• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    李坤, 孙萍, 王浩杰, 张帅, 李冉, 桑康云, 2025. 新近系黄土-红层滑坡典型控滑斜坡结构及其致灾机理:综述与展望. 地球科学. doi: 10.3799/dqkx.2025.265
    引用本文: 李坤, 孙萍, 王浩杰, 张帅, 李冉, 桑康云, 2025. 新近系黄土-红层滑坡典型控滑斜坡结构及其致灾机理:综述与展望. 地球科学. doi: 10.3799/dqkx.2025.265
    Li Kun, Sun Ping, Wang Haojie, Zhang Shuai, Li Ran, Sang Kangyun, 2025. Typical Slope Structures and Their Sliding Control Mechanisms of Neogene Loess-Red Bed Landslides: A Review and Prospects. Earth Science. doi: 10.3799/dqkx.2025.265
    Citation: Li Kun, Sun Ping, Wang Haojie, Zhang Shuai, Li Ran, Sang Kangyun, 2025. Typical Slope Structures and Their Sliding Control Mechanisms of Neogene Loess-Red Bed Landslides: A Review and Prospects. Earth Science. doi: 10.3799/dqkx.2025.265

    新近系黄土-红层滑坡典型控滑斜坡结构及其致灾机理:综述与展望

    doi: 10.3799/dqkx.2025.265
    基金项目: 

    国家重点研发计划项目 (2023YFC3007002)

    国家自然科学基金资助项目 (42130720, 42293352, 42293350, 42307267)

    详细信息
      作者简介:

      李坤 (1989–),男,助理研究员,博士,主要从事地质灾害动力学机理研究。E-mail:lik914@163.com,ORCID: 0000-0002-3245-1362.

      通讯作者:

      孙萍 (1978–),女,研究员,博士,博士生导师,主要从事重大地质灾害机理与风险防控研究。E-mail: sunpingcgs@foxmail.com

    • 中图分类号: P642.2

    Typical Slope Structures and Their Sliding Control Mechanisms of Neogene Loess-Red Bed Landslides: A Review and Prospects

    • 摘要: 新近系黄土-红层滑坡是黄土高原地区最具代表性且备受关注的灾害类型,其灾变机理已成为工程地质领域亟待突破的前沿科学命题。本文以新近系黄土-红层滑坡控滑结构为切入点,从地层结构和控滑地质界面两个层面系统梳理了斜坡地质结构类型及其赋存特征,阐述了结构面在滑坡形成过程中的边界约束、水力传导与力学弱化三重控滑效应,归纳了基于结构控滑特征的滑坡类型与灾变模式,分析了基于控滑结构作用效应的滑坡形成演化机制,并根据当前研究现状,凝练出四个亟待解决的核心问题:①如何定量表征地质营力与结构面演化过程的时空耦合效应?②控滑结构如何通过跨尺度能量传递与损伤累积诱发斜坡失稳?③控滑结构关键物理力学指标在何种临界状态下触发滑坡灾变?④如何构建融合控滑结构与滑坡运动关联机制的滑坡多场耦合数值模型?针对上述科学问题,本文建议未来应重点开展以下研究方向:多场耦合作用下控滑结构动态演化过程及机理、基于水-岩相互作用的红层结构面力学劣化机制、黄土-红层滑坡结构控滑临界状态与判据、基于结构控滑效应的黄土-红层滑坡运动演化模型。

       

