• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    邹蓉, 秦旭, 杨凡, 陈超, 曹家铭, 汪超, 王琪, 2025. 联合GNSS、GRACE与测井资料监测京津冀地下水储量时空变化. 地球科学. doi: 10.3799/dqkx.2025.270
    引用本文: 邹蓉, 秦旭, 杨凡, 陈超, 曹家铭, 汪超, 王琪, 2025. 联合GNSS、GRACE与测井资料监测京津冀地下水储量时空变化. 地球科学. doi: 10.3799/dqkx.2025.270

    联合GNSS、GRACE与测井资料监测京津冀地下水储量时空变化

    doi: 10.3799/dqkx.2025.270
    基金项目: 

    国家自然科学基金(No:42274009,42474006)

    中国大陆构造环境监测网络项目(No:CMONOC2025-1-5)

    详细信息
      作者简介:

      邹蓉(1980-),女,副教授,研究方向为水文过程与地壳形变的相互作用。ORCID:0000-0002-8415-9478. Email: zourong@cug.edu.cn

    • 中图分类号: P341

    • 摘要: 京津冀地区因地下水长期超采,已引发一系列地质与生态问题。为精准监测该区域地下水的时空变化,本文基于GRACE、GNSS与实测水井数据,反演2011—2020年京津冀地下水储量变化,并探讨了南水北调工程与人为用水对地下水的影响。GRACE反演结果与760口实测井水位数据相关性高达0.86,反演结果可靠;京津冀地下水位下降速率分别为-13.1 mm/a、-12.9 mm/a和-16.4 mm/a,其中邯郸—邢台一带地下水储量亏损最为严重,最大亏损速率高达-40 mm/a;GNSS垂向位移显示,2018年后GNSS基岩站隆升速率减缓,土层站沉降速率减缓,共同印证地下水亏损态势有所缓解。本文系统分析了京津冀地区近10年来地下水持续亏损的情况,揭示了2018年后地下水亏损情况好转的主因是农业用水的减少而不是南水北调工程,为科学评估与合理利用地下水提供有力支撑。

       

