• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    秦颖, 杨慧, 崔柳, 酆格斐, 王佳, 乔亦娜, 吕青宙, 冯健, 王文峰, 2025. 数据-知识协同驱动的共伴生矿产知识图谱构建方法. 地球科学. doi: 10.3799/dqkx.2025.268
    引用本文: 秦颖, 杨慧, 崔柳, 酆格斐, 王佳, 乔亦娜, 吕青宙, 冯健, 王文峰, 2025. 数据-知识协同驱动的共伴生矿产知识图谱构建方法. 地球科学. doi: 10.3799/dqkx.2025.268
    QIN Ying, YANG Hui, CUI Liu, FENG Gefei, WANG Jia, QIAO Yina, LV Qingzhou, FENG Jian, WANG Wenfeng, 2025. Developing a Data–Knowledge Synergy-Driven Methodology for Co-Associated Minerals Knowledge Graph Construction. Earth Science. doi: 10.3799/dqkx.2025.268
    Citation: QIN Ying, YANG Hui, CUI Liu, FENG Gefei, WANG Jia, QIAO Yina, LV Qingzhou, FENG Jian, WANG Wenfeng, 2025. Developing a Data–Knowledge Synergy-Driven Methodology for Co-Associated Minerals Knowledge Graph Construction. Earth Science. doi: 10.3799/dqkx.2025.268

    数据-知识协同驱动的共伴生矿产知识图谱构建方法

    doi: 10.3799/dqkx.2025.268
    基金项目: 

    国家自然科学基金面上项目 (42571545,52478011)

    第三次新疆综合科学考察项目(2022xjkk1006)

    新疆维吾尔自治区重点研发项目(2022B01012-1)

    江苏省自然资源科技计划项目(2023018)

    中央高校基本科研业务费专项资金资助(2024ZDPYCH1002)

    江苏省科技智库计划项目(JSKX0225042)

    详细信息
      作者简介:

      秦颖(2002-),女,硕士研究生,地球探测与信息技术专业,主要从事矿产资源大数据智能挖掘研究。E-mail:qinying@cumt.edu.cn,ORCID:0009-0008-1683-943X

      通讯作者:

      杨慧(1983-),女,教授,博士,博士生导师,从事地球信息科学与技术及相关教学工作,主要从事大数据的地球时空信息智能分析研究。E-mail:yanghui@cumt.edu.cn,ORCID:0000-0001-9421-3573

    • 中图分类号: P617;P628;TP18

    Developing a Data–Knowledge Synergy-Driven Methodology for Co-Associated Minerals Knowledge Graph Construction

    • 摘要: 针对地质大数据与成矿知识割裂导致的共伴生关系建模难题,亟需构建支撑智能分析的知识方法体系。本文提出一种数据-知识协同驱动的知识图谱构建方法,融合领域本体与BERT-BiLSTM-CRF模型,通过“知识引导—数据反馈”机制实现本体演化与信息抽取的动态协同,系统地从多源地质文本中提取矿床特征与共伴生关系,建立勘查数据与成矿知识间的语义映射。实验表明:实体识别F1值达83.2%,较基线提升15.4%;实体重复率降低5.7个百分点,图谱一致性显著改善。最终构建包含1.2万节点与2.8万关系的结构化知识图谱,支撑可视化分析、智能问答、成矿预测及平台服务。该方法实现了知识与数据的深度融合,为矿产勘查向数据-知识协同驱动的智能范式转型提供了可解释、可操作的技术路径。

       