    • Bai, C.N, Peng, L., Shen, Y., et al., 2021. Characteristics and Mechanism of Zhangjiawan Large Scale Landslide in Xining. Science Technology and Engineering, 21(3): 927-934 (in Chinese with English abstract).
      Brady, B.H.G., Brown, E.T., 2004. Rock Mechanics for Underground Mining. Springer, Berlin.
      Chen, J.C., Wang, L.M., Wang, P., et al., 2022. Failure mechanism investigation on loess–mudstone landslides based on the Hilbert–Huang transform method using a large-scale shaking table test. Engineering Geology, 302: 106630. https://doi.org/10.1016/j.enggeo.2022.106630
      Chen, Y.M., Shi Y.C., Liu, H.M., et al., 2005. Distribution Characteristics and Influencing Factors Analysis of Seismic Loess Landslides. Earthquake Research in China, 21(2): 235-243 (in Chinese with English abstract).
      Cheng, Q., Kou, X.B., Huang, S.B, et al., 2004. The distributes and geologic environment characteristics of red beds in China. Journal of Engineering Geology, 12(1): 34-40 (in Chinese with English abstract).
      Cheng, Q., Zhou, D.P., Feng, Z.J., 2009. Research on Shear Creep Property of Typical Weak Intercalation in Redbed Soft Rock. Chinese Journal of Rock Mechanics and Engineering, 28(s1): 3176-3180 (in Chinese with English abstract).
      Dai, S., Fang, X.M., Dupont-Nivet, G., et al., 2006. Magnetostratigraphy of Cenozoic Sediments from the Xining Basin: Tectonic Implications for the Northeastern Tibetan Plateau. Journal of Geophysical Research, 111: B11102. https://doi.org/10.1029/2005JB004187
      Davies, T.R.H., McSaveney, M.J., Hodgson, K.A., 1999. A Fragmentation Spreading Model for Long-Runout Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/cgj-36-6-1096
      Deng, J.P, Zhang, H.Y., 1988. The Controlling of Fissure on the Mechanical Properties of Chengdu Clay. Hydrogeology and Engineering Geology, (2): 42-46 (in Chinese with English abstract).
      60. https://doi.org/10.1016/S0012-8252(01)00050-2
      Dijkstra, T.A., Rogers, C.D.F., Smalley, I.J., et al., 1994. The Loess of North-Central China: Geotechnical Properties and Their Relation to Slope Stability. Engineering Geology, 36: 153-171. https://doi.org/10.1016/0013-7952(94)90001-9
      Ding, Z.L., Liu, D.S., 1989. Progresses of Loess Research in China (Part 1) Loess Stratigraphy. Quaternary Sciences, (1): 24-35 (in Chinese with English abstract).
      Fan, X.M, Xu, Q., Zhang, Z.Y., et al., 2009. The Genetic Mechanism of a Translational Landslide. Bulletin of Engineering Geology and the Environment, 68(2): 231-244. https://doi.org/10.1007/s10064-009-0194-1
      Guo, Y.C., Xie, Q., Wen, J.Q., 2007. Red Beds Distribution and Engineering Geological Problem in China. Hydrogeology and Engineering Geology, (6): 67-71 (in Chinese with English abstract).
      Hart, M.W., 2000. Bedding-Parallel Shear Zones as Landslide Mechanisms in Horizontal Sedimentary Rocks. Environmental and Engineering Geoscience, 6(2): 95-113. https://doi.org/10.2113/gseegeosci.6.2.95
      Heim, A., 1932. Bergsturz und Menschenleben. Zütich: Naturforschenden Gesellschaft.
      Hoek, E., Bray, J.W., 1977. Rock Slope Engineering. The Institute of Mining and Metallurgy, London.
      Hu, G.T., 1986. The Historical Transformation of the Landsliding Causes and Factors in the Border Slopes of Loessial Highland in the Baoji-Changxing Area. Journal of Xi’an College of Geology, 8(4): 23-27 (in Chinese with English abstract).
      Hu, H.T., Hsang, S., Wang, C.F., et al., 1965. The Characteristic Constitution and Structure of Landslides in Western Kwanchung Region and Analysis of Their Stability. Acta Geologica Sinica, 45(4): 435-458 (in Chinese with English abstract).
      Hu, H.T., Zhao X.Y., 2006. Studies on Rockmass Structure in Slope of Red Bed in China. Chinese Journal of Geotechnical Engineering, 28(6): 689-794 (in Chinese with English abstract).
      Hu, X.W., Li, Q.F., Zhao, Z.S., et al., 1994. Mechanical Properties of Fissured Clay. Chinese Journal of Geotechnical Engineering, 16(4): 81-88 (in Chinese with English abstract).
      Huang, D.T., 1990. Section Characters and Tectonic of Large-Sized Landslide on the Stratum of Semi-Rock. Journal of Soil and Water Conservation, 4(3): 43-50 (in Chinese with English abstract).
      Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y
