• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄健, 曾探, 王英凡, 张谱升, 贺美森, 2025. 耦合InSAR形变与稳定指数的降雨突发型滑坡早期识别. 地球科学. doi: 10.3799/dqkx.2025.272
    引用本文: 黄健, 曾探, 王英凡, 张谱升, 贺美森, 2025. 耦合InSAR形变与稳定指数的降雨突发型滑坡早期识别. 地球科学. doi: 10.3799/dqkx.2025.272
    HUANG Jian, ZENG Tan, WANG Ying Fan, ZHANG Pu Sheng, HE Mei Sen, 2025. Early Detection of Rainfall-Triggered Landslides Using InSAR and Stability Index. Earth Science. doi: 10.3799/dqkx.2025.272
    Citation: HUANG Jian, ZENG Tan, WANG Ying Fan, ZHANG Pu Sheng, HE Mei Sen, 2025. Early Detection of Rainfall-Triggered Landslides Using InSAR and Stability Index. Earth Science. doi: 10.3799/dqkx.2025.272

    耦合InSAR形变与稳定指数的降雨突发型滑坡早期识别

    doi: 10.3799/dqkx.2025.272
    基金项目: 

    国家重点研发项目(2022YFC3003200)

    四川省自然科学基金面上项目(2023NSFSC0264)

    详细信息
      作者简介:

      黄健(1984—),男,博士,教授,博士生导师,主要从事地质灾害风险量化评价与监测预警方面的研究工作。ORCID:0000-0001-9134-4391.Email: huangjian2013@cdut.edu.cn

      通讯作者:

      贺美森(1997一), 男, 硕士研究生,主要从事地质灾害风险评价方面的研究工作。Email:1258677041@qq.com

    • 中图分类号: P694

    Early Detection of Rainfall-Triggered Landslides Using InSAR and Stability Index

    • 摘要: 针对InSAR技术在短时强降雨诱发滑坡前兆识别中的不足,本文以四川理县西山村滑坡和黄泥坝子滑坡为研究对象,提出了一种耦合InSAR形变监测与SINMAP稳定性指数的降雨型突发滑坡早期识别方法。首先基于长期地表形变监测数据,通过可视性和测量敏感性分析定量评价InSAR的先验适用性;在低适用性区域,联合解析InSAR形变时序与稳定性指数时空演化特征,并构建时空交叉验证规则实现两类指标的有效融合与隐患综合判识。结果表明:西山村滑坡整体基本稳定,但降雨条件下前缘易发生局部失稳;黄泥坝子滑坡降雨敏感性强,但受几何畸变影响,InSAR难以捕捉其前兆变形。进一步利用该方法对2019年贵州鸡场镇降雨型突发滑坡进行重演验证,结果显示形变–稳定性指数耦合分析可有效识别InSAR单独监测难以发现的前兆信号,显著提升了降雨诱发突发滑坡的早期识别能力,为复杂地形区滑坡早期预警提供了新技术路径。

       

