|
Argus,D. F.,Y. Fu.,F. W. Landerer.,et al.,2014. Seasonal Variation in Total Water Storage in California Inferred from GPS Observations of Vertical Land Motion. Geophysical Research Letters,41(6): 1971–1980. https://doi.org/10.1002/2014GL059570 |
|
Cao,J.,Xiao,Y.,Long,D.,et al.,2024. Combined Gravity Satellite and Water Well Information to Monitor Groundwater Storage Changes in the North China Plain. Geomatics and Information Science of Wuhan University,49(5): 805–818. https://doi.org/10.13203/j.whugis20230116 |
|
Carlson,G.,Werth,S.,Shirzaei,M.,et al.,2022. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California. Journal of Geophysical Research: Solid Earth,127(3): e2021JB023135. https://doi.org/10.1029/2021JB023135 |
|
Castellazzi,P.,Longuevergne,L.,Martel,R.,et al.,2018. Quantitative Mapping of Groundwater Depletion at the Water Management Scale Using a Combined GRACE/InSAR Approach. Remote Sensing of Environment,205: 408-418. https://doi.org/10.1016/j.rse.2017.11.025 |
|
Chen,C.,Zou,R.,Cao,J. M.,et al.,2023. Comparative Analysis of Green's Function and Slepian's Basis Function for GNSS Inversion of Terrestrial Water Storage. Acta Geodaetica et Cartographica Sinica,52(12): 2066. https://doi.org/10.11947/j.AGCS.2023.20220624 (in Chinese with English abstract). |
|
Cheng,S.,Yuan,L. G.,Jiang,Z.,S.,et al.,2021. Investigating terrestrial water storage change in Sichuan, Yunnan and Chongqing using Slepian basis functions. Chinese Journal of Geophysics (in Chinese),64(4): 1167-1180. https://doi.org/10.6038/cjg2021O0194 (in Chinese with English abstract). |
|
Deng,L. S.,Chen,Q. S.,Liao,F. F.,et al.,2025. Response of GNSS Vertical Displacements to Hydrological Loading: Deformation Patterns and Terrestrial Water Storage Variations over China’s Mainland. Hydrological Sciences Journal,1–17. https://doi.org/10.1080/02626667.2025.2548298 |
|
Farrell,W.,et al.,1972. Deformation of the Earth by Surface Loads. Reviews of Geophysics,10(3): 761–797. https://doi.org/10.1029/RG010i003p00761 |
|
Guo,Q.,Huang,Y.,Grana,D.,et al.,2025. Coupled Inversion of Elastic-Seismic Data for Petrophysical and Pore-Geometry Properties. Geophysics,90(5): 1–74. https://doi.org/10.1190/geo2024-0782.1 |
|
Han,J. C.,Chen,S.,Lu,H. Y.,et al.,2021. Time-variable gravity field determination using Slepian functions and terrestrial measurements: A case study in North China with data from 2011 to 2013. Chinese J. Geophys. (in Chinese),64(5): 1542-1557. https://doi.org/10.6038/cjg2021O0240 (in Chinese with English abstract). |
|
Han,S. C.,Razeghi,S. M.,et al.,2017. GPS Recovery of Daily Hydrologic and Atmospheric Mass Variation: a Methodology and Results from the Australian Continent. Journal of Geophysical Research: Solid Earth,122(11): 9328–9343. https:/doi.org/10.1002/2017JB014603 |
|
Han,Y. H.,Ma,Z. G.,Li,M. X.,2024. Change Characteristics and Influencing Factors of Terrestrial Water Storage in the Beijing–Tianjin–Hebei Region in the Past 20 Years. Climatic and Environmental Research,29 (5): 519−533. https:/doi.org/10.3878/j.issn.1006-9585.2024.23076 (in Chinese with English abstract). |
|
