• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    沈丹祎, 杨剑, 朱永生, 吴家耀, 杨江涛, 2025. 雪崩形成机制及危险性评价方法综述. 地球科学. doi: 10.3799/dqkx.2025.277
    引用本文: 沈丹祎, 杨剑, 朱永生, 吴家耀, 杨江涛, 2025. 雪崩形成机制及危险性评价方法综述. 地球科学. doi: 10.3799/dqkx.2025.277
    Shen Danyi, Yang Jian, Zhu Yongsheng, Wu Jiayao, Yang Jiangtao, 2025. Research progress on formation mechanisms and rapid hazard assessment of snow avalanche. Earth Science. doi: 10.3799/dqkx.2025.277
    Citation: Shen Danyi, Yang Jian, Zhu Yongsheng, Wu Jiayao, Yang Jiangtao, 2025. Research progress on formation mechanisms and rapid hazard assessment of snow avalanche. Earth Science. doi: 10.3799/dqkx.2025.277

    雪崩形成机制及危险性评价方法综述

    doi: 10.3799/dqkx.2025.277
    基金项目: 

    国家自然科学基金项目(No. 42307196),中国博士后科学基金特别资助项目(2024T170769),科技部重点研发计划项目(No. 2024YFF1700303)

    详细信息
      作者简介:

      沈丹祎(1991—),女,高级工程师,博士,从事地质灾害防灾减灾研究,E-mail:shendanyi1107@163.com,ORCID:0009-0000-4360-6406。

    • 中图分类号: P694

    Research progress on formation mechanisms and rapid hazard assessment of snow avalanche

    • 摘要: 开展雪崩形成机制和临灾危险性评估,对防灾减灾具有重要意义。本文梳理了雪崩分布区域特征及雪崩类型主要划分方式,系统阐述了雪崩影响因素及其启动-运动-堆积机理,详细归纳了积雪稳定性、雪崩抛程和雪崩危险性等级计算方法。在此基础上,进一步提出雪崩研究仍需要关注以下5方面:1)构建全球统一的雪崩案例数据库,为雪崩形成及运动研究提供基础;2)开展极端气候条件下积雪力学特性动态演化、不同地形和气候条件共同作用下对积雪性质的影响研究,厘清雪崩活动的时空演化规律;3)建立雪崩启动概率定量分析模型,开展裂纹扩展机制研究,提出雪崩启动裂纹扩展表征方法;4)研究雪崩运动中侵蚀互馈过程及物质和能量转化规律,构建雪崩堆积体形态尺寸与影响因素定量关系;5)构建考虑动力学机理的雪崩抛程计算方法,提出雪崩动态风险评估模型,为雪崩灾害预测及防灾减灾技术研究提供参考依据。

       