    • 陈伟,吴友政,陈文亮,等.基于BiLSTM-CRF的关键词自动抽取[J].计算机科学,2018,45(S1):91-96+113.
      鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报,2019,30(06):1793-1818.DOI: 10.13328/j.cnki.jos.005817.
      韩伟,张照坤,雷辛亚,等.多源融合的“岩石-矿物-光谱”知识图谱构建及应用[J/OL].地球科学,1-18[2025-11-05].https://link.cnki.net/urlid/42.1874.P.20251010.1336.006.
      鞠建华,万会,韩见.我国共伴生矿产资源特点及综合评价要点综述[J].中国矿业,2024,33(12):17-23.
      李冬梅,张扬,李东远,等.实体关系抽取方法研究综述[J].计算机研究与发展,2020,57(07):1424-1448.
      廖振鑫.面向地质领域的知识图谱构建研究及应用[D].电子科技大学,2021.DOI: 10.27005/d.cnki.gdzku.2021.004734.
      邱宇辰.知识图谱可视化平台的设计实现及应用[D].北京邮电大学,2021.DOI: 10.26969/d.cnki.gbydu.2021.003211.
      田玲,张谨川,张晋豪,等.知识图谱综述——表示、构建、推理与知识超图理论[J].计算机应用,2021,41(08):2161-2186.
      汪陈.面向中文文献的金矿时空属性信息抽取及知识图谱可视化表达[D].合肥工业大学,2021.DOI: 10.27101/d.cnki.ghfgu.2021.000991.
      王成彬,王明果,王博,等.融合知识图谱的矿产资源定量预测[J].地学前缘,2024,31(04):26-36.DOI: 10.13745/j.esf.sf.2024.5.3.
      王红,张青青,蔡伟伟,等.基于Neo4j的领域本体存储方法研究[J].计算机应用研究,2017,34(08):2404-2407.
      王乃钰,叶育鑫,刘露,等.基于深度学习的语言模型研究进展[J].软件学报,2021,32(04):1082-1115.DOI: 10.13328/j.cnki.jos.006169.
      王晴,黄进,刘鑫,等.成果地质资料知识图谱构建与可视化[J].计算机系统应用,2022,31(08):140-145.DOI: 10.15888/j.cnki.csa.008637.
      吴润泽,李浩,梅红波,等.基于知识图谱检索增强生成的滑坡监测预警系统[J].地球科学,2025,50(10):4125-4136.
      吴占伟,黄炳香,赵兴龙,等.我国煤系共伴生矿产赋存特征及分布规律[J].采矿与安全工程学报,2024,41(01):29-46.DOI: 10.13545/j.cnki.jmse.2023.0479.
      谢腾,杨俊安,刘辉.基于BERT-BiLSTM-CRF模型的中文实体识别[J].计算机系统应用,2020,29(07):48-55.DOI: 10.15888/j.cnki.csa.007525.
      徐浩然,向阳,丁玲.基于大语言模型知识增强和多特征融合的中文命名实体识别方法[J/OL].北京航空航天大学学报,1-12[2025-06-28].https://doi.org/10.13700/j.bh.1001-5965.2024.0421.
      杨慧,盛业华,温永宁,等.Web环境下异构地理分析模型的标准化和形式化研究[J].地球信息科学,2008,(03):382-389.
      杨军.基于APM的应用性能管理系统的设计与实现[D].南京大学,2020.DOI: 10.27235/d.cnki.gnjiu.2020.002191.
      杨秀璋.实体和属性对齐方法的研究与实现[D].北京理工大学,2016.
      叶育鑫,刘家文,曾婉馨,等.基于本体指导的矿产预测知识图谱构建研究[J].地学前缘,2024,31(04):16-25.DOI: 10.13745/j.esf.sf.2024.5.4.
      张宝一,唐嘉成,张彤蕴,等.大语言模型赋能的地质找矿知识图谱与问答模型构建[J/OL].地球科学,1-24[2025-10-10].https://doi.org/10.3799/dqkx.2025.176.
      张前龙,周永章,郭兰萱,等.找矿知识图谱的智能化应用:以钦杭成矿带斑岩铜矿为例[J].地学前缘,2024,31(04):7-15.DOI: 10.13745/j.esf.sf.2024.5.2.
      赵鹏大.地质大数据特点及其合理开发利用[J].地学前缘,2019,26(04):1-5.DOI: 10.13745/j.esf.sf.2018.9.8.
      赵汀,刘超,李厚民,等.矿产资源国情调查中数据挖掘创新应用与知识图谱构建[J/OL].地学前缘,1-14[2025-07-16].https://doi.org/10.13745/j.esf.sf.2024.11.66.
      周成虎,王华,王成善,等.大数据时代的地学知识图谱研究[J].中国科学:地球科学,2021,51(07):1070-1079.
      周永章,张前龙,黄永健,等.钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J].地学前缘,2021,28(03):67-75.DOI: 10.13745/j.esf.sf.2021.1.2.
      周永章,肖凡.管窥人工智能与大数据地球科学研究新进展[J].地学前缘,2024,31(04):1-6.DOI: 10.13745/j.esf.sf.2024.6.99.
      庄子浩,焦守龙,孙琛皓.基于BERT-BiLSTM-CRF模型的地质领域实体识别研究[J].计算机与数字工程,2024,52(06):1815-1820+1876.
      左仁广.基于数据科学的矿产资源定量预测的理论与方法探索[J].地学前缘,2021,28(03):49-55.DOI: 10.13745/j.esf.sf.2020.12.1.