Hu,F. M.,Liang,B. J.,Yang,G.,et al.,2025. Evaluation of Groundwater Storage Variability and Relationship with Hydrometeorological Factors in the Huang-Huai-Hai Plain,China,Using GRACE and GLDAS Data (2002–2023). Journal of Hydrology: Regional Studies,60: 102540. https://doi.org/10.1016/j.ejrh.2025.102540 |
|
Huo,L. T.,Wang,B. X.,Pan,Z. H.,et al.,2020. Environmental Impact by Surface-Water Recharge of Groundwater in Beijing Mihuaishun Replenishment Area - Correspondence Analysis. Journal of Beijing Normal University(Natural Science),56(2): 195-203. https://doi.org/10.12202/j.0476-0301.2020058 (in Chinese with English abstract). |
|
Knappe,E.,Bendick,R.,Martens,H.,et al.,2019. Downscaling Vertical GPS Observations to Derive Watershed‐Scale Hydrologic Loading in the Northern Rockies. Water Resources Research,55(1): 391–401. https://doi.org/10.1029/2018WR023289 |
|
Kuang,X. X.,Liu,J. G.,Scanlon,B. R.,et al.,2024. The Changing Nature of Groundwater in the Global Water Cycle. Science,383(6686): eadf0630. https://doi.org/10.1126/science.adf0630 |
|
Li,X. P.,Zhong,B.,Li,J. C.,et al.,2023. Inversion of GNSS vertical displacements for terrestrial water storage changes using Slepian basis functions. Earth and Space Science,10(2): e2022EA002608. https://doi.org/10.1029/2022EA002608 |
|
Liu,N.,Dai,W. J.,Santerre,R.,et al.,2018. A MATLAB-based Kriged Kalman Filter Software for Interpolating Missing Data in GNSS Coordinate Time Series. GPS Solut,22(25). https://doi.org/10.1007/s10291-017-0689-3 |
|
Liu,R. L.,Zhong,B.,Li,X. P.,et al.,2022. Analysis of groundwater changes (2003–2020) in the North China Plain using geodetic measurements. Journal of Hydrology: Regional Studies,41: 101085. https://doi.org/10.1016/j.ejrh.2022.101085 |
|
Luo,Z. J.,Wang,X.,Dai,J.,et al.,2024. Influence of Land Subsidence on Minable Groundwater Resources. Earth Science,49(1): 238-252. https://doi.org/10.3799/dqkx.2022.143 (in Chinese with English abstract). |
|
Qi,Y. Q.,Luo,J. M.,Gao,Y.,et al.,2022. Crop Production and Agricultural Water Consumption in the Beijing-Tianjin-Hebei Region: History and Water-Adapting Routes. Chinese Journal of Eco-Agriculture,30(5): 713−722. https://doi.org/10.12357/cjea.20210726 (in Chinese with English abstract). |
|
Sherpa,S. F.,Werth,S.,et al.,2025. Investigating the Influence of Climate Seasonality o n Glacier Mass Changes in High Mountain Asia via GRACE Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,18: 20545-20562. https://doi.org/10.1109/JSTARS.2025.3595165 |
|
Sun,Y.,Riva,R.,Ditmar,P.,et al.,2016 Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models. Journal of Geophysical Research: Solid Earth,121(11): 8352-8370. https://doi.org/10.1002/2016JB013073 |
|
Swenson,S.,Chambers,D.,Wahr,J.,et al.,2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth,113(B8). https://doi.org/10.1029/2007JB005338 |
|
Tapley,B. D.,Watkins,M. M.,Flechtner,F.,et al.,2019. Contributions of GRACE to Understanding Climate Change. Nature climate change,9(5): 358–369. https://doi.org/10.1038/s41558-019-0456-2 |
|