    • Acharya, A., Steiner, J.F., Walizada, K.M., et al., 2023. Review article: Snow and ice avalanches in high mountain Asia-scientific, local and indigenous knowledge. Nat. Hazards Earth Syst. Sci., 23(1): 2569-2592.
      Ammann, W. (Ed.)., 2000. Der Lawinenwinter 1999—Ereignis analyse. Swiss Fed. Inst. for Snow and Avalanche Res. SLF, Davos, Switzerland.
      Arons, E.M., Colbeck, S.C., Gray, J., 1998. Depth hoar growth rates near arocky outcrop[J]. Journal of Glaciology, 44(148): 477-484.
      Athick, A.M., Naqvi, H.R., Firdouse, Z., 2015. An assessment and identification of avalanche hazard sites in Uri sector and its surroundings on Himalayan mountain. Journal of Mountain Science, 12(6): 1499-1510.
      Atwater, M.M., 1954. Snow avalanches. Sci. Am., 190(1): 26-31.
      Bartelt, P., Glover, J., Feistl, T., et al., 2012. Formation of levees and en-echelon shear planes during snow avalanche run-out. J. Glaciol., 58(211): 980-992.
      Biskupič, M., Barka, I., 2016. Spatial modelling of avalanches by application of GIS on selected slopes of the Western Tatra Mts. and Belianske Tatra Mts., Slovakia. Geographia Polonica, 89(1):79-90.
      Bozhinskiy, A.N., Losyev, K.S., 1998. The fundamentals of avalanche science. In: Mitteilungen des Eidg. vol. 55. Instituts fur Schnee-und Lawinenforschung SLF, Davos, Switzerland.
      Bühler, Y., Hafner, E.D., Zweifel, B., et al., 2019. Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps. The Cryosphere, 13(12): 3225-3238.
      Capelli, A., Reiweger, I., Schweizer, J., 2018. Acoustic emissions signatures prior to snow failure. J. Glaciol., 64(246): 543-554.
      Chen, G.Q., Hao, J.S., Cui, P., et al., 2025. Application of dendrogeomorphology in snow avalanche hazard assessment: progress and prospects. Journal of Mountain Science, 22(1): 1912-1925.
      Chen, C.J., Yu, S.H., Wang, L.Y., et al., The quantitative analysis of snow avalanches with remote sesing and engineerng scheme selection. Journal of mountain science, 27(1): 63-69. (in Chinese with English abstract)
      Cherepanov, G.P., Esparragoza, I.E., 2008. A fracture-entrainment model for snow avalanches. J. Glaciol., 54(184): 182-188.
      Chernouss, P.A., Fedorenko, Y., 2001. Application of statistical simulation for avalanche-risk evaluation. Annals of Glaciology, 32(1): 182-186.
      Christen, M., Kowalski, J., Bartelt, P., 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1-2): 1-14.
      Daffern, T., 1992. Avalanche safety for skiers and climbers. Rocky Mountain Books, Calgary.
      Dandabathula, G., Roy, S., Syal, S., et al., 2025. Formation, triggering, and motion factors for the snow avalanche on 30 June 2024 at the kedarnath south face in the Indian Himalayas. Landslides, 22(4): 1167-1179.
      De Quervain, M.R., 1966. Problems of avalanche research//Symposium at Davos 1965-Scientific Aspects of Snow and Ice Avalanches. IAHS Publication, 69(1): 1-8.
      Duan, S.S., Yao, L.K., Guo, H.Q., 2016. Distance estimation of trench wet snow avalanche based on equivalent friction coefficient. Progress in Geophysics, 31(3): 1307-1312. (in Chinese with English abstract)
      Dunatunga, S., Kamrin, K., 2015. Continuum modelling and simulation of granular flows through their many phases. Journal of Fluid Mechanics, 779: 483-513.
      Eckert, N., Corona, C., Giacona, F., et al., 2024. Climate change impacts on snow avalanche activity and related risks. Nature Reviews Earth & Environment, 5(5): 369-389.
      Evina, G., Dkengne, S.P., Eckerta, N., et al., 2021. Extreme avalanche cycles: Return levels and probability distributions depending on snow and meteorological conditions. Weather and Climate Extremes, 33(1): 100344.
      Fu, X., 2020. Study on the thermal characteristics and mechanical properties of seasonal snow in Northeast China. Ha’er Bin: Northeast Agricultural University, 35-50. (in Chinese with English abstract)
