• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    刘帅, 常启昕, 2025. 高寒山区河道径流水分来源时空变化特征. 地球科学. doi: 10.3799/dqkx.2025.273
    引用本文: 刘帅, 常启昕, 2025. 高寒山区河道径流水分来源时空变化特征. 地球科学. doi: 10.3799/dqkx.2025.273
    Liu Shuai, Chang Qixin, 2025. Spatiotemporal Variations in Runoff Sources in Alpine Basins. Earth Science. doi: 10.3799/dqkx.2025.273
    Citation: Liu Shuai, Chang Qixin, 2025. Spatiotemporal Variations in Runoff Sources in Alpine Basins. Earth Science. doi: 10.3799/dqkx.2025.273

    高寒山区河道径流水分来源时空变化特征

    doi: 10.3799/dqkx.2025.273
    基金项目: 

    国家自然科学基金项目(No. 42102301)

    四川省科技教育联合基金面上项目(No. 2025NSFSC2048).

    详细信息
      作者简介:

      刘帅(1998—),男,硕士研究生,主要从事寒区水文地质学相关研究. ORCID: 0009-0007-1177-8909. E-mail:1759622399@qq.com.

      通讯作者:

      常启昕(1987—),男,博士,副教授,硕士生导师,主要从事寒区水文地质学相关研究. ORCID: 0000-0002-9140-8719. E-mail: changqixin19@cdut.edu.cn.

    • 中图分类号: P641

    Spatiotemporal Variations in Runoff Sources in Alpine Basins

    • 摘要: 高寒山区是中下游地区的重要水源地,其径流过程受冻土等下垫面条件影响极为复杂. 相较于大尺度流域,小尺度流域更有助于揭示下垫面对水文过程的主导作用;然而,受高寒恶劣环境制约,观测资料稀缺,相关研究仍显不足. 为深入揭示小流域尺度下河道径流水分来源的时空分异规律,以黑河上游葫芦沟流域为例,结合水稳定同位素与水文气象观测,应用MixSIAR模型定量解析了多年冻岩区、多年冻土区和季节冻土区的河道径流组成. 结果表明:3月季节冻土区径流以基流为主(98%),其余区域断流;5月,多年冻岩区与多年冻土区径流恢复,均以冰雪融水和积雪融水为主要水分来源,而季节冻土区仍以基流为主(62%);7月至9月,冰雪融水成为多年冻岩区和多年冻土区主要水分来源,季节冻土区基流仍为主要水分来源(63%以上). 研究表明,气象要素是径流变化的主要驱动因素,而下垫面条件(如冻土分布与含水层特征)对水分来源组成具有关键调控作用. 研究成果深化了对高寒山区小流域水文过程机理的认识,可为寒区水资源管理提供理论依据.

       