      Hutchinson, J.N., 1988. General Report: Morphological and Geotechnical Parameters of Landslides in Relation to Geology and Hydrogeology. Proceedings of the 5th International Symposium on Landslide, Lausanne.
      Hutchinson, J.N., Bhandari, R.K., 1971. Untrained Loading, a Fundamental Mechanism of Mudslide and Other Mass Movements. Géotechnique, 21(4): 353-358. https://doi.org/10.1680/geot.1971.21.4.353
      Iverson, R.M. 2012. Elementary Theory of Bed-Sediment Entrainment by Debris Flows and Avalanches. Journal of Geophysical Research: Earth Surface, 117(F3): e2011JF002189. https://doi.org/10.1029/2011JF002189
      Iverson, R.M, Reid, M.E.M., 2011. Positive Feedback and Momentum Growth During Debris-Flow Entrainment of Wet Bed Sediment. Nature Geoscience, 4: 116-121. https://doi.org/10.1038/ngeo1040
      Jaeger, J.C., Cook, N.G., Zimmerman, R., 2009. Fundamentals of Rock Mechanics. John Wiley and Sons Inc., New Jersey.
      Lei, X.Y., 2006. Models of Loess Stratigraphical Structure on the Terraces in the Loess Plateau of China. Marine Geology and Quaternary Geology, 26(2): 67-71 (in Chinese with English abstract).
      843. https://doi.org/10.1007/s12517-015-1822-7
      Li, B., Wu, S.R., Feng, Z., 2013. Engineering Geological Properties and Hazard Effects of Hipparion Laterite in Baoji, Shaanxi Province. Geological Bulletin of China, 32(12): 1918-1924 (in Chinese with English abstract).
      Li, B., Yin, Y.P., Wu, S.R., et al., 2011. Basic Types and Characteristics of Multiple Rotational Landslides in Loess. Journal of Engineering Geology, 19(5): 703-711 (in Chinese with English abstract).
      Li, F.L., Chen, Z.Y., Zhang, Z.Q., 2005. Preliminary Analysis of Landslides in Qinghai. Journal of Engineering Geology, 13(3): 300-309 (in Chinese with English abstract).
      Li, K., Sun, P., Wang, H.J., et al., 2024. Insight into Failure Mechanisms of Rainfall Induced Mudstone Landslide Controlled by Structural Planes: From Laboratory Experiments. Engineering Geology, 343: 107774. https://doi.org/10.1016/j.enggeo.2024.107774
      Li, L.C., Li, S.L, Li, H., 2014. Time-Dependent Deformation of Rock Slopes Based on Long-Term Strength Characteristics of Rocks. Chinese Journal of Geotechnical Engineering, 36(1): 47-56 (in Chinese with English abstract).
      Li, T.L., Long, J.H., Li, X.S., 2007. Types of Loess Landslides and Methods for Their Movement Forecast. Journal of Engineering Geology, 15(4): 500-505 (in Chinese with English abstract).
      Li, Y.R., Mo, P., 2019. A Unified Landslide Classification System for Loess Slopes: A Critical Review. Geomorphology, 340: 67-83. https://doi.org/10.1016/j.geomorph.2019.04.020
      Li, Y.R., Wang, Y.Y., Aydin, A., 2024. Loess Structure: Evolution and a Scale-Based Classification. Earth-Science Reviews, 249: 104665. https://doi.org/10.1016/j.earscirev.2023.104665
      Li, Z.Y., Li, Y.X., Li, W.H., et al., 2023. Sedimentary Facies and Paleoenvironmental Evolution of the Cenozoic Lanzhou Basin, Northeastern Tibetan Plateau. Journal of Palaeogeography, 25(3): 648-670 (in Chinese with English abstract).
      Liang, C.Y., Zhang, H., Wang, T., 2022. Red Clay/Mudstone Distribution, Properties and Loess-Mudstone Landslides in the Loess Plateau, China. Environmental Earth Sciences, 81: 386. https://doi.org/10.1007/s12665-022-10489-4
      Liao, J., Lan, C.H., Wu, Y.T., et al., 2024. Micro-Meso-Macro Interface Correlation Processes and Cross-Scale Cascade Effects in Red-Bed Soft Rocks Softening. Chinese Journal of Rock Mechanics and Engineering, 43(5): 1241-1254 (in Chinese with English abstract).
      Lu, Q.Z., Ge, X.R., Peng, J.B., et al., 2009. Failure Characteristics of Fractured Loess Under Triaxial Compression Condition. Rock and Soil Mechanics, 30(12): 3689-3694 (in Chinese with English abstract).
      Lu, Q.Z., Peng, J.B., 2006. Characteristics of Structural Planes of Loess Mass in Loess Plateau of China and Its Hazard Effect. Journal of Xi’an University of Science and Technology, 26(4): 446-450 (in Chinese with English abstract).
      Ma, P.H., Peng, J.B., Li, T.L., et al., 2018. Forming Mechanism and Motion Characteristics of the “3·8” Jiangliu Loess Landslide in Jingyang County of Shaanxi Province. Journal of Engineering Geology, 26(3): 663-672 (in Chinese with English abstract).
      Ma, S.X., Li, H.L., Zhang, Y.Q, et al., 2016. The Neogene Extension of the Tianshui Basin: Evidence from Sedimentary and Structural Record. Geological Bulletin of China, 35(8): 1314-1323 (in Chinese with English abstract).