      Gauer, P., 1999. Blowing and Drifting Snow in Alpine Terrain//A Physically-Based Numerical Model and Related Field Measurements,Mitt. Eidg. Inst. Schnee Lawinenforsch, Swiss Fed. Inst. for Snow and Avalanche Res. SLF, Davos, Switzerland, 58(1): 128.
      Gauer, P., Issler, D., 2004. Possible erosion mechanisms in snow avalanches. Ann. Glaciol., 38(1): 384-392.
      Gauer, P., Issler, D., Lied, K., et al., 2007. On full-scale avalanche measurements at the Ryggfonn test site. Norway. Cold Reg. Sci. Technol., 49(1): 39-53.
      Gauer, P., Lied, K., Kristensen, K., 2008. On avalanche measurements at the Norwegian full-scale test-site Rygg fonn. Cold Reg. Sci. Technol., 51(2-3): 138-155.
      Gaume, J., Puzrin, A.M., 2021. Mechanisms of slab avalanche release and impact in the Dyatlov Pass incident in 1959. Commun Earth Environ., 2(1): 1-11.
      Gaume, J., van Herwijnen, A., Gast, T., et al., 2019. Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method. Cold Regions Science and Technology, 168(1): 102847.
      Gaume, J., Schweizer, J., Herwijnen, A., et al., 2014. Evaluation of slope stability with respect to snowpack spatial variability. J. Geophys. Res., 119(9): 1783-1799.
      Gaume, J., Gast, T., Teran, J., et al. 2018. Dynamic anticrack propagation in snow. Nature communications, 9(1): 1-10.
      Gauthier, F., Germain, D., Hétu, B., 2017. Logistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, Canada. Natural Hazards, 89(1):201-232.
      German, R.M., 2011. Sintering theory and practice. John Wiley and Sons Inc. New York, U. S. A.
      Gray, J., Ancey, C., 2011. Multi-component particle-size segregation in shallow granular avalanches. Journal of Fluid Mechanics, 678(1): 535-588.
      Grenier, J., Bhiry, N., Decaulne, A., 2023. Meteorological conditions and snow-avalanche occurrence over three snow seasons (2017-2020) in Tasiapik Valley, Umiujaq, Nunavik. Arct Antarct Alp Res, 55(1): 2194492.
      Hao, J.S., Huang, F.R., Liu, Y., et al., 2018. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China. Journal of Mountain Science, 15 (7): 1397-1411.
      Hao, J.S., Huang, F.R., Feng, T., et al., 2021. Analysis of spatio-temporal distribution characteristics of snow avalanche disaster and its triggering factors in the high mountain Asia. Mountain Research, 39(2): 304-312.(in Chinese with English abstract)
      Harbitz, C., Harbitz, A., Nadim, F., 2001. On probability analysis in snow avalanche hazard zoning. Annals of Glaciology, 32(1): 290-298.
      Heierli, J., Gumbsch, P., Zaiser, M., 2008. Anticrack nucleation as triggering mechanism for snow slab avalanches. Science, 321(5886): 240-243.
      Heck, M., Hobiger, M., van Herwijnen, A., et al., 2019. Localization of seismic events produced by avalanches using multiple signal classifications. Geophys. J. Int., 216(1): 201-217.
      Hӧller, P., 2007. Avalanche hazards and mitigation in Austria: a review. Natural Hazards, 43: 81-101.
      Hreško, J., Boltiziar, M., 2001. Influence of the morpho dynamic processes to landscape structure in the high mountains. Ekologia Bratislava, 20(Supplement3): 141-148.
      Jamieson, J.B., Geldsetzer, T., Stethem, C., 2001. Forecasting for deep slab avalanches. Cold Regions Science and Technology, 33(1): 275-290.
      Jamieson, J.B., Schweizer, J., 2005. Using a checklist to assess manual snow profiles. Avalanche News, 72(1): 57-61.
      Jamieson, B., Johnston, C., 1998. Refinements to the stability index for skier-triggered dry-slab avalanches. Ann. Glaciol., 26(1): 296-302.
      Jomelli, V., Delval, C., Grancher, D., et al., 2007. Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Regions Science and Technology, 47(1): 180-192.
      Jomelli, V., Bertra, P., 2001. Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geogr. Ann., 83A(1-2): 15-28.
      Joshi, J.C., Kaur, P., Kumar, B., et al., 2020. HIM-STRAT: a neural network-based model for snow cover simulation and avalanche hazard prediction over North-West Himalaya. Natural Hazards, 103(1): 1239-1260.