    • Chang, Y., Ding, Y., Zhang, S., et al., 2024. Quantifying the Response of Runoff to Glacier Shrinkage and Permafrost Degradation in a Typical Cryospheric Basin on the Tibetan Plateau. CATENA, 242: 108124. https://doi.org/10.1016/j.catena.2024.108124
      Chang, Q. X., 2020. Water Sources of Stream Runoff in Alpine Region and their Seasonal Variations: A Case Study of Hulugou Catchment in the Headwaters of the Heihe River (Dissertation). China University of Geosciences (in Chinese with English abstract). https://doi.org/10.27492/d.cnki.gzdzu.2019.000112
      Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11):4196-4209 (in Chinese with English abstract).
      Chang, Q. X., Yang, Z. S., Li, F., et al., 2024. Research status and development trends of groundwater in cold regions: a bibliometric review. Journal of Glaciology and Geocryology, 46(1):298-311.https://doi.org/10.7522/j.issn.1000-0240.2024.0025
      Chen, H., Chen, Y., Li, W., et al., 2019. Quantifying the Contributions of Snow/Glacier Meltwater to River Runoff in the Tianshan Mountains, Central Asia. Global and Planetary Change, 174: 47-57. https://doi.org/10.1016/j.gloplacha.2019.01.002
      Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
      Chen, Y., Li, B., Fan, Y., et al., 2019. Hydrological and Water Cycle Processes of Inland River Basins in the Arid Region of Northwest China. Journal of Arid Land, 11(2): 161-179. https://doi.org/10.1007/s40333-019-0050-5
      Chen, P., Jin, Z. W., Zhou, Y. J., et al., 2023. Characteristics of Water and Sediment Changes in the Source Region of Yangtze River from 2012 to 2021. Journal of Changjiang River Scientific Research Institute, 40(10): 180-185 (in Chinese with English abstract).
      Coles, A. E., 2017. Runoff generation over seasonally-frozen ground: trends, patterns, and processes (Dissertation). University of Saskatchewan.
      Eeckman, J., De Grenus, B., Miesen, F. M., et al., 2025. Multi-Instrumental Monitoring of Snowmelt Infiltration in Vallon de Nant, Swiss Alps. Hydrology and Earth System Sciences, 29(17): 4093–4107. https://doi.org/10.5194/hess-29-4093-2025
      Fang, J., Yi, P., Stockinger, M., Xiong, L., et al. 2022. Investigation of factors controlling the runoff generation mechanism using isotope tracing in large-scale nested basins. Journal of Hydrology, 615: 128728. https://doi.org/10.1016/j.jhydrol.2022.128728
      Francis, T. B., Schindler, D. E., Holtgrieve, G. W., et al., 2011. Habitat Structure Determines Resource Use by Zooplankton in Temperate Lakes. Ecology Letters, 14(4): 364-372. https://doi.org/10.1111/j.1461-0248.2011.01597.x
      Guo, L., Wang, G., Song, C., et al., 2025. Hydrological Changes Caused by Integrated Warming, Wetting, and Greening in Permafrost Regions of the Qinghai-Tibetan Plateau. Water Resources Research, 61(4): e2024WR038465. https://doi.org/10.1029/2024WR038465
      He, B., Chang, J., Guo, A., et al., 2025. Spatial and Temporal Runoff Variability in Response to Climate Change in Alpine Mountains. Journal of Hydrology, 654: 132779. https://doi.org/10.1016/j.jhydrol.2025.132779
      Hu, Y., Ma, R., Sun, Z., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai–Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022WR032426
      Hu, Y., Ma, R., Wang, Y., et al., 2019. Using Hydrogeochemical Data to Trace Groundwater Flow Paths in a Cold Alpine Catchment. Hydrological Processes, 33(14): 1942-1960. https://doi.org/10.1002/hyp.13440
      Immerzeel, W. W., Droogers, P., De Jong, S. M., et al., 2009. Large-Scale Monitoring of Snow Cover and Runoff Simulation in Himalayan River Basins Using Remote Sensing. Remote Sensing of Environment, 113(1): 40-49. https://doi.org/10.1016/j.rse.2008.08.010
      Immerzeel, W. W., Van Beek, L. P., Bierkens, M. F., 2010. Climate Change Will Affect the Asian Water Towers. Science, 328(5984): 1382-1385. https://doi.org/10.1126/science.1183188
      Liu, J., Chen, R., Wang, G., 2015. Snowline and Snow Cover Monitoring at High Spatial Resolution in a Mountainous River Basin Based on a Time-Lapse Camera at a Daily Scale. Journal of Mountain Science, 12(1): 60-69. https://doi.org/10.1007/s11629-013-2842-y
      Long, D., Li, X. Y., Wu, Y. N., et al., 2024. Spatial disparity in runoff variability between Southwestern China's River Basin headwaters during 1981-2020. Chinese Science Bulletin, 69(25): 3821-3830 (in Chinese with English abstract).
      Ma, R., Sun, Z., Chang, Q., et al., 2021. Control of the Interactions Between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033689. https://doi.org/10.1029/2020JD033689
      Ma, R., Sun, Z., Hu, Y., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai–Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803-4823. https://doi.org/10.5194/hess-21-4803-2017
      Moore, J. W., Semmens, B. X., 2008. Incorporating Uncertainty and Prior Information into Stable Isotope Mixing Models. Ecology Letters, 11(5): 470-480. https://doi.org/10.1111/j.1461-0248.2008.01163.x
      Nan, Y., Tian, F., McDonnell, J., et al., 2025. Glacier Meltwater Has Limited Contributions to the Total Runoff in the Major Rivers Draining the Tibetan Plateau. Npj Climate and Atmospheric Science, 8(1): 155. https://doi.org/10.1038/s41612-025-01060-6