      Melosh, H.J., 1978. Acoustic Fluidization. American Scientist, 71(B13): 158-168.
      Mu, W.P., Wu, X., Qian, C., et al., 2020. Triggering Mechanism and Reactivation Probability of Loess‑Mudstone Landslides Induced by Rainfall Infiltration: A Case Study in Qinghai Province, Northwestern China. Environmental Earth Sciences, 79: 22. https://doi.org/10.1007/s12665-019-8767-1
      Nan, J.J., Peng, J.B., Zhu, F.J., et al., 2021. Shear Behavior and Microstructural Variation in Loess from the Yan’an Area, China. Engineering Geology, 280: 105964. https://doi.org/10.1016/j.enggeo.2020.105964
      Orense, R.P., Shimoma, S., Maeda, K., et al., 2004. Instrumented Model Slope Failure Due to Water Seepage. Journal of Natural Disaster Science, 26(1): 15-26. https://doi.org/10.2328/jnds.26.15
      Peng, J.B., Leng, Y.Q., Zhu, X.H., et al., 2016. Development of A Loess-Mudstone Landslide in A Fault Fracture Zone. Environmental Earth Sciences, 75(8): 658. https://doi.org/10.1007/s12665-016-5336-8
      Peng, J.B, Tong, X., Wang, S.K., et al., 2018. Three-Dimensional Geological Structures and Sliding Factors and Modes of Loess Landslides. Environmental Earth Sciences, 77: 675. https://doi.org/10.1007/s12665-018-7863-y
      Peng, J.B., Wang, Q.Y., Zhuang, J.Q, et al., 2020. Dynamic Formation Mechanism of Landslide Disaster on the Loess Plateau. Journal of Geomechanics, 26(5): 714-730 (in Chinese with English abstract).
      Peng, J.B., Wang, S.K., Wang, Q.Y., et al., 2019. Distribution and Genetic Types of Loess Landslides in China. Journal of Asian Earth Sciences, 170: 329-350. https://doi.org/10.1016/j.jseaes.2018.11.015
      Qu, Y.X., Zhang, Y.S., Qin, Z.M., 1999. Hipparion Laterite and Landslide Hazards on Loess Plateau of Northwestern China. Journal of Engineering Geology, 7(3): 257-265 (in Chinese with English abstract).
      Rahardjo, H., Lee, T.T., Leong, E.C., et al., 2005. Response of A Residual Soil Slope to Rainfall. Canadian Geotechnical Journal, 42: 340~351. https://doi.org/10.1139/t04-101
      Seed, H.B., 1968. Landslides During Earthquakes due to Soil Liquefaction. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122. https://doi.org/10.1061/JSFEAQ.0001182
      Shen, Z.L., Wang, Y.X., 2002. Review and Outlook of Water-Rock Interaction Studies. Earth Science, 27(2): 127-133 (in Chinese with English abstract).
      Shi, J.S., Li, B., Wu, S.R., et al., 2013. Mechanism of Large-Scale Slide at Edge of Loess Plateau on North of Weihe River in Baoji Urban Area, Shaanxi Province. Journal of Engineering Geology, 21(6): 938-949 (in Chinese with English abstract).
      Shi, J.S., Wu, L.Z., Qu, Y.X., et al., 2018. Neogene Clay and Its Relation to Landslides in the Southwestern Loess Plateau, China. Environmental Earth Sciences, 77: 204. https://doi.org/10.1007/s12665-018-7350-5
      Smalley, I.J, Derbyshire, E., 1991. Large Loess Landslides in Active Tectonic Regions. In: Jones, M., Cosgrove, J., eds., Neotectonics and Resources. Belhaven Press, London, 202-219.
      Song, C.H., 2006. Tectonic Uplift and Cenozoic Sedimentary Evolution in the Northern Margin of the Tibet Plateau (Doctoral Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Sun, J. 2007. Rock Rheological Mechanics and Its Advance in Engineering Applications. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1081-1106 (in Chinese with English abstract).
      Sun, P., Li, R.J., Jiang, H., et al., 2017. Earthquake-Triggered Landslides by the 1718 Tongwei Earthquake in Gansu Province, Northwest China. Bulletin of Engineering Geology and the Environment, 76(4): 1281-1295. https://doi.org/10.1007/s10064 -016-0949-4
      Sun, P., Peng, J.B., Chen, L.W., et al., 2016. An Experimental Study of the Mechanical Characteristics of Fractured Loess in Western China. Bulletin of Engineering Geology and the Environment, 75: 1639-1647. https://doi.org/10.1007/s10064-015-0793-y
      Sun, P., Wang, G., Wu, L.Z., et al., 2019. Physical Model Experiments for Shallow Failure in Rainfall-Triggered Loess Slope, Northwest China. Bulletin of Engineering Geology and the Environment, 78: 4363-4382. https://doi.org/10.1007/s10064-018-1420-5