      Johnson, B.C., Jamieson, J.B., Stewart, R.R., 2004. Seismic measurement of fracture speed in a weak snowpack layer. Cold Regions Science and Technology, 40(1-2): 41-45.
      Kern, M., Bartelt, P., Sovilla, B., et al., 2009. Measured shear rates in large dry and wet snow avalanches. J. Glaciol., 55(190): 327-338.
      Kinosita, S., 1960. The hardness of snow. Low Temperature Science. ser a, Physical Sciences, 19: 119-134.
      Kronholm, K., Schweizer, J., 2003. Snow stability variation on small slopes. Cold Regions Science and Technology, 37(3): 453-465.
      Kumar, S., Srivastava, P.K., Snehmani., 2017. GIS based MCDA-AHP modelling for avalanche susceptibility mapping of Nubra Valley region, Indian Himalaya. Geocarto International, 32(11): 1254-1267.
      Kumar, S., Srivastava, P.K., Snehmani Gore, A., et al., 2016. Fuzzy-frequency ratio model for avalanche susceptibility mapping. International Journal of Digital Earth, 9(12): 1168-1184.
      LaChapelle, E.R., 1974. Chapter 4: Avalanche Forecasting. Development of methodology for evaluation and prediction of avalanche hazard in the San Juan Mountain area of southern Colorado. Institute of Arctic and Alpine Research, University of Colorado.
      LaChapelle, E.R., Ferguson, S.A., 1980. Snow-pack structure: stability analysed by pattern-recognition techniques. J. Glaciol., 26(94): 506-511.
      Laternser, M., Schneebeli, M., 2002. Temporal Trend and Spatial Distribution of Avalanche Activity during the Last 50 Years in Switzerland. Natural Hazards, 27: 201-230.
      Larsen, H.T., Hendrikx, J., Slåtten, M.S., et al., 2020. Developing nationwide avalanche terrain maps for Norway. Natural Hazards, 103(3): 2829-2847.
      Lehning, M., Doorschot, J., Raderschall, N., 2000. Combining snow drift and SNOWPACK models to estimate snow loading in avalanche slopes. Snow Engineering - Recent Advances and Developments//Hjorth - Hansen E. et al. Proceedings of the Fourth International Conference, Trondheim, Norway, Balkema, Brookfield, Vt., 113-122.
      Lied, K., Bakkehøi, S., 1980. Empirical calculations of snow avalanche run out distance based on topographic parameters. Journal of Glaciology, 26(94): 165-177.
      Ligneau, C., Sovilla, B., Gaume, J., 2019. Modelling erosion, entrainment and deposition in cohesive granular flows: Application to dense snow avalanches. Cold Regions Science and Technology, 219(1): 104103.
      Markus, E., Stian, So., Eirik, M., 2015. Using “Structure-from- Motion” photogrammetry in mapping snow avalanche debris. Vienna, 21(1): 171-178.
      McClung, D.M., 2001. Characteristics of terrain,snow supply and forest cover for avalanche initiation by logging. Annals of Glaciology, 32(1): 223-229.
      McClung, D.M., Schweizer, J., 1999. Skier triggering snow temperatures and the stability index for dry slab avalanche initiation. Journal of Glaciology, 45(150): 190-200.
      Mohamed, N., Florence, N.B., Thierry, F., et al., 2004. Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Regions Science and Technology, 39(2): 193-204.
      Monti, F., Gaume, J., Herwijnen, A.V., et al., 2016. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack. Natural hazards and earth system sciences, 16(1): 775-788.
      Mueller, M., 2001. Snow stability trends at Wolf Creek Pass, Colorado//Proceedings of the International Snow Science Workshop, Big Sky, Montana. U. S. A., Montana. State University, Bozeman, 147-152.
      Perla, R.I., 1980. Avalanche release, motion, and impact. In: Colbeck, S.C. (Ed.), Dynamics of Snow and Ice Masses. Academic Press, New York.
      Perla, R., Lachapelle, E., 1970. A theory of snow slab failure. Journal of Geophysics research, 75: 7619-7626.
      Perry, B., Michael, L., 2002. A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model. Cold Regions Science and Technology, 35(3): 123-145.
      Podolskiy, E.A., Izumi, K., Suchkov, V.E., et al., 2017. Physical and societal statistics for a century of snow-avalanche hazards on Sakhalin and the Kuril Islands (1910–2010). J. Glaciol., 60(221): 409-430.