    • Argus,D. F.,Y. Fu.,F. W. Landerer.,et al.,2014. Seasonal Variation in Total Water Storage in California Inferred from GPS Observations of Vertical Land Motion. Geophysical Research Letters,41(6): 1971–1980. https://doi.org/10.1002/2014GL059570
      Cao,J.,Xiao,Y.,Long,D.,et al.,2024. Combined Gravity Satellite and Water Well Information to Monitor Groundwater Storage Changes in the North China Plain. Geomatics and Information Science of Wuhan University,49(5): 805–818. https://doi.org/10.13203/j.whugis20230116
      Carlson,G.,Werth,S.,Shirzaei,M.,et al.,2022. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California. Journal of Geophysical Research: Solid Earth,127(3): e2021JB023135. https://doi.org/10.1029/2021JB023135
      Castellazzi,P.,Longuevergne,L.,Martel,R.,et al.,2018. Quantitative Mapping of Groundwater Depletion at the Water Management Scale Using a Combined GRACE/InSAR Approach. Remote Sensing of Environment,205: 408-418. https://doi.org/10.1016/j.rse.2017.11.025
      Chen,C.,Zou,R.,Cao,J. M.,et al.,2023. Comparative Analysis of Green's Function and Slepian's Basis Function for GNSS Inversion of Terrestrial Water Storage. Acta Geodaetica et Cartographica Sinica,52(12): 2066. https://doi.org/10.11947/j.AGCS.2023.20220624 (in Chinese with English abstract).
      Cheng,S.,Yuan,L. G.,Jiang,Z.,S.,et al.,2021. Investigating terrestrial water storage change in Sichuan, Yunnan and Chongqing using Slepian basis functions. Chinese Journal of Geophysics (in Chinese),64(4): 1167-1180. https://doi.org/10.6038/cjg2021O0194 (in Chinese with English abstract).
      Deng,L. S.,Chen,Q. S.,Liao,F. F.,et al.,2025. Response of GNSS Vertical Displacements to Hydrological Loading: Deformation Patterns and Terrestrial Water Storage Variations over China’s Mainland. Hydrological Sciences Journal,1–17. https://doi.org/10.1080/02626667.2025.2548298
      Farrell,W.,et al.,1972. Deformation of the Earth by Surface Loads. Reviews of Geophysics,10(3): 761–797. https://doi.org/10.1029/RG010i003p00761
      Guo,Q.,Huang,Y.,Grana,D.,et al.,2025. Coupled Inversion of Elastic-Seismic Data for Petrophysical and Pore-Geometry Properties. Geophysics,90(5): 1–74. https://doi.org/10.1190/geo2024-0782.1
      Han,J. C.,Chen,S.,Lu,H. Y.,et al.,2021. Time-variable gravity field determination using Slepian functions and terrestrial measurements: A case study in North China with data from 2011 to 2013. Chinese J. Geophys. (in Chinese),64(5): 1542-1557. https://doi.org/10.6038/cjg2021O0240 (in Chinese with English abstract).
      Han,S. C.,Razeghi,S. M.,et al.,2017. GPS Recovery of Daily Hydrologic and Atmospheric Mass Variation: a Methodology and Results from the Australian Continent. Journal of Geophysical Research: Solid Earth,122(11): 9328–9343. https:/doi.org/10.1002/2017JB014603
      Han,Y. H.,Ma,Z. G.,Li,M. X.,2024. Change Characteristics and Influencing Factors of Terrestrial Water Storage in the Beijing–Tianjin–Hebei Region in the Past 20 Years. Climatic and Environmental Research,29 (5): 519−533. https:/doi.org/10.3878/j.issn.1006-9585.2024.23076 (in Chinese with English abstract).
      Hu,F. M.,Liang,B. J.,Yang,G.,et al.,2025. Evaluation of Groundwater Storage Variability and Relationship with Hydrometeorological Factors in the Huang-Huai-Hai Plain,China,Using GRACE and GLDAS Data (2002–2023). Journal of Hydrology: Regional Studies,60: 102540. https://doi.org/10.1016/j.ejrh.2025.102540
      Huo,L. T.,Wang,B. X.,Pan,Z. H.,et al.,2020. Environmental Impact by Surface-Water Recharge of Groundwater in Beijing Mihuaishun Replenishment Area - Correspondence Analysis. Journal of Beijing Normal University(Natural Science),56(2): 195-203. https://doi.org/10.12202/j.0476-0301.2020058 (in Chinese with English abstract).
      Knappe,E.,Bendick,R.,Martens,H.,et al.,2019. Downscaling Vertical GPS Observations to Derive Watershed‐Scale Hydrologic Loading in the Northern Rockies. Water Resources Research,55(1): 391–401. https://doi.org/10.1029/2018WR023289
      Kuang,X. X.,Liu,J. G.,Scanlon,B. R.,et al.,2024. The Changing Nature of Groundwater in the Global Water Cycle. Science,383(6686): eadf0630. https://doi.org/10.1126/science.adf0630
      Li,X. P.,Zhong,B.,Li,J. C.,et al.,2023. Inversion of GNSS vertical displacements for terrestrial water storage changes using Slepian basis functions. Earth and Space Science,10(2): e2022EA002608. https://doi.org/10.1029/2022EA002608
      Liu,N.,Dai,W. J.,Santerre,R.,et al.,2018. A MATLAB-based Kriged Kalman Filter Software for Interpolating Missing Data in GNSS Coordinate Time Series. GPS Solut,22(25). https://doi.org/10.1007/s10291-017-0689-3
      Liu,R. L.,Zhong,B.,Li,X. P.,et al.,2022. Analysis of groundwater changes (2003–2020) in the North China Plain using geodetic measurements. Journal of Hydrology: Regional Studies,41: 101085. https://doi.org/10.1016/j.ejrh.2022.101085