      Tohari, A., Nishigaki, M., Komatsu, M., 2007. Laboratory Rainfall-Induced Slope Failure with Moisture Content Measurement. Journal of Geotechnical and Geoenvironmental Engineering, 13: 575-587. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(575)
      Van Gassen, W., Cruden, D.M., 1989. Momentum Transfer and Friction in the Debris of Rock Avalanches. Canadian Geotechnical Journal, 26(4): 623-628. https://doi.org/10.1139/t89-075
      Varnes, D.J. 1978. Slope Movement Types and Processes. In: Schuster, R.L., Krizek, R.J., eds., Landslides, Analysis and Control, Special Report. National Academy of Sciences, Washington, D C.
      22-02016-0
      Wang, G.X. 1997. Sliding Mechanism and Prediction of Critical Sliding of Huangci Landslide in Yongjing County, Gansu Province. Journal of Catastrophology, 12(3): 23-27 (in Chinese with English abstract).
      Wang, G.X., Wu, Z.J., Zhang, X.H., et al., 2025. Experimental study on dynamic response characteristics and failure modes of rainfall and non-rainfall loess high steep slopes under earthquake. Soil Dynamics and Earthquake Engineering, 199: 109706. https://doi.org/10.1016/j.soildyn.2025.109706
      20-01460-0
      Wang, H.J., Sun, P., Zhang, S., et al., 2022. Evolutionary and Dynamic Processes of the Zhongzhai Landslide Reactivated on October 5, 2021, in Niangniangba, Gansu Province, China. Landslides, 19: 2983-2996. https://doi.org/10.1007/s10346-022-01966-9
      Wang, H.J., Sun, P., Zhang, S., et al., 2023. Characteristics and Slope Structure of the Beishan Landslide Group in Tianshui City. Journal of Geomechanics, 29(2): 236-252 (in Chinese with English abstract).
      Wang, J.D., 1992. A Mechanism of High-Speed Loess Landslides – Saturated Loess Creeping Liquefaction. Geological Review, 38(6): 532-539 (in Chinese with English abstract).
      Wang, J.D., 1997. A Discussion on Disasters in City Building Along Loess Mountain in China - Analysis of Loess Mud Flow. Journal of Northwest University (Natural Science Edition), 27(5): 443-447 (in Chinese with English abstract).
      Wang, J.M., Zhang, J., 1985. On Loessial Jointe. Journal of Xi'an College of Geology, 7(2): 30-41 (in Chinese with English abstract).
      Wang, P., Wang, H.J., Chai, S.F., et al., 2018. The derived mechanism and deformation characteristics of slip surface of loess-weathered rock contact surface slope. Chinese Journal of Rock Mechanics and Engineering, 37(s2): 4027-4037 (in Chinese with English abstract).
      Wang, S.K., 2020. Study on the Mechanisms for Geohazards of Macro Loess Discontinuities (Doctoral Dissertation). Chang’an University, Xi’an, China (in Chinese with English abstract).
      Wang, S.K., Peng, J.B., Zhuang, J.Q., et al., 2019. Underlying Mechanisms of the Geohazards of Macro Loess Discontinuities on the Chinese Loess Plateau. Engineering Geology, 263: 105357. https://doi.org/10.1016/j.enggeo.2019.105357
      Wang, W.T., Zhang, P.Z., Liu, C.C., et al., 2016. Pulsed Growth of the West Qinling at ~30 Ma in Northeastern Tibet: Evidence from Lanzhou Basin Magnetostratigraphy and Provenance. Journal of Geophysical Research: Solid Earth, 121: 7754-7774. https://doi.org/10.1002/2016JB013279
      791-6
      Wang, X.G., Liu, K., Lian, B.Q., et al., 2021. Recent Advance in Understanding Inducing Factors and Formation Mechanism of Loess-Mudstone Landslides. Journal of Northwest University (Natural Science Edition), 51(3): 404-413 (in Chinese with English abstract).
      Wen, B.P., Wang, S.J., Wang, E.Z., et al., 2005. Deformation Characteristics of Loess Landslide along the Contact Between Loess and Neocene Red Mudstone. Acta Geologica Sinica, 79(1): 139-151. https://doi.org/10.1111/j.1755-6724.2005.tb00875.x
      Wu, C.X., Xu, L., Dai, F.C., et al., 2011. Topographic Features and Initiation of Earth Flows on Heifangtai Loess Plateau. Rock and Soil Mechanics, 32(6): 1767-1773 (in Chinese with English abstract).
      Wu, W.J., Wang, N.Q., 2002. Basic Types and Active Features of Loess Landslide. The Chinese Journal of Geological Hazard and Control, 13(2): 36-40 (in Chinese with English abstract).
      Wu, W.J., Su, X., Liu, W., et al., 2014. Loess-Mudstone Interface Landslides: Characteristics and Causes. Journal of Glaciology and Geocryology, 36(5): 1167-1175 (in Chinese with English abstract).
      Xin, P., Liu, Z., Wu, S.R., et al., 2018. Rotational-Translational Landslides in the Neogene Basins at the Northeast Margin of the Tibetan Plateau. Engineering Geology, 244: 107-115.