    • Berardino, P., Fornaro, G., Lanari, R., et al., 2002. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans Geosci Remote Sensing,40(11): 2375–2383. doi: 10.1109/TGRS.2002.803792
      Cigna, F., Bateson, L.B., Jordan, C.J., et al., 2014. Simulating SAR Geometric Distortions and Predicting Persistent Scatterer Densities for ERS-1/2 and ENVISAT C-Band SAR and InSAR Applications: Nationwide Feasibility Assessment to Monitor the Landmass of Great Britain with SAR Imagery. Remote Sensing of Environment, 152: 441-466. https://doi.org/10.1016/j.rse.2014.06.025
      Dai, K.R., Tie, Y.B., Xu, Q., et al., 2020. Early Identification of Potential Landslide Geohazards in Alpine-canyon Terrain Based on SAR Interferometry—a Case Study of the Middle Section of Yalong River. Journal of Radars, 9(3): 554–568. (in Chinese with English abstract).
      Duan,S.C., 2019. Strength Characteristics of Slip Soil and Stability of Huangnibazi Landslide in Li County, Sichuan. (Dissertation). Chengdu University of Technology, Chengdu.(in Chinese with English abstract)
      Feng, W.K., Dun, J.J., Yi, X.Y., et al., 2020. Deformation Analysis of Woda Village of old Landslide in Jinsha River Basin Using SBAS-InSAR Technology. Journal of Engineering Geology, 28(02):384-393.(in Chinese with English abstract)
      Guo, R., LI, S., Chen,Y.,et al., 2021. Identification and Monitoring Landslides in Longitudinal Range-Gorge Region with InSAR Fusion Integrated Visibility Analysis. Landslides, 18(2): 551–568.(in Chinese with English abstract)
      He, C.Y., Ju, N.P., Xie, M.L., et al.,2019. Application of InSAR Technology in Early Recognition of Geohazards. Journal of Xihua University( Natural Science Edition) , 38(01): 32-39.(in Chinese with English abstract)
      He, J.Y, Ju, N.P, Xie, M.Li, et.al.,2023. Comparison of InSAR Techniques for Identifying Geological Hazard Susceptibility in High Mountain and Gorge Areas. Earth Science, 48(11): 4295–4310.(in Chinese with English abstract)
      Kanayim.T, Sigrid.R, Helmut.E , et.al., 2015. ALOS/PALSAR InSAR Time-Series Analysis for Detecting Very Slow-Moving Landslides in Southern Kyrgyzstan. Remote Sensing, 7(7): 8973-8994.doi: 10.3390/rs70708973.
      Li, X.E., Zhou, L., Su, F.Z., et al., 2021. Application of InSAR Technology in Landslide Hazard:Progress and Prospects. National Remote Sensing Bulletin, 25(02): 614-629.(in Chinese with English abstract)
      Li, Z.H., Song, C., Yu, C., et al., 2019. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring:Challenges and Solutions. Geomatics.and.Information Science of Wuhan University,44(07): 967-979.(in Chinese with English abstract).
      Liao, M.S., Dong, J., Li, M.H., et al.,2021. Radar Remote Sensing for Potential Landslides Detection and Deformation Monitoring. National Remote Sensing Bulletin, 25(01): 332-341..(in Chinese with English abstract)
      Lin, W., Yin, K., Wang, N., et al., 2021. Landslide Hazard Assessment of Rainfall-induced Landslide Based on the CF-SINMAP Model: a Case Study from Wuling Mountain in Hunan Province, China. Nat Hazards, 106(1): 679–700. https://doi.org/10.1007/s11069-020-04483-x
      Lin,Q., 2016. Research on Structure Analysis and Stability Evaluation of Xishan Landslide in Li county, Sichuan. (Dissertation). Chengdu University of Technology, Chengdu.(in Chinese with English abstract)
      Liu, B., Hu, X., He, K. et al., 2022. Preliminary analyses of the Tiejiangwan landslide occurred on April 5, 2021 in HongyaCounty,SichuanProvince, China. Landslides, 19:2047–2051.doi: 10.1007/S10346-022-01906-7.
      Liu, P.Y., He, S.S., Wang, P.S., et al., 2022. Early Identification of Landslide Hazards in Mountainous Areas of Southwest China Using Ascending and Descending Orbit Sentinel-1A SBAS InSAR . Journal of Geodesy and Geodynamics, 42(9): 892–897.(in Chinese with English abstract)
      Notti, D., Herrera, G., Bianchini, S., et al., 2014. A Methodology for Improving Landslide Psi Data Analysis. .International Journal of Remote Sensing, 35(6): 2186-2214. doi: 10.1080/01431161.2014.889864
      Pack,R.T., Tarboton,D.G., Goodwin,C.N., 1998. The SINMAP Approach to Terrain Stability Mapping. Congress of the International Association of Engineering Geology. https://api.semanticscholar.org/CorpusID:17978986
