|
Chang, Y., Ding, Y., Zhang, S., et al., 2024. Quantifying the Response of Runoff to Glacier Shrinkage and Permafrost Degradation in a Typical Cryospheric Basin on the Tibetan Plateau. CATENA, 242: 108124. https://doi.org/10.1016/j.catena.2024.108124 |
|
Chang, Q. X., 2020. Water Sources of Stream Runoff in Alpine Region and their Seasonal Variations: A Case Study of Hulugou Catchment in the Headwaters of the Heihe River (Dissertation). China University of Geosciences (in Chinese with English abstract). https://doi.org/10.27492/d.cnki.gzdzu.2019.000112 |
|
Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11):4196-4209 (in Chinese with English abstract). |
|
Chang, Q. X., Yang, Z. S., Li, F., et al., 2024. Research status and development trends of groundwater in cold regions: a bibliometric review. Journal of Glaciology and Geocryology, 46(1):298-311.https://doi.org/10.7522/j.issn.1000-0240.2024.0025 |
|
Chen, H., Chen, Y., Li, W., et al., 2019. Quantifying the Contributions of Snow/Glacier Meltwater to River Runoff in the Tianshan Mountains, Central Asia. Global and Planetary Change, 174: 47-57. https://doi.org/10.1016/j.gloplacha.2019.01.002 |
|
Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505 |
|
Chen, Y., Li, B., Fan, Y., et al., 2019. Hydrological and Water Cycle Processes of Inland River Basins in the Arid Region of Northwest China. Journal of Arid Land, 11(2): 161-179. https://doi.org/10.1007/s40333-019-0050-5 |
|
Chen, P., Jin, Z. W., Zhou, Y. J., et al., 2023. Characteristics of Water and Sediment Changes in the Source Region of Yangtze River from 2012 to 2021. Journal of Changjiang River Scientific Research Institute, 40(10): 180-185 (in Chinese with English abstract). |
|
Coles, A. E., 2017. Runoff generation over seasonally-frozen ground: trends, patterns, and processes (Dissertation). University of Saskatchewan. |
|
Eeckman, J., De Grenus, B., Miesen, F. M., et al., 2025. Multi-Instrumental Monitoring of Snowmelt Infiltration in Vallon de Nant, Swiss Alps. Hydrology and Earth System Sciences, 29(17): 4093–4107. https://doi.org/10.5194/hess-29-4093-2025 |
|
Fang, J., Yi, P., Stockinger, M., Xiong, L., et al. 2022. Investigation of factors controlling the runoff generation mechanism using isotope tracing in large-scale nested basins. Journal of Hydrology, 615: 128728. https://doi.org/10.1016/j.jhydrol.2022.128728 |
|
Francis, T. B., Schindler, D. E., Holtgrieve, G. W., et al., 2011. Habitat Structure Determines Resource Use by Zooplankton in Temperate Lakes. Ecology Letters, 14(4): 364-372. https://doi.org/10.1111/j.1461-0248.2011.01597.x |
|
Guo, L., Wang, G., Song, C., et al., 2025. Hydrological Changes Caused by Integrated Warming, Wetting, and Greening in Permafrost Regions of the Qinghai-Tibetan Plateau. Water Resources Research, 61(4): e2024WR038465. https://doi.org/10.1029/2024WR038465 |
|
He, B., Chang, J., Guo, A., et al., 2025. Spatial and Temporal Runoff Variability in Response to Climate Change in Alpine Mountains. Journal of Hydrology, 654: 132779. https://doi.org/10.1016/j.jhydrol.2025.132779 |
|
Hu, Y., Ma, R., Sun, Z., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai–Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022WR032426 |
|
Hu, Y., Ma, R., Wang, Y., et al., 2019. Using Hydrogeochemical Data to Trace Groundwater Flow Paths in a Cold Alpine Catchment. Hydrological Processes, 33(14): 1942-1960. https://doi.org/10.1002/hyp.13440 |