      Qiu, J.Q., 2004. Avalanche studies. Wulumuqi: Xinjiang Science and Technology Press, 115-125. (in Chinese)
      Schaer. M., 1995. Avalanche activity during major avalanche events—A case study for hydroelectric reservoirs, in Lesapports de la recherche scientifique à la sécurite neige, glace et avalanche. Actes de Colloque, Chamonix, France, 30 mai-3juin 1995, edited by F. Sivardière, pp. 133-138, ANENA, Grenoble, France.
      Schirmer, M., Schweizer, J., Lehning, M., 2010. Statistical evaluation of local to regional snowpack stability using simulated snow-cover data. Cold Regions Science & Technology, 64(2): 110-118.
      Schweizer, J., Jamieson, J.B., Schneebeli, M., 2003. Snow avalanche formation. Reviews of Geophysics, 41(4): 1-24.
      Schweizer, J., Bartelt, P., van, H.A., 2015. Snow Avalanches in Snow and Ice-related Hazards, Risks and Disasters. Waltham: Academic Press, 395-436.
      Schweizer, J., Jamieson, J.B., 2007. A threshold sum approach to stability evaluation of manual snow profiles. Cold Regions Science and Technology, 47(1/2): 50-59.
      Schweizer, J., Mitterer, C., Stoffel, L., 2009. On forecasting large and infrequent snow avalanches. Cold Reg. Sci. Technol., 59(2-3): 234-241.
      Schweizer, J., Lütschg, M., 2001. Characteristics of human-triggered avalanches. Cold Reg. Sci. Technol., 33(23): 147-162.
      Schweizer, J., Jamieson, J.B., 2001. Snow cover properties for skier triggering of avalanches. Cold Reg. Sci. Technol., 33: 207-221.
      Schweizer, J., Wiesinger, T., 2001. Snow profile interpretation for stability evaluation. Cold Regions Science and Technology, 33: 189-188.
      Schweizer, J., Reuter, B., van Herwijnen, A., et al., 2016. Avalanche release 101. In: Greene, (Ed.), Proceedings ISSW 2016. International Snow Science Workshop, Breckenridge CO, U.S.A., 3-7 October, pp. 1-11.
      Schweizer, J., Föhn, P.M.B., 1996. Avalanche forecasting—an expert system approach. J. Glaciol., 42(141): 218-332.
      Schweizer, J., McCammon, I., Jamieson, J.B., 2008. Snowpack observations and fracture concepts for skier-triggering of dry-snow slab avalanches. Cold Regions Science and Technology, 51(2-3): 112-121.
      Scallya, F.A., Owens, I.F., 2005. Depositional processes and particle characteristics on fans in the Southern Alps, New Zealand. Geomorphology, 69(1): 46-56.
      Silverton, N.A., McIntosh, S.E., Kim, H.S., 2007. Avalanche Safety practices in Utah. Wilderness and Environmental Medicine, 18(4): 264-270.
      Stoffel, A., Meister, R., Schweizer, J., 1998. Spatial characteristics of avalanche activity in an alpine valley-A GIS approach. Annalsof Glaciology, 26: 329-336.
      Stomakhin, A., Schroeder, C., Chai, L., et al., 2013. A material point method for snow simulation. ACM Transactions on Graphics (TOG), 32(4): 1-10.
      Strapazzon, G., Schweizer, J., Chiambretti, I., et al., 2021. Effects of climate change on avalanche accidents and survival. Front Physiol., 12(1): 639433.
      UNESCO., 1981. Avalanche Atlas-Illustrated International Avalanche Classification. International Commission for Snow and Ice of the International Association of Hydrological Sciences. UNESCO, Paris, France.
      van Herwijnen, A., Jamieson, B., 2005. High-speed photography of fractures in weak snowpack layers. Cold Reg. Sci. Technol., 43(1-2): 71-82.
      Wang, S.J., Ren, J.W., 2012. A review of the progresses of avalanche hazards research. Progress in geography, 31(11): 1529-1536. (in Chinese with English abstract)
      Wang, Y.L., 1986a. Dry-snow avalanche in China. Journal of glaciology and geocryology, 8(4): 381-387. (in Chinese with English abstract)
      Wang, Y.L., 1986b. A wet snow avalanche with heavy harmfulness in China. Journal of glaciology and geocryology, 8(1): 56-60. (in Chinese with English abstract)
      Wang, Y.L., Zhang, Z.Z., Xie, Z.C., 1979. Snow avalanche and protection. Beijing: Science press, 25-126. (in Chinese)
      Wei Y.G., Yang, H., Han, X.L