      Luo,Z. J.,Wang,X.,Dai,J.,et al.,2024. Influence of Land Subsidence on Minable Groundwater Resources. Earth Science,49(1): 238-252. https://doi.org/10.3799/dqkx.2022.143 (in Chinese with English abstract).
      Qi,Y. Q.,Luo,J. M.,Gao,Y.,et al.,2022. Crop Production and Agricultural Water Consumption in the Beijing-Tianjin-Hebei Region: History and Water-Adapting Routes. Chinese Journal of Eco-Agriculture,30(5): 713−722. https://doi.org/10.12357/cjea.20210726 (in Chinese with English abstract).
      Sherpa,S. F.,Werth,S.,et al.,2025. Investigating the Influence of Climate Seasonality o n Glacier Mass Changes in High Mountain Asia via GRACE Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,18: 20545-20562. https://doi.org/10.1109/JSTARS.2025.3595165
      Sun,Y.,Riva,R.,Ditmar,P.,et al.,2016 Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models. Journal of Geophysical Research: Solid Earth,121(11): 8352-8370. https://doi.org/10.1002/2016JB013073
      Swenson,S.,Chambers,D.,Wahr,J.,et al.,2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth,113(B8). https://doi.org/10.1029/2007JB005338
      Tapley,B. D.,Watkins,M. M.,Flechtner,F.,et al.,2019. Contributions of GRACE to Understanding Climate Change. Nature climate change,9(5): 358–369. https://doi.org/10.1038/s41558-019-0456-2
      Wang,F.,Lai,H. X.,Li,Y. B.,et al.,2022. Identifying the Status of Groundwater Drought from a GRACE Mascon Model Perspective across China during 2003–2018. Agricultural Water Management,260: 107251. https://doi.org/10.1016/j.agwat.2021.107251
      Wang,Y. T.,Li,J. X.,Xue,X. B.,et al.,2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science,46(1): 308-320. https://doi.org/10.3799/dqkx.2019.261 (in Chinese with English abstract).
      Wahr,J.,Molenaar,M.,Bryan,F.,et al.,1998. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth,103(B12): 30205-30229. https://doi.org/10.1029/98JB02844
      Yan,L. J.,Lu,C. Y.,Sun,Q. Y.,et al.,2025. Influence of the Middle Route of the South-To-North Water Diversion Project on Water Balance in the Beijing-Tianjin-Hebei Region. Advances in Water Science. (in Chinese with English abstract).
      Yang,H. F.,Cao,W. G.,Zhi,C. S.,et al.,2021. Evolution of Groundwater Level in the North China Plain in the Past 40 Years and Suggestions on Its Overexploitation Treatment. Geology in China,48(4): 1142-1155. https://doi.org/10.12029/gc20210411 (in Chinese with English abstract).
      Yang,Y. T.,Cai,Y.,Chen,L.,et al,2022. SBAS-InSAR Monitoring and Analysis of Surface Deformation in Xingtai City from 2019 to 2021. Geomatics Science and Technology,10: 230–238. https://doi.org/10.12677/gst.2022.104024
      Yin,W. J.,Hu,L. T.,Zheng,W.,et al.,2020. Assessing Underground Water Exchange between Regions Using GRACE Data. Journal of Geophysical Research: Atmospheres,125(17): e2020JD032570. https://doi.org/10.1029/2020JD032570
      Zhai,Y. Z.,Cui,Y. H.,Zhu,G. H.,et al.,2025. The Mystery of Sustainable Development Mode for Groundwater. Earth Science,50(6): 2457-2460. https://doi.org/10.3799/dqkx.2025.037 (in Chinese).
      Zhu,L.,Gong,H. L.,Li,X. J.,et al.,2024. Research Progress and Prospect of Land Subsidence. Hydrogeology & Engineering Geology,51(4): 167-177. https://doi.org/10.16030/j.cnki.issn.1000-3665.202212043 (in Chinese with English abstract).
      Zou,X. C.,Jin,T. Y.,Zhu,G. B.,et al.,2016. Research on the MASCON Method for the Determination of Local Surface Mass Flux with Satellite-Satellite Tracking Technique. Chinese Journal of Geophysics,59(12): 4623-4632. https://doi.org/10.6038/cjg20161223 (in Chinese with English abstract).
      陈超,邹蓉,曹家铭,等,2023. 陆地水GNSS反演的格林函数和Slepian基函数比较分析. 测绘学报,52(12): 2066.
      成帅,袁林果,姜中山,等,2021. 应用 GPS 数据和 Slepian 基函数反演川云渝地区陆地水储量变化. 地球物理学报,64(4): 1167–1180.
      韩建成,陈石,卢红艳,等,2021. 基于Slepian方法和地面重力观测确定时变重力场模型: 以 2011—2013 年华北地区数据为例. 地球物理学报,64(5): 1542-1557.
      韩云环,马柱国,李明星,等,2024. 近20年京津冀陆地水储量变化特征及其影响因子分析. 气候与环境研究,29(5): 519–533.
      霍丽涛,王博欣,潘增辉,等,2020. 基于对应分析法的北京密怀顺地区地表水回补地下水环境影响评价. 北京师范大学学报 (自然科学版),56(2): 195–203.
      骆祖江,王鑫,代敬,等,2024. 地面沉降对地下水可采资源的影响. 地球科学,49(1): 238–252.
      齐永青,罗建美,高雅,等,2022. 京津冀地区农业生产与水资源利用: 历史与适水转型. 中国生态农业学报,30(5): 713–722.
      王雨婷,李俊霞,薛肖斌,等,2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学,46(1): 308–320.
      严聆嘉,陆垂裕,孙青言,等,2025. 南水北调中线工程对京津冀水量平衡的影响. 水科学进展.
      杨会峰,曹文庚,支传顺,等,2021. 近40年来华北平原地下水位演变研究及其超采治理建议. 中国地质,48(4): 1142–1155.
      朱琳,宫辉力,李小娟,等,2024. 区域地面沉降研究进展与展望. 水文地质工程地质,51(4): 167–177.
      邹贤才,金涛勇,朱广彬,等,2016. 卫星跟踪卫星技术反演局部地表物质迁移的MASCON方法研究. 地球物理学报,59(12): 4623–4632.
      翟远征,崔一涵,朱冠华,等,2025. 地下水可持续发展模式之谜. 地球科学,50(6): 2457–2460.
    • 加载中
    计量
    • 文章访问数:  15
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-10-30

    目录

      /

      返回文章
      返回