|
Immerzeel, W. W., Droogers, P., De Jong, S. M., et al., 2009. Large-Scale Monitoring of Snow Cover and Runoff Simulation in Himalayan River Basins Using Remote Sensing. Remote Sensing of Environment, 113(1): 40-49. https://doi.org/10.1016/j.rse.2008.08.010 |
|
Immerzeel, W. W., Van Beek, L. P., Bierkens, M. F., 2010. Climate Change Will Affect the Asian Water Towers. Science, 328(5984): 1382-1385. https://doi.org/10.1126/science.1183188 |
|
Liu, J., Chen, R., Wang, G., 2015. Snowline and Snow Cover Monitoring at High Spatial Resolution in a Mountainous River Basin Based on a Time-Lapse Camera at a Daily Scale. Journal of Mountain Science, 12(1): 60-69. https://doi.org/10.1007/s11629-013-2842-y |
|
Long, D., Li, X. Y., Wu, Y. N., et al., 2024. Spatial disparity in runoff variability between Southwestern China's River Basin headwaters during 1981-2020. Chinese Science Bulletin, 69(25): 3821-3830 (in Chinese with English abstract). |
|
Ma, R., Sun, Z., Chang, Q., et al., 2021. Control of the Interactions Between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033689. https://doi.org/10.1029/2020JD033689 |
|
Ma, R., Sun, Z., Hu, Y., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai–Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803-4823. https://doi.org/10.5194/hess-21-4803-2017 |
|
Moore, J. W., Semmens, B. X., 2008. Incorporating Uncertainty and Prior Information into Stable Isotope Mixing Models. Ecology Letters, 11(5): 470-480. https://doi.org/10.1111/j.1461-0248.2008.01163.x |
|
Nan, Y., Tian, F., McDonnell, J., et al., 2025. Glacier Meltwater Has Limited Contributions to the Total Runoff in the Major Rivers Draining the Tibetan Plateau. Npj Climate and Atmospheric Science, 8(1): 155. https://doi.org/10.1038/s41612-025-01060-6 |
|
Parnell, A. C., Phillips, D. L., Bearhop, S., et al., 2013. Bayesian Stable Isotope Mixing Models. Environmetrics, 24(6): 387-399. https://doi.org/10.1002/env.2221 |
|
Qin, J., Ding, Y., Yang, G., 2013. The Hydrological Linkage of Mountains and Plains in the Arid Region of Northwest China. Chinese Science Bulletin, 58(25): 3140-3147. https://doi.org/10.1007/s11434-013-5768-4 |
|
Semmens, B. X., Moore, J. W., Ward, E. J., 2009. Improving Bayesian Isotope Mixing Models: A Response To Jackson et al. Ecology Letters, 12(3): E6-E8. https://doi.org/10.1111/j.1461-0248.2009.01283.x |
|
Semmens, B. X., Ward, E. J., Moore, J. W., et al., 2009. Quantifying Inter- and Intra-Population Niche Variability Using Hierarchical Bayesian Stable Isotope Mixing Models. PLOS ONE, 4(7): e6187. https://doi.org/10.1371/journal.pone.0006187 |
|
Stock, B. C., Jackson, A. L., Ward, E. J., et al., 2018. Analyzing Mixing Systems Using a New Generation of Bayesian Tracer Mixing Models. PeerJ, 6: e5096. https://doi.org/10.7717/peerj.5096 |
|
Stock, B. C., Semmens, B. X., 2016. Unifying Error Structures in Commonly Used Biotracer Mixing Models. Ecology, 97(10): 2562-2569. https://doi.org/10.1002/ecy.1517 |
|
Tananaev, N., Lotsari, E., 2022. Defrosting Northern Catchments: Fluvial Effects of Permafrost Degradation. Earth-Science Reviews, 228: 103996. https://doi.org/10.1016/j.earscirev.2022.103996 |
|
Wang, J., Chen, X., Liu, J., et al., 2021. Changes of Precipitation-Runoff Relationship Induced by Climate Variation in a Large Glaciated Basin of the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 126(21): e2020JD034367. https://doi.org/10.1029/2020JD034367 |
|