      Parnell, A. C., Phillips, D. L., Bearhop, S., et al., 2013. Bayesian Stable Isotope Mixing Models. Environmetrics, 24(6): 387-399. https://doi.org/10.1002/env.2221
      Qin, J., Ding, Y., Yang, G., 2013. The Hydrological Linkage of Mountains and Plains in the Arid Region of Northwest China. Chinese Science Bulletin, 58(25): 3140-3147. https://doi.org/10.1007/s11434-013-5768-4
      Semmens, B. X., Moore, J. W., Ward, E. J., 2009. Improving Bayesian Isotope Mixing Models: A Response To Jackson et al. Ecology Letters, 12(3): E6-E8. https://doi.org/10.1111/j.1461-0248.2009.01283.x
      Semmens, B. X., Ward, E. J., Moore, J. W., et al., 2009. Quantifying Inter- and Intra-Population Niche Variability Using Hierarchical Bayesian Stable Isotope Mixing Models. PLOS ONE, 4(7): e6187. https://doi.org/10.1371/journal.pone.0006187
      Stock, B. C., Jackson, A. L., Ward, E. J., et al., 2018. Analyzing Mixing Systems Using a New Generation of Bayesian Tracer Mixing Models. PeerJ, 6: e5096. https://doi.org/10.7717/peerj.5096
      Stock, B. C., Semmens, B. X., 2016. Unifying Error Structures in Commonly Used Biotracer Mixing Models. Ecology, 97(10): 2562-2569. https://doi.org/10.1002/ecy.1517
      Tananaev, N., Lotsari, E., 2022. Defrosting Northern Catchments: Fluvial Effects of Permafrost Degradation. Earth-Science Reviews, 228: 103996. https://doi.org/10.1016/j.earscirev.2022.103996
      Wang, J., Chen, X., Liu, J., et al., 2021. Changes of Precipitation-Runoff Relationship Induced by Climate Variation in a Large Glaciated Basin of the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 126(21): e2020JD034367. https://doi.org/10.1029/2020JD034367
      Wang, G. X., Li, Y. S., Wang, Y. B., et al., 2007. Impacts of Alpine Ecosystem and Climate Changes on Surface Runoff in the Headwaters of the Yangtze River. Journal of Glaciology and Geocryology, 29(2): 159-168 (in Chinese with English abstract). https://doi.org/10.7522/j.issn.1000-0240.2007.0026
      Wang, K. X., Chang, Q. X., Shao, Y. Q., et al., 2025. Study on the interaction process between groundwater and surface water in seasonally frozen soil regions of alpine watershed based on GMS: a case study of the Hulugou catchment in Qilian Mountains. Journal of Glaciology and Geocryology, 47(3): 815-826 (in Chinese with English abstract). https://doi.org/CNKI:SUN:BCDT.0.2025-03-018
      Xiong, J, Sun, Z. Y., Hu, Y. L., et al., 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183. (in Chinese with English abstract). https://doi.org/ 10.3799/dqkx.2024.043
      Xiao, X., Zhang, F., Liu, F., et al., 2025. Hillslope Flow Paths in Snowmelt and Rainfall Seasons in Permafrost-Underlain Areas, Northeastern Tibetan Plateau: Investigation Based on Hydrochemical Tracers and End-Member Mixing Analysis. Journal of Hydrology: Regional Studies, 60: 102511. https://doi.org/10.1016/j.ejrh.2025.102511
      Yang, Y., Xiao, H., Wei, Y., et al., 2012. Hydrological Processes in the Different Landscape Zones of Alpine Cold Regions in the Wet Season, Combining Isotopic and Hydrochemical Tracers. Hydrological Processes, 26(10): 1457-1466. https://doi.org/10.1002/hyp.8275
      Yang, Z. N., Liu, X. R., Zeng, Q. Z., 2000. Hydrology in cold regions of China. Beijing: Science Press (in Chinese with English abstract).
      Yang, Z. S., Chang, Q. X., He, S. Z., et al., 2025. Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial - Alluvial Fan of an Alpine Watershed. Earth Science, 50(2): 687-698 (in Chinese with English abstract). https://doi.org/CNKI:SUN:DQKX.0.2025-02-022
      Yi, X. X., 2020. Analysis of runoff generation mechanism in small watersheds in seasonal frozen soil regions (Dissertation). Heilongjiang University (in Chinese with English abstract).
      Zhang, B., Zhao, F., 2020. Altitudinal Belts: Global Mountains, Patterns, and Mechanisms//Terrestrial Ecosystems and Biodiversity. CRC Press. https://doi.org/10.1201/9780429445651-45
      Zou, D., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc-11-2527-2017
      Zuo, Y., Chen, J., Lin, S., et al., 2023. The Runoff Changes Are Controlled by Combined Effects of Multiple Regional Environmental Factors in the Alpine Hilly Region of Northwest China. Science of The Total Environment, 862: 160835. https://doi.org/10.1016/j.scitotenv.2022.160835
      常启昕, 2020. 高寒山区河道径流水分来源及其季节变化规律——以黑河上游葫芦沟流域为例(博士学位论文). 武汉: 中国地质大学.
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11):4196-4209.
      常启昕, 杨泽森, 李凡, 等. 2024. 基于文献计量的寒区流域地下水研究态势分析. 冰川冻土, 46(1): 298-311.
      陈鹏, 金中武, 周银军, 等, 2023. 2012—2021年长江源区水沙变化特征调查分析. 长江科学院院报, 40(10): 180–185.
      龙笛, 李雪莹, 吴业楠, 等, 2024. 西南河流源区1981~2020年间径流变化的南北差异及气候驱动机制. 科学通报, 69(25): 3821–3830.
      王根绪, 李元寿, 王一博, 等, 2007. 长江源区高寒生态与气候变化对河流径流过程的影响分析. 冰川冻土, 29(2): 159–168.
      王凯贤, 常启昕, 邵亚强, 等, 2025. 基于GMS的高寒流域季节冻土区地下水与地表水交互过程研究——以祁连山葫芦沟流域为例. 冰川冻土, 47(3): 815-826.
      易欣欣, 2020. 季节冻土区小流域产流机制分析(硕士学位论文). 哈尔滨市: 黑龙江大学
      杨针娘, 刘新仁, 曾群柱, 2000. 中国寒区水文. 北京: 科学出版社.
      杨泽森, 常启昕, 贺笙哲, 等, 2025. 典型高寒流域冲洪积扇地下水与地表水交互机制. 地球科学, 50(2): 687-698.
      熊净, 孙自永, 胡雅璐, 等, 2024. 高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响. 地球科学, 49(11): 4169-4183.
    • 加载中
    计量
    • 文章访问数:  10
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-28

    目录

      /

      返回文章
      返回