      Rabonza, M.L., Felix, R.P., Lagmay, A.M.F.A. et al., 2016. Shallow landslide susceptibility mapping using high-resolution topography for areas devastated by super typhoon Haiyan. Landslides , 13: 201–210. https://doi.org/10.1007/s10346-015-0626-x
      Shi, G.L., Xu, L., Zhang, X.Y., et al.,2021. Monitoring Time Series Deformation of Xishancun Landslide with SBAS-InSAR. Science of Surveying and Mapping, 46(02): 93-98+105.(in Chinese with English abstract)
      Wang, D., Li, Y., Wang, Z., et al.,2022. Threat from above! Assessing the Risk from the Tonghua High-locality Landslide in Sichuan, China. Landslides, 19(3): 731–746. https://doi.org/10.1007/s10346-021-01836-w
      Wang, Y., Liu, D., Dong, J., et al., 2020. On the Applicability of Satellite SAR Interferometry to Landslide Hazards Detection in Hilly Areas: a Case Study of Shuicheng, Guizhou in Southwest China. Landslides,18(7): 2609–2619. https://doi.org/10.1007/s10346-021-01648-y
      Wu, H., Pei, X.J., Cui, S.H., et al., 2021. Study of Topographic and Geological Controls on Landslide Development and Distribution within Mountainous Regions Influenced by Strong Earthquakes. Chinese Journal of Rock Mechanics and Engineering, 40(05): 972-986.(in Chinese with English abstract)
      Xie, M.L., Zhao, J.J., Ju, N.P., et al., 2020. Research on Temporal and Spatial Evolution of Landslide Based on Multisource Data:A Case Study of Huangnibazi Landslide. Geomatics and Information Science of Wuhan University, 45(06): 923-932.(in Chinese with English abstract)
      Xu, Q., Lu, H.Y., Li, W.L., et al., 2022. Types of Potential Landslide and Corresponding Identification Technologies. Geomatics and Information Science of Wuhan University, 47(03): 377-387. (in Chinese with English abstract)
      Yan, Y.Q., Guo, C.B., Zhang, Y.S., et al,2021 Study on Thedeformation Characteristics of Xiongba ancient Landslide Based on SBAS-InSAR Method,Tibet,China. Acta Geologica Sinica, 95(11): 3556-3570.(in Chinese with English abstract).
      Zhao, W., Wang, R., Liu, X., et al., 2020. Field Survey of a Catastrophic High-speed Long-runout Landslide in Jichang Town, Shuicheng County, Guizhou, China, on July 23, 2019. Landslides,17(6): 1415–1427. https://doi.org/10.1007/s10346-020-01380-z
      Zheng, G., Xu, Q., Liu, X.W., et al., 2020. The Jichang Landslide on July 23,2019 in Shuicheng, Guizhou:Characteristics and Failure Mechanism. Journal of Engineering Geology, 28(03): 541-556.(in Chinese with English abstract)
      Zhuo, G.C., Dai, K.R., Zhou, F.J., et al., 2021. Monitoring Typical Construction Sites of Sichuan-Tibet Railway by InSAR and Intensive Distortion Analysis. Earth Science, 1-25.(in Chinese with English abstract).
      戴可人,铁永波,许强,等,2020. 高山峡谷区滑坡灾害隐患InSAR早期识别——以雅砻江中段为例.雷达学报,9(03):554-568.
      2019.理县黄泥坝子滑坡滑带土强度特性及稳定性分析(硕士学位论文).成都:成都理工大学,
      冯文凯,顿佳伟,易小宇,等,2020.基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析.工程地质学报,28(02):384-393.
      何朝阳,巨能攀,解明礼,2019.InSAR技术在地质灾害早期识别中的应用. 西华大学学报(自然科学版),38(01):32-39.
      何佳阳,巨能攀,解明礼,等,2023.高山峡谷地区地质灾害隐患InSAR识别技术对比.地球科学,48(11):4295-4310.
      解明礼,赵建军,巨能攀,等,2020,多源数据滑坡时空演化规律研究——以黄泥坝子滑坡为例[J].武汉大学学报(信息科学版),45(06):923-932.
      李晓恩,周亮,苏奋振,等,2021. InSAR技术在滑坡灾害中的应用研究进展.遥感学报,25(02):614-629.
      李振洪,宋闯,余琛,等,2019.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策. 武汉大学学报(信息科学版),44(07):967-979.
      廖明生,董杰,李梦华,等,2021.雷达遥感滑坡隐患识别与形变监测.遥感学报,25(01):332-341.
      林强, 2016. 理县西山村滑坡结构分析及稳定性评价(硕士学位论文).成都.成都理工大学.
      刘排英,贺少帅,王鹏生,等,2022,基于升降轨Sentinel-1A SBAS InSAR的西南山区滑坡隐患早期识别研究.大地测量与地球动力学,42(09):892-897.
      石固林,徐浪,张璇钰,等,2021.西山村滑坡时序 形变的SBAS-InSAR监测.测绘科学,46(02):93-98+105.
      吴昊,裴向军,崔圣华,等,2021.强震山区滑坡发育分布的地形地质控制作用研究.岩石力学与工程学报,40(05):972-986.
      许强,2020. 对滑坡监测预警相关问题的认识与思考.工程地质学报,28(02):360-374.
      许强,陆会燕,李为乐,等,2022.滑坡隐患类型与对应识别方法.武汉大学学报(信息科学版),47(03):377-387.
      闫怡秋,郭长宝,张永双,等,2021. 基于SBAS-InSAR技术的西藏雄巴古滑坡变形特征.地质学报,95(11):3556-3570.
      郑光,许强,刘秀伟,等,2020. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究.工程地质学报,28(03):541-556.
      卓冠晨,戴可人,周福军,等.川藏铁路典型工点InSAR监测及几何畸变精细判识.地球科学,2021,1-25.
    • 加载中
    计量
    • 文章访问数:  12
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-19

    目录

      /

      返回文章
      返回