Wang, G. X., Li, Y. S., Wang, Y. B., et al., 2007. Impacts of Alpine Ecosystem and Climate Changes on Surface Runoff in the Headwaters of the Yangtze River. Journal of Glaciology and Geocryology, 29(2): 159-168 (in Chinese with English abstract). https://doi.org/10.7522/j.issn.1000-0240.2007.0026 |
|
Wang, K. X., Chang, Q. X., Shao, Y. Q., et al., 2025. Study on the interaction process between groundwater and surface water in seasonally frozen soil regions of alpine watershed based on GMS: a case study of the Hulugou catchment in Qilian Mountains. Journal of Glaciology and Geocryology, 47(3): 815-826 (in Chinese with English abstract). https://doi.org/CNKI:SUN:BCDT.0.2025-03-018 |
|
Xiong, J, Sun, Z. Y., Hu, Y. L., et al., 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183. (in Chinese with English abstract). https://doi.org/ 10.3799/dqkx.2024.043 |
|
Xiao, X., Zhang, F., Liu, F., et al., 2025. Hillslope Flow Paths in Snowmelt and Rainfall Seasons in Permafrost-Underlain Areas, Northeastern Tibetan Plateau: Investigation Based on Hydrochemical Tracers and End-Member Mixing Analysis. Journal of Hydrology: Regional Studies, 60: 102511. https://doi.org/10.1016/j.ejrh.2025.102511 |
|
Yang, Y., Xiao, H., Wei, Y., et al., 2012. Hydrological Processes in the Different Landscape Zones of Alpine Cold Regions in the Wet Season, Combining Isotopic and Hydrochemical Tracers. Hydrological Processes, 26(10): 1457-1466. https://doi.org/10.1002/hyp.8275 |
|
Yang, Z. N., Liu, X. R., Zeng, Q. Z., 2000. Hydrology in cold regions of China. Beijing: Science Press (in Chinese with English abstract). |
|
Yang, Z. S., Chang, Q. X., He, S. Z., et al., 2025. Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial - Alluvial Fan of an Alpine Watershed. Earth Science, 50(2): 687-698 (in Chinese with English abstract). https://doi.org/CNKI:SUN:DQKX.0.2025-02-022 |
|
Yi, X. X., 2020. Analysis of runoff generation mechanism in small watersheds in seasonal frozen soil regions (Dissertation). Heilongjiang University (in Chinese with English abstract). |
|
Zhang, B., Zhao, F., 2020. Altitudinal Belts: Global Mountains, Patterns, and Mechanisms//Terrestrial Ecosystems and Biodiversity. CRC Press. https://doi.org/10.1201/9780429445651-45 |
|
Zou, D., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc-11-2527-2017 |
|
Zuo, Y., Chen, J., Lin, S., et al., 2023. The Runoff Changes Are Controlled by Combined Effects of Multiple Regional Environmental Factors in the Alpine Hilly Region of Northwest China. Science of The Total Environment, 862: 160835. https://doi.org/10.1016/j.scitotenv.2022.160835 |
|
常启昕, 2020. 高寒山区河道径流水分来源及其季节变化规律——以黑河上游葫芦沟流域为例(博士学位论文). 武汉: 中国地质大学. |
|
常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11):4196-4209. |
|
常启昕, 杨泽森, 李凡, 等. 2024. 基于文献计量的寒区流域地下水研究态势分析. 冰川冻土, 46(1): 298-311. |
|
陈鹏, 金中武, 周银军, 等, 2023. 2012—2021年长江源区水沙变化特征调查分析. 长江科学院院报, 40(10): 180–185. |
|
龙笛, 李雪莹, 吴业楠, 等, 2024. 西南河流源区1981~2020年间径流变化的南北差异及气候驱动机制. 科学通报, 69(25): 3821–3830. |
|
王根绪, 李元寿, 王一博, 等, 2007. 长江源区高寒生态与气候变化对河流径流过程的影响分析. 冰川冻土, 29(2): 159–168. |
|
王凯贤, 常启昕, 邵亚强, 等, 2025. 基于GMS的高寒流域季节冻土区地下水与地表水交互过程研究——以祁连山葫芦沟流域为例. 冰川冻土, 47(3): 815-826. |
|
易欣欣, 2020. 季节冻土区小流域产流机制分析(硕士学位论文). 哈尔滨市: 黑龙江大学 |
|
杨针娘, 刘新仁, 曾群柱, 2000. 中国寒区水文. 北京: 科学出版社. |
|
杨泽森, 常启昕, 贺笙哲, 等, 2025. 典型高寒流域冲洪积扇地下水与地表水交互机制. 地球科学, 50(2): 687-698. |
|
熊净, 孙自永, 胡雅璐, 等, 2024. 高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响. 地球科学, 49(11): 4169-4183. |