      Xin, P., Shi, J.S., Hu, L., et al., 2020. The Structure and Distribution Characteristic of Clay Minerals in Bedding Parallel to the Shear Zone of the Neogene Soft Rock. Acta Geologica Sinica, 94(5): 1625-1637 (in Chinese with English abstract).
      Xin, P., Wang, T., Wu, S.R., 2015. The Formation Mechanism of Multilevel Rotational Mudstone Landslides in Hanjiashan of Datong County, Qinghai Province. Acta Geoscientica Sinica, 36(6): 771-780 (in Chinese with English abstract).
      Xin, P., Wang, T., Wu, S.R., 2018. A Study of the Formation Mechanism of Caizigou Large-Scale Translational Gliding Landslide in Neogene Mudstone Basin of Xining-Minhe, Qinghai Province. Acta Geoscientica Sinica, 39(3): 342-350 (in Chinese with English abstract).
      Xin, P., Wu, S.R., Shi, J.S., et al., 2013. Slope Structure on the North Bank of Baoji-Fufeng Section in the Middle Reaches of Weihe River and Its Indicative Significance on the Formation Mechanism of Large Landslide. Journal of Jilin University (Earth Science Edition), 43(2): 506-514 (in Chinese with English abstract).
      Xu, L., Dai, F.C., Min, H., 2008a. Research Progress and Some Thoughts on Loess Landslides. Advances in Earth Science, 23(3): 236-242 (in Chinese with English abstract).
      Xu, L., Dai, F.C., Tham, L.G, et al. 2012., Investigating Landslide-Related Cracks along the Edge of Two Loess Platforms in Northwest China. Earth Surface Processes and Landforms, 37(10): 1023-1033. https://doi.org/10.1002/esp.3214
      Xu, L., Dai, F.C., Kwong, A.K.L., et al., 2008b. Types and Characteristics of Loess Landslides at Heifangtai Loess Plateau, China. Journal of Mountain Science, 26(3): 364-371 (in Chinese with English abstract).
      Xu, P., Yang, T.Q., Xu, C.M., et al., 2002. Creep Characteristic and Long-Term Stability of Rock Mass in Ship Lock High Slope of the Three Gorges Project. Chinese Journal of Rock Mechanics and Engineering, 21(2): 163-168 (in Chinese with English abstract).
      Xu, Q., Peng, D.L., Qi, X., et al., 2016. Dangchuan 2# Landslide of April 29, 2015 in Heifangtai Area of Gansu Province: Characteristics and Failure Mechanism. Journal of Engineering Geology, 24(2): 167-180 (in Chinese with English abstract).
      Xu, Q., Tang, R., 2023. Study on Red Beds and Its Geological Hazards. Chinese Journal of Rock Mechanics and Engineering, 42(1): 28-50 (in Chinese with English abstract).
      Yang, L.R., Li, J.X., Yue, L.P., et al., 2017. Paleogene-Neogene Stratigraphic Realm and Tectonic-Sedimentary Evolution of the Qilian Mountains and Their Surrounding Areas. Science China Earth Sciences, 47(5): 586-600 (in Chinese with English abstract).
      Yang, S.B., Xu J., Dong X.B., 1996. Rheological Feature of Slope Rockmass Composed of Alternating Beds of Sandstone and Mudstone in Red Beds Area. Journal of Geological Hazards and Environment Preservation, 7(2): 12-24 (in Chinese with English abstract).
      Yang, X.H., Chen, K.Q., Diao, X.F., et al. 2022. Model tests and stability of accumulation landslides under coupling action of earthquake and rainfall. Chinese Journal of Geotechnical Engineering, 44(s1): 58-62 (in Chinese with English abstract).
      Yenes, M., Monterrubio, S., Nespereira, J., et al., 2009. Geometry and Kinematics of a Landslide Surface in Tertiary Clays from the Duero Basin (Spain). Engineering Geology, 104: 41-54. https://doi.org/10.1016/j.enggeo.2008.08.008
      Yue, L.P., 1996. Depositional Relation Between the Loess, Red Clay and Sedimentation of the Lakebasin in the Loess Plateau. Acta Sedimentologica Sinica, 14(4): 148-153 (in Chinese with English abstract).
      Yue, L.P., Heller, F., Qiu, Z.X., et al., 2000. Magnetostratigraphy and Pavleo-Environmental Record of Tertiary Deposits of Lanzhou Basin. Chinese Science Bulletin, 45(18): 1998-2002 (in Chinese with English abstract).
      Zhang, D.X., Wang, G.H., Luo, C.Y., et al., 2009. A Rapid Loess Flowslide Triggered by Irrigation in China. Landslides, 6: 55-60. https://doi.org/10.1007/s10346-008-0135-2
      Zhang, F.Y., Peng, J.B., Wu, X.G., et al., 2021. A Catastrophic Flowslide that Overrides a Liquefied Substrate: The 1983 Saleshan Landslide in China. Earth Surface Processes and Landforms, 46(10): 2060-2078. https://doi.org/10.1002/esp.5144