Wang,F.,Lai,H. X.,Li,Y. B.,et al.,2022. Identifying the Status of Groundwater Drought from a GRACE Mascon Model Perspective across China during 2003–2018. Agricultural Water Management,260: 107251. https://doi.org/10.1016/j.agwat.2021.107251 |
|
Wang,Y. T.,Li,J. X.,Xue,X. B.,et al.,2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science,46(1): 308-320. https://doi.org/10.3799/dqkx.2019.261 (in Chinese with English abstract). |
|
Wahr,J.,Molenaar,M.,Bryan,F.,et al.,1998. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth,103(B12): 30205-30229. https://doi.org/10.1029/98JB02844 |
|
Yan,L. J.,Lu,C. Y.,Sun,Q. Y.,et al.,2025. Influence of the Middle Route of the South-To-North Water Diversion Project on Water Balance in the Beijing-Tianjin-Hebei Region. Advances in Water Science. (in Chinese with English abstract). |
|
Yang,H. F.,Cao,W. G.,Zhi,C. S.,et al.,2021. Evolution of Groundwater Level in the North China Plain in the Past 40 Years and Suggestions on Its Overexploitation Treatment. Geology in China,48(4): 1142-1155. https://doi.org/10.12029/gc20210411 (in Chinese with English abstract). |
|
Yang,Y. T.,Cai,Y.,Chen,L.,et al,2022. SBAS-InSAR Monitoring and Analysis of Surface Deformation in Xingtai City from 2019 to 2021. Geomatics Science and Technology,10: 230–238. https://doi.org/10.12677/gst.2022.104024 |
|
Yin,W. J.,Hu,L. T.,Zheng,W.,et al.,2020. Assessing Underground Water Exchange between Regions Using GRACE Data. Journal of Geophysical Research: Atmospheres,125(17): e2020JD032570. https://doi.org/10.1029/2020JD032570 |
|
Zhai,Y. Z.,Cui,Y. H.,Zhu,G. H.,et al.,2025. The Mystery of Sustainable Development Mode for Groundwater. Earth Science,50(6): 2457-2460. https://doi.org/10.3799/dqkx.2025.037 (in Chinese). |
|
Zhu,L.,Gong,H. L.,Li,X. J.,et al.,2024. Research Progress and Prospect of Land Subsidence. Hydrogeology & Engineering Geology,51(4): 167-177. https://doi.org/10.16030/j.cnki.issn.1000-3665.202212043 (in Chinese with English abstract). |
|
Zou,X. C.,Jin,T. Y.,Zhu,G. B.,et al.,2016. Research on the MASCON Method for the Determination of Local Surface Mass Flux with Satellite-Satellite Tracking Technique. Chinese Journal of Geophysics,59(12): 4623-4632. https://doi.org/10.6038/cjg20161223 (in Chinese with English abstract). |
|
陈超,邹蓉,曹家铭,等,2023. 陆地水GNSS反演的格林函数和Slepian基函数比较分析. 测绘学报,52(12): 2066. |
|
成帅,袁林果,姜中山,等,2021. 应用 GPS 数据和 Slepian 基函数反演川云渝地区陆地水储量变化. 地球物理学报,64(4): 1167–1180. |
|
韩建成,陈石,卢红艳,等,2021. 基于Slepian方法和地面重力观测确定时变重力场模型: 以 2011—2013 年华北地区数据为例. 地球物理学报,64(5): 1542-1557. |
|
韩云环,马柱国,李明星,等,2024. 近20年京津冀陆地水储量变化特征及其影响因子分析. 气候与环境研究,29(5): 519–533. |
|
霍丽涛,王博欣,潘增辉,等,2020. 基于对应分析法的北京密怀顺地区地表水回补地下水环境影响评价. 北京师范大学学报 (自然科学版),56(2): 195–203. |
|
骆祖江,王鑫,代敬,等,2024. 地面沉降对地下水可采资源的影响. 地球科学,49(1): 238–252. |
|
齐永青,罗建美,高雅,等,2022. 京津冀地区农业生产与水资源利用: 历史与适水转型. 中国生态农业学报,30(5): 713–722. |
|
王雨婷,李俊霞,薛肖斌,等,2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学,46(1): 308–320. |
|
严聆嘉,陆垂裕,孙青言,等,2025. 南水北调中线工程对京津冀水量平衡的影响. 水科学进展. |
|
杨会峰,曹文庚,支传顺,等,2021. 近40年来华北平原地下水位演变研究及其超采治理建议. 中国地质,48(4): 1142–1155. |
|
朱琳,宫辉力,李小娟,等,2024. 区域地面沉降研究进展与展望. 水文地质工程地质,51(4): 167–177. |
|
邹贤才,金涛勇,朱广彬,等,2016. 卫星跟踪卫星技术反演局部地表物质迁移的MASCON方法研究. 地球物理学报,59(12): 4623–4632. |
|
翟远征,崔一涵,朱冠华,等,2025. 地下水可持续发展模式之谜. 地球科学,50(6): 2457–2460. |