      Bilenchi, I., Gramegna, F., Loseto, G., et al. Cowl: Pushing OWL 2 over the Edge [J]. Internet of Things, 2025, 29: 101439. DOI: 10.1016/j.iot.2024.101439.
      Bull, L., Worden, K., Manson, G., et al. Active Learning for Semi-Supervised Structural Health Monitoring [J]. Journal of Sound and Vibration, 2018, 437: 373–388. DOI: 10.1016/j.jsv.2018.08.040.
      Chen, W., Wu, Y.Z., Chen, W.L., et al. Automatic Keyword Extraction Based on BiLSTM-CRF [J]. Computer Science, 2018, 45(S1): 91-96+113.
      Du, M.X., Gao, B.Y., Wang, S.Z., et al. Design and Implementation of Time Metrology Vocabulary Ontology [J]. Electronics, 2024, 13(14): 2828. DOI: 10.3390/electronics13142828.
      E, H.H., Zhang, W.J., Xiao, S.Q., et al. Survey of Entity Relationship Extraction Based on Deep Learning [J]. Journal of Software, 2019, 30(06): 1793-1818. DOI: 10.13328/j.cnki.jos.005817.
      Han, W.; Zhang, Z.K.; Lei, X.Y.; et al. Construction and Application of the “Rock-Mineral-Spectrum” Knowledge Graph Based on Multi-source Fusion. Earth Sci. 2025, 1-18. https://link.cnki.net/urlid/42.1874.P.20251010.1336.006
      Ju, J.H., Wan, H., Han, J. Overview of Characteristics and Comprehensive Evaluation points of Associated Mineral Resources in China [J]. China Mining Magazine, 2024, 33(12): 17-23.
      Li, D.M., Zhang, Y., Li, D.Y., et al. Review of Entity Relation Extraction Methods [J]. Journal of Computer Research and Development, 2020, 57(07): 1424-1448.
      Li, J., Sun, A.X., Han, J.L., et al. A Survey on Deep Learning for Named Entity Recognition [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. DOI: 10.1109/TKDE.2020.2981314.
      Liao, Z.X. The Construction and Application of Knowledge Graph for Geology [D]. University of Electronic Science and Technology of China, 2021. DOI: 10.27005/d.cnki.gdzku.2021.004734.
      Meng, F., Yang, S., Wang, J., et al. Creating Knowledge Graph of Electric Power Equipment Faults Based on BERT–BiLSTM–CRF Model [J]. Journal of Electrical Engineering & Technology, 2022, 17: 2507-2516. DOI: 10.1007/s42835-022-01032-3.
      Pérez, J., Díaz, J., Garcia-Martin, J., et al. Systematic literature reviews in software engineering—enhancement of the study selection process using Cohen’s Kappa statistic [J]. Journal of Systems and Software, 2020, 168: 110657. DOI: 10.1016/j.jss.2020.110657.
      Qiu, Q., Xie, Z., Wu, L., et al. BiLSTM-CRF for Geological Named Entity Recognition from the Geoscience Literature [J]. Earth Science Informatics, 2019, 12: 565–579. DOI: 10.1007/s12145-019-00390-3.
      Qiu, Y.C. Design and Application of Knowledge Graph Visualization Platform [D]. Beijing University of Posts and Telecommunications, 2021. DOI: 10.26969/d.cnki.gbydu.2021.003211.