      Zhang, S., Sun, P., Li, R., et al., 2023. Preliminary Investigation on a Catastrophic Loess Landslide Induced by Heavy Rainfall on 1 September 2022 in Qinghai, China. Landslides, 20(7): 1553-1559. https://doi.org/10.1007/s10346-023-02086-8
      Zhang, S., Xu, Q., Hu, Z.M., 2016. Effects of Rainwater Softening on Red Mudstone of Deep-Seated Landslide, Southwest China. Engineering Geology, 204: 1-13.
      Zhang, S.K., Wang, L.G., Lu, L., et al., 2020. Weakening Effects of Occurrence Structural Plane on Mechanical Properties of Silty Mudstone. Chinese Journal of Geotechnical Engineering, 42(11): 2015-2023 (in Chinese with English abstract).
      Zhang, X.G., Wang, S.J., Zhang, Z.Y., 2000. Chinese Engineering Geology. Beijng: Sicience Press (in Chinese).
      Zhang, Y.A, Li, F., Chen, J., 2008. Analysis of the Interaction Between Mudstone and Water. Journal of Engineering Geology, 16(1): 22-26 (in Chinese with English abstract).
      Zhang, Z.L, Wang, T., Wu, S.R., 2020. Distribution and Features of Landslides in the Tianshui Basin, Northwest China. Journal of Mountain Science, 17(3): 686-708. https://doi.org/10.1007/s11629-019-5595-4
      Zhang, Z.L, Wang, T., Wu, S.R, et al., 2017. Dynamics Stress-Strain Behavior of Tianshui Soils. Landslides, 14(1): 323-335. https://doi.org/10.1007/s10346-016-0694-6
      Zhang, Z.L, Wang, T., Wu, S.R, et al., 2021. Study on Shear Mechanical Properties of Mudstone with Weak Intercalation. Chinese Journal of Rock Mechanics and Engineering, 40(4): 713-724 (in Chinese with English abstract).
      Zhang, Z.L, Wu, S.R, Tang, H.M., et al., 2015. Control effect of evolution process of the Yellow River terrace in Lanzhou on landslide activity. Earth Science, 40(4): 1585-1597 (in Chinese with English abstract).
      Zhang, Z.Y., Chen, S.M., Tao, L.J., 2002. 1983 Sale Mountain landslide, Gansu Province, China. In: Evans, S.G., DeGraff, J.V., eds., Catastrophic landslides: Effects, occurrence, and mechanisms. Boulder, Colorado: Geological Society of America, (XV): 149-163.
      Zhang, Z.Y., Wang, S.T., Wang, L.S., 1994. Principles of Engineering Geological Analysis. Geological Publishing House, Beijing (in Chinese).
      Zhao, L.Q., Ma, P.H., Peng, J.B., et al., 2025. Genesis, Characteristic and Disaster Effects of Loess Meso-Interfaces: A Field Geological Investigation. Catena, 251: 108804. https://doi.org/10.1016/j.catena.2025.108804
      Zhou, B., Li, X.L., Wei, G., et al., 2019. Research on the Development Patterns of Giant Landslides in the Lagan Gorge–Sigou Gorge Section of the Upper Yellow River. Geological Publishing House, Beijing (in Chinese).
      Zhou, C.Y., Huang, S.Y., Liu, Z., et al., 2019. The Interface Process and Its Dynamic Model of Red-Bed Soft Rock Softening . Rock and Soil Mechanics, 40(8): 3189-3206 (in Chinese with English abstract).
      Zhou, C.Y., Liu, Z., Xue, Y.G., et al., 2023. Some Thoughts on Basic Research of Red Bed Disasters. Journal of Engineering Geology, 31(3): 689-705 (in Chinese with English abstract).
      Zhou, C.Y., Yang, X., Liang, Y.H., et al., 2019. Classification of Red-Bed Rock Mass Structures and Slope Failure Mode in South China. Geosciences, 9: 273. https://doi.org/10.3390/geosciences9060273
      Zhou, Y.Y., Yu, B., Fan, W., et al., 2023. 3D Characterization of Localized Shear Failure in Loess Subject to Triaxial Loading. Engineering Geology, 322: 107174. https://doi.org/10.1016/j.enggeo.2023.107174
      Zhu, Y.B, Li, H.F, Lan, H.X., et al., 2021. Experimental Study on Influence of Loess Joints Angle on Mechanical Properties of Loess. Journal of Engineering Geology, 29(4): 1178-1187 (in Chinese with English abstract).
      Zhuang, J.Q, Peng, J.B., Xu, C., et al., 2018. Distribution and Characteristics of Loess Landslides Triggered by the 1920 Haiyuan Earthquake, Northwest of China. Geomorphology, 314: 1-12. https://doi.org/10.1016/j.geomorph.2018.04.012
      白朝能, 彭亮, 沈远, 等, 2021. 西宁张家湾特大滑坡特征及机理. 科学技术与工程, 21(3): 927-934.
      陈永明, 石玉成, 刘红玫, 等, 2005. 黄土地区地震滑坡的分布特征及其影响因素分析. 中国地震, 21(2): 235-243.
      程强, 2010. 红层软岩边坡岩体结构特征及边坡岩体稳定性分析. 中国岩石力学与工程学会. 岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会论文集. 四川省交通厅公路规划勘察设计研究院, pp. 65-70.
      程强, 寇小兵, 黄绍槟, 等, 2004. 中国红层的分布及地质环境特征. 工程地质学报, 12(1): 34-40.
      程强, 周德培, 封志军, 2009. 典型红层软弱夹层剪切蠕变性质研究. 岩石力学与工程学报, 28(s1): 3176-3180.
      邓京萍, 张惠英, 1988. 成都粘土的裂隙性对力学性能的控制作用. 水文地质工程地质, (2): 42-46.
      丁仲礼, 刘东生, 1989. 中国黄土研究新进展(一)黄土地层. 第四纪研究, (1): 24-35.
