Z. T., Ni, T., et al., 2025. The Friction Behavior of Rock⁃Ice Avalanches in Relation to Rock⁃Ice Segregation: Insights from Flume Physical Experiments. Journal of Geophysical Research: Earth Surface, 130: e2024JF007904. https://doi.org/10.1029/2024jf007904
      Gao, H. Y., Yin, Y. P., Li, B., et al., 2023a. Geomorphic Evolution of the Sedongpu Basin after Catastrophic Ice and Rock Avalanches Triggered by the 2017 Ms6.9 Milin Earthquake in the Yarlung Zangbo River Area, China. Landslides, 20(11): 2327-2341. https://doi.org/10.1007/s10346⁃023⁃02118⁃3
      Gao, S. H., Yin, Y. P., Li, B., et al., 2024. Dynamic Characteristics of the Rock⁃Ice Avalanche Disaster Chain in the Zelongnong Basin, Yarlung Zangbo River Canyon Region. Journal of Engineering Geology, 32(3): 996-1009(in Chinese with English abstract).
      Gao, Y., Li, B., Gao, H. Y., et al., 2023b. Risk Assessment of the Sedongpu High⁃Altitude and Ultra⁃Long⁃Runout Landslide in the Lower Yarlung Zangbo River, China. Bulletin of Engineering Geology and the Environment, 82(9): 360. https://doi.org/10.1007/s10064⁃023⁃03374⁃2
      Gao, Y., Li, B., Zhang, H., et al., 2024a. Numerical Modeling of Mixed Two⁃Phase in Long Runout Flow⁃Like Landslide Using LPF3D. Landslides, 21(3): 641-660. https://doi.org/10.1007/s10346⁃023⁃02159⁃8
      Gao, Y., Yin, Y. P., Li, B., et al., 2024b. Multistate Transition and Coupled Solid-Liquid Modeling of Motion Process of Long⁃Runout Landslide. Journal of Rock Mechanics and Geotechnical Engineering, 16(7): 2694-2714. https://doi.org/10.1016/j.jrmge.2023.12.001
      Gruber, S., Haeberli, W., 2007. Permafrost in Steep Bedrock Slopes and Its Temperature⁃Related Destabilization Following Climate Change. Journal of Geophysical Research: Earth Surface, 112(F2): 2006JF000547. https://doi.org/10.1029/2006jf000547
      Hibert, C., Ekström, G., Stark, C. P., 2014. Dynamics of the Bingham Canyon Mine Landslides from Seismic Signal Analysis. Geophysical Research Letters, 41(13): 4535-4541. https://doi.org/10.1002/2014gl060592
      Huggel, C., Clague, J. J., Korup, O., 2012. Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surface Processes and Landforms, 37(1): 77-91. https://doi.org/10.1002/esp.2223
      Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Xizang in 2016 after Surge⁃Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561⁃017⁃0039⁃7
      Li, Y., Cui, Y. F., Hu, X., et al., 2024. Glacier Retreat in Eastern Himalaya Drives Catastrophic Glacier Hazard Chain. Geophysical Research Letters, 51(8): e2024GL108202. https://doi.org/10.1029/2024gl108202
      Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall⁃Landslide⁃Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234(in Chinese with English abstract).
      Marcer, M., Cicoira, A., Cusicanqui, D., et al., 2021. Rock Glaciers throughout the French Alps Accelerated and Destabilised since 1990 as Air Temperatures Increased. Communications Earth & Environment, 2: 81. https://doi.org/10.1038/s43247⁃021⁃00150⁃6
      Mergili, M., Jaboyedoff, M., Pullarello, J., et al., 2020. Back Calculation of the 2017 Piz Cengalo-Bondo Landslide Cascade with R. avaflow: We can do and What We can Learn. Natural Hazards and Earth System Sciences, 20(2): 505-520. https://doi.org/10.5194/nhess⁃20⁃505⁃2020
      Munch, J., Zhuang, Y., Dash, R. K., et al., 2024. Dynamic Thermomechanical Modeling of Rock⁃Ice Avalanches: Understanding Flow Transitions, Water Dynamics, and Uncertainties. Journal of Geophysical Research: Earth Surface, 129(10): e2024JF007805. https://doi.org/10.1029/2024jf007805
      Nian, T. K., Zhao, R. D., Zheng, D. F., et al., 2024. Advances in the Study of Ice⁃Rock Avalanche Disaster Chains in Yarlung Zangbo River Basin in Southeast Tibet. Journal of Hydraulic Engineering, 55(10): 1146-1162(in Chinese with English abstract).
      Petley, D., 2025a. The 28 May 2025 Update on the Landslide Threatening Blatten in Switzerland. Available Online: https://eos.org/thelandslideblog/blatten⁃4
      Petley, D., 2025b. The Incipient Major Rock Slope Failure at Blatten in Switzerland. Available Online: https://eos.org/thelandslideblog/blatten⁃1
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze⁃Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
      Pfluger, F., Weber, S., Steinhauser, J., et al., 2025. Massive Permafrost Rock Slide under a Warming Polythermal Glacier Deciphered through Mechanical Modeling (Bliggspitze, Austria). Earth Surface Dynamics, 13(1): 41-70. https://doi.org/10.5194/esurf⁃13⁃41⁃2025
      Roe, G. H., Baker, M. B., Herla, F., 2017. Centennial Glacier Retreat as Categorical Evidence of Regional Climate Change. Nature Geoscience, 10(2): 95-99. https://doi.org/10.1038/ngeo2863
      Schneider, D., Huggel, C., Haeberli, W., et al., 2011. Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility. Earth Surface Processes and Landforms, 36(14): 1948-1966. https://doi.org/10.1002/esp.2218
      Shen, Y. J., Chen, S. W., Zhang, L., et al., 2022. High⁃Altitude Initiation, Dynamic Collapse and Phase Transformation of Mountain Snow⁃Ice Melt Geological Disaster Chain. Journal of Glaciology and Geocryology, 44(2): 643-656(in Chinese with English abstract).
      Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
      SwissInfo, 2025. Blatten Glacier Fractures Increase Sharply. Available Online: https://www.swissinfo.ch/eng/various/blatten⁃vs⁃glacier⁃fractures⁃increase⁃sharply/89418301
      Yang, Q. Q., Su, Z. M., Chen, L. Z., et al., 2015. Flume Tests on Influence of Ice to Mobility of Rock⁃Ice Avalanches. Journal of Engineering Geology, 23(6): 1117-1126(in Chinese with English abstract).
      Yin, Y. P., 2000. Study on Characteristics and Disaster Reduction of Giant Landslides on Yigong Expressway in Bomi, Xizang. Hydrogeology and Engineering Geology, 27(4): 8-11(in Chinese with English abstract).
      Yin, Y. P., Li, B., Zhang, T. T., et al., 2021a. The February 7 of 2021 Glacier⁃Rock Avalanche and the Outburst Flooding Disaster Chain in Chamoli, India. The Chinese Journal of Geological Hazard and Control, 32(3): 1-8(in Chinese with English abstract).
      Yin, Y. P., Zhu, S. N., Li, B., et al., 2021b. High Altitude Remote Geological Hazards on the Qinghai Tibet Plateau. Science Press, Beijing(in Chinese).
      Yin, Y. P., Xing, A. G., 2012. Aerodynamic Modeling of the Yigong Gigantic Rock Slide⁃Debris Avalanche, Tibet, China. Bulletin of Engineering Geology and the Environment, 71(1): 149-160. https://doi.org/10.1007/s10064⁃011⁃0348⁃9
      Yin, Y. P., Zhang, S. L., Huo, Z. H., et al., 2025. Study on the May 28 Birch High⁃Altitude and Long⁃Runout Ice⁃Rock Avalanche in the Swiss Alps. The Chinese Journal of Geological Hazard and Control, 36(4): 1-14(in Chinese with English abstract).
      Zhang, T. T., Yin, Y. P., Li, B., et al., 2022. Characteristics and Dynamic Analysis of the October 2018 Long⁃Runout Disaster Chains in the Yarlung Zangbo River Downstream, Tibet, China. Natural Hazards, 113(3): 1563-1582. https://doi.org/10.1007/s11069⁃022⁃05358⁃z
      Zhang, Z. Y., Liu, D. R., Fan, G., et al., 2025. Movement Characteristics of Rock⁃Ice Avalanches: Insights from Flume Tests. Cold Regions Science and Technology, 237: 104538. https://doi.org/10.1016/j.coldregions.2025.104538
      Zhuang, Y., Dash, R. K., Bühler, Y., et al., 2025. Fluidization and Snow Cover Effects in Rock⁃IcerSnow Avalanches: Lessons from Piz Cengalo, Fluchthorn, and Piz Scerscen Events. Computers and Geotechnics, 186: 107456. https://doi.org/10.1016/j.compgeo.2025.107456
      Zhuang, Y., Yin, Y. P., Xing, A. G., et al., 2020. Combined Numerical Investigation of the Yigong Rock Slide⁃Debris Avalanche and Subsequent Dam⁃Break Flood Propagation in Tibet, China. Landslides, 17(9): 2217-2229. https://doi.org/10.1007/s10346⁃020⁃01449⁃9
      高少华, 殷跃平, 李滨, 等, 2024. 雅鲁藏布江大峡谷则隆弄高位冰岩崩灾害链动力学特征. 工程地质学报, 32(3): 996-1009.
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
      刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234.
      年廷凯, 赵润东, 郑德凤, 等, 2024. 藏东南雅江流域冰-岩崩灾害链研究进展. 水利学报, 55(10): 1146-1162.
      申艳军, 陈思维, 张蕾, 等, 2022. 冰雪型地质灾害链高位萌生、动力溃散及物相转化过程剖析. 冰川冻土, 44(2): 643-656.
      杨情情, 苏志满, 陈锣增, 等, 2015. 冰屑对冰-岩碎屑流运动特性影响作用的初步分析. 工程地质学报, 23(6): 1117-1126.
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
      殷跃平, 李滨, 张田田, 等, 2021a. 印度查莫利"2·7"冰岩山崩堵江溃决洪水灾害链研究. 中国地质灾害与防治学报, 32(3): 1-8.
      殷跃平, 朱赛楠, 李滨, 等, 2021b. 青藏高原高位远程地质灾害, 北京: 科学出版社.
      殷跃平, 张仕林, 霍子豪, 等, 2025. 瑞士阿尔卑斯桦树"5·28"高位远程冰岩崩-碎屑流研究. 中国地质灾害与防治学报, 36(4): 1-14.
    • 加载中
    图(18) / 表(2)
    计量
    • 文章访问数:  114
    • HTML全文浏览量:  10
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-08-26
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回