      Tian, L., Zhang, J.C., Zhang, J.H., et al. Knowledge Graph Survey: Representation, Construction, Reasoning and Knowledge Hypergraph Theory [J]. Journal of Computer Applications, 2021, 41(08): 2161-2186.
      Wang, C. Extraction of Spatiotemporal Attributes Information of Gold Mines and Visual Expression of Knowledge Graphs for Chinese Literature [D]. Hefei University of Technology, 2021. DOI: 10.27101/d.cnki.ghfgu.2021.000991.
      Wang, C.B., Wang, M.G., Wang, B., et al. Knowledge Graph-infused Quantitative Mineral Resource forecasting [J]. Earth Science Frontiers, 2024, 31(04): 26-36. DOI: 10.13745/j.esf.sf.2024.5.3.
      Wang, H., Zhang, Q.Q., Cai, W.W., et al. Research on Storage Method of Domain Ontology Based on Neo4j [J]. Application Research of Computers, 2017, 34(08): 2404-2407.
      Wang, N.Y., Ye, Y.X., Liu, L., et al. Language Models Based on Deep Learning: A Review [J]. Journal of Software, 2021, 32(04): 1082-1115. DOI: 10.13328/j.cnki.jos.006169.
      Wang, Q., Huang, J., Liu, X., et al. Construction and Visualization of Knowledge Graph of Geological Report [J]. Computer Systems & Applications, 2022, 31(08): 140-145. DOI: 10.15888/j.cnki.csa.008637.
      Wu, R.Z.; Li, H.; Mei, H.B.; et al. A Landslide Monitoring and Early Warning System with Retrieval-Augmented Generation Enhanced by Knowledge Graph. Earth Sci. 2025, 50(10), 4125-4136.
      Wu, Z.W., Huang, B.X., Zhao, X.L., et al. Occurrence Characteristics and Distribution of Paragenetic Commercial Minerals and Associated Minerals in Coal-bearing strata in China [J]. Journal of Mining & Safety Engineering, 2024, 41(01): 29-46. DOI: 10.13545/j.cnki.jmse.2023.0479.
      Xie, T., Yang, J.A., Liu, H. Chinese Entity Recognition Based on BERT-BiLSTM-CRF Model [J]. Computer Systems & Applications, 2020, 29(07): 48-55. DOI: 10.15888/j.cnki.csa.007525.
      Xu, H.R., Xiang, Y., Ding, L. Chinese Named Entity Recognition Method Based on Knowledge Enhancement from Large Language Models and Multi-feature Fusion [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-12 [2025-06-28]. https://doi.org/10.13700/j.bh.1001-5965.2024.0421.
      Yang, H., Sheng, Y.H., Wen, Y.N., et al. Research on Standardization and Formalization of Heterogeneous Geo-analysis Models in Web Space [J]. Geo-Information Science, 2008, (03): 382-389.
      Yang, J. Design and Implementation of Application Performance Management System Based on APM [D]. Nanjing University, 2020. DOI: 10.27235/d.cnki.gnjiu.2020.002191.
      Yang, X.Z. Research and Implementation of Entity Alignment and Attribute Alignment [D]. Beijing Institute of Technology, 2016.
      Ye, Y.X., Liu, J.W., Zeng, W.X., et al. Ontology-guided Knowledge Graph Research Construction for Mineral Predicts [J]. Earth Science Frontiers, 2024, 31(04): 16-25. DOI: 10.13745/j.esf.sf.2024.5.4.