      谷德振, 黄鼎成, 1979. 岩体结构的分类及其质量系数的确定. 水文地质工程地质, (2): 8-13.
      郭永春, 谢强, 文江泉, 2007. 我国红层分布特征及主要工程地质问题. 水文地质工程地质, (6): 67-71.
      胡广韬, 1986. 宝鸡-常兴一带黄土塬边滑坡原因与因素的历史转化性. 西安地质学院学报, 8(4): 23-27.
      胡海涛, 项式均, 王肇芬, 等, 1965. 关中西部滑坡的结构、构造特征及稳定性分析. 地质学报, 45(4): 435-458.
      胡厚田, 赵晓彦, 2006. 中国红层边坡岩体结构类型的研究. 岩土工程学报, 28(6): 689-794.
      胡卸文, 李群丰, 赵泽三, 等, 1994. 裂隙性粘土的力学特性. 岩土工程学报, 16(4): 81-88.
      黄大庭, 1990. 半成岩地层大型滑坡的剖面特征和构造. 水土保持学报, 4(3): 43-50.
      雷祥义, 2006. 黄土高原河谷阶地黄土地层结构模式. 海洋地质与第四纪地质, 26(2): 67-71.
      李滨, 吴树仁, 石菊松, 等, 2013. 陕西宝鸡市三趾马红土工程地质特性及灾害效应. 地质通报, 32(12): 1918-1924.
      李滨, 殷跃平, 吴树仁, 等, 2011. 多级旋转黄土滑坡基本类型及特征分析. 工程地质学报, 19(5): 703-711.
      李芙林, 陈忠宇, 张志强, 2005. 青海滑坡初探. 工程地质学报, 13(3): 300-309.
      李连崇, 李少华, 李宏, 2014. 基于岩石长期强度特征的岩质边坡时效变形过程分析. 岩土工程学报, 36(1): 47-56.
      李同录, 龙建辉, 李新生, 2007. 黄土滑坡发育类型及其空间预测方法. 工程地质学报, 15(4): 500-505.
      李兆雨, 李永项, 李文厚, 等, 2023. 青藏高原东北部兰州盆地新生代沉积相与古环境演化. 古地理学报, 25(3): 648-670.
      廖进, 兰春晖, 吴勇桃, 等, 2024. 红层软岩软化的微–细–宏观界面关联过程与跨尺度级联效应. 岩石力学与工程学报, 43(5): 1241-1254.
      卢全中, 葛修润, 彭建兵, 等, 2009. 三轴压缩条件下裂隙性黄土的破坏特征. 岩土力学, 30(12): 3689-3694.
      卢全中, 彭建兵, 2006. 黄土体结构面的发育特征及其灾害效应. 西安科技大学学报, 26(4): 446-450.
      马鹏辉, 彭建兵, 李同录, 等, 2018. 陕西泾阳“3·8”蒋刘黄土滑坡成因及运动特征分析. 工程地质学报, 26(3): 663-672.
      马收先, 李海龙, 张岳桥, 等, 2016. 天水盆地新近纪伸展构造——来自沉积与构造变形方面的证据. 地质通报, 35(8): 1314-1323.
      彭建兵, 王启耀, 庄建琦, 等, 2020. 黄土高原滑坡灾害形成动力学机制. 地质力学学报, 26(5): 714-730.
      曲永新, 张永双, 覃祖淼, 1999. 三趾马红土与西北黄土高原滑坡. 工程地质学报, 7(3): 257-265.
      沈照理, 王焰新, 2002. 水-岩相互作用研究的回顾与展望. 地球科学, 27(2): 127-133.
      石菊松, 李滨, 吴树仁, 等, 2013. 宝鸡渭河北岸黄土塬边大型滑坡成因机制研究. 工程地质学报, 21(6): 938-949.
      宋春晖, 2006. 青藏高原东北缘新生代沉积演化与高原构造隆升过程(博士学位论文). 兰州: 兰州大学.
      孙钧, 2007. 岩石流变力学及其工程应用研究的若干进展. 岩石力学与工程学报, 26(6): 1081-1106.
      王恭先, 1997. 甘肃省永靖县黄茨滑坡的滑动机理与临滑预报. 灾害学, 12(3): 23-27.
      王浩杰, 孙萍, 张帅, 等, 2023. 天水市北山滑坡群发育特征及坡体结构分区. 地质力学学报, 29(2): 236-252.
      王家鼎, 1992. 高速黄土滑坡的一种机理——饱和黄土蠕动液化. 地质论评, 38(6): 532-539.
      王家鼎, 1997. 中国黄土山城“依山造居”的几个灾害问题讨论(IV)——黄土泥流分析. 西北大学学报(自然科学版), 27(5): 443-447.
      王景明, 张骏, 1985. 论黄土节理. 西安地质学院学报, 7(2): 30-41.
      王平, 王会娟, 柴少峰, 等, 2018. 黄土–风化岩接触面斜坡滑移面衍生机制及变形特征. 岩石力学与工程学报, 37(s2): 4027-4037.
      王少凯, 2020. 黄土宏观界面及其控灾机制研究(博士学位论文). 西安: 长安大学.
      王新刚, 刘凯, 连宝琴, 等, 2021. 黄土-泥岩滑坡诱发因素及形成机理研究进展. 西北大学学报(自然科学版), 51(3): 404-413.
      武彩霞, 许领, 戴福初, 等, 2011. 黑方台黄土泥流滑坡及发生机制研究. 岩土力学, 32(6): 1767-1773.
      吴玮江, 王念秦, 2002. 黄土滑坡的基本类型与活动特征. 中国地质灾害与防治学报, 13(2): 36-40.
      吴玮江, 宿星, 刘伟, 等, 2014. 黄土-泥岩接触面滑坡的特征与成因. 冰川冻土, 36(5): 1167-1175.
      辛鹏, 石菊松, 胡乐, 等, 2020. 新近纪软岩质水平滑带的结构与内部黏土矿物聚集规律. 地质学报, 94(5): 1625-1637.
      辛鹏, 王涛, 吴树仁, 2015. 青海西宁大通县韩家山泥岩质多级旋转型滑坡形成机制研究. 地球学报, 36(6): 771~780.
      辛鹏, 王涛, 吴树仁, 2018. 青海西宁-民和新近纪泥岩盆地菜子沟大型平推式滑坡形成机制研究. 地球学报, 39(3): 342-350.
      辛鹏, 吴树仁, 石菊松, 等, 2013. 渭河中游宝鸡-扶风北岸斜坡结构及其对大型滑坡形成机理的指示意义. 吉林大学学报 (地球科学), 43(2): 506-514.
      许领, 戴福初, 闵弘. 2008a. 黄土滑坡研究现状与设想. 地球科学进展, 23(3): 236-242.
      许领, 戴福初, 邝国麟, 等, 2008b. 黑方台黄土滑坡类型与发育规律. 山地学报, 26(3): 364-371.
      徐平, 杨挺青, 徐春敏, 等, 2002. 三峡船闸高边坡岩体时效特性及长期稳定性分析. 岩石力学与工程学报, 21(2): 163-168.
      许强, 彭大雷, 亓星, 等, 2016. 2015年4.29甘肃黑方台党川2#滑坡基本特征与成因机理研究. 工程地质学报, 24(2): 167-180.
      许强, 唐然, 2023. 红层及其地质灾害研究. 岩石力学与工程学报, 42(1): 28-50.
      杨利荣, 李建星, 岳乐平, 等, 2017. 祁连山及邻区古-新近纪地层分区与构造-沉积演化. 中国科学: 地球科学, 47(5): 586-600.
      杨淑碧, 徐进, 董孝璧, 1996. 红层地区砂泥岩互层状斜坡岩体流变特性研究. 地质灾害与环境保护, 7(2): 12-24.
      杨校辉, 陈昆全, 刁显锋, 等, 2022. 地震与降雨耦合作用下堆积体滑坡模型试验及稳定性研究. 岩土工程学报, 44(s1): 58-62.
      岳乐平, 1996. 黄土高原黄土、红色粘土与古湖盆沉积物关系. 沉积学报, 14(4): 148-153.
      岳乐平, Heller F, 丘占祥, 等, 2000. 兰州盆地第三系磁性地层年代与古环境记录. 科学通报, 45(18): 1998-2002.
      张淑坤, 王来贵, 陆璐, 等, 2020. 赋存结构面粉砂质泥岩力学性能弱化机制研究. 岩土工程学报, 42(11): 2015-2023.
      张咸恭, 王思敬, 张倬元, 2000. 中国工程地质学. 北京: 科学出版社.
      张永安, 李峰, 陈军. 2008, 红层泥岩水岩作用特征研究. 工程地质学报, 16(1): 22-26.
      张泽林, 王涛, 吴树仁, 等, 2021. 泥岩中软弱夹层的剪切力学特性研究. 岩石力学与工程学报, 40(4): 713-724.
      张泽林, 吴树仁, 唐辉明, 等, 2015. 兰州黄河阶地演变过程对滑坡活动的控制效应. 地球科学, 40(9): 1585-1597.
      张倬元, 王士天, 王兰生, 1994. 工程地质分析原理. 北京: 地质出版社.
      周保, 李小林, 魏刚, 等, 2019. 黄河上游拉干峡—寺沟峡段特大型滑坡发育规律研究. 北京: 地质出版社.
      周翠英, 黄思宇, 刘镇, 等, 2019. 红层软岩软化的界面过程及其动力学模型. 岩土力学, 40(8): 3189-3206.
      周翠英, 刘镇, 薛翊国, 等, 2023. 关于红层灾变基础研究的若干思考. 工程地质学报, 31(3): 689-705.
      祝艳波, 李红飞, 兰恒星, 等, 2021. 节理倾角对黄土力学特性影响试验研究. 工程地质学报, 29(4): 1178-1187.
    • 加载中
    计量
    • 文章访问数:  24
    • HTML全文浏览量:  0
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-28

    目录

      /

      返回文章
      返回