      Yin, Q., Zhou, Y., Rao, J.Y. An intelligent prediction method for surface settlement of shield tunnel construction based on CNN-BiLSTM-SA [J]. KSCE Journal of Civil Engineering, 2025, 29(4): 100061. DOI: 10.1016/j.kscej.2024.100061.
      Yu, F., Wang, M.G., Wang, C.B., et al. GeoMinLM: A Large Language Model in Geology and Mineral Survey in Yunnan Province [J]. Ore Geology Reviews, 2025, 182: 106638. DOI: 10.1016/j.oregeorev.2025.106638.
      Zhang, B.Y., Tang, J.C., Zhang, T.Y., et al. Knowledge Graph and Question-Answering Model for Geological Prospecting Empowered by Large Language Models [J/OL]. Earth Science, 1-24 [2025-10-10]. https://doi.org/10.3799/dqkx.2025.176.
      Zhang, L., Lobov, A. Semantic Web Rule Language-based Approach for Implementing Knowledge-Based Engineering Systems [J]. Advanced Engineering Informatics, 2024, 62(Part A): 102587. DOI: 10.1016/j.aei.2024.102587.
      Zhang, Q.L., Zhou, Y.Z., Guo, L.X., et al. Intelligent Application of Knowledge Graphs in Mineral Prospecting: A Case Study of Porphyry Copper Deposits in the Qin-Hang Metallogenic Belt [J]. Earth Science Frontiers, 2024, 31(04): 7-15. DOI: 10.13745/j.esf.sf.2024.5.2.
      Zhao, P.D. Characteristics and Rational Utilization of Geological Big Data [J]. Earth Science Frontiers, 2019, 26(04): 1-5. DOI: 10.13745/j.esf.sf.2018.9.8.
      Zhao, T., Liu, C., Li, H.M., et al. Geological Mineral Data Mining and Knowledge Graph Construction in Mineral Resources National Survey [J/OL]. Earth Science Frontiers, 1-14 [2025-07-16]. https://doi.org/10.13745/j.esf.sf.2024.11.66.
      Zhou, C.H., Wang, H., Wang, C.S., et al. Geoscience Knowledge Graph in the Big Data Era [J]. Science China Earth Sciences, 2021, 51(07): 1070-1079.
      Zhou, Y.Z., Zhang, Q.L., Huang, Y.J., et al. Constructing Knowledge Graph for the Porphyry Copper Deposits in the Qingzhou-Hangzhou Bay Area:Insight into Knowledge Graph based Mineral Resource Prediction and Evaluation [J]. Earth Science Frontiers, 2021, 28(03): 67-75. DOI: 10.13745/j.esf.sf.2021.1.2.
      Zhou, Y.Z., Xiao, F. A Glimpse of the Latest Advances in Artificial Intelligence and Big Data Geoscience Research [J]. Earth Science Frontiers, 2024, 31(04): 1-6. DOI: 10.13745/j.esf.sf.2024.6.99.
      Zhuang, Z.H., Jiao, S.L., Sun, C.H. Named Entity Recognition in Geological Field Based on BERT-BiLSTM-CRF [J]. Computer & Digital Engineering, 2024, 52(06): 1815-1820+1876.
      Zuo, R.G. Data Science-based Theory and Method for Quantitative Prediction of Mineral Resources [J]. Earth Science Frontiers, 2021, 28(03): 49-55. DOI: 10.13745/j.esf.sf.2020.12.1.
    • 加载中
    计量
    • 文章访问数:  21
    • HTML全文浏览量:  0
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-10-15

    目录

      /

      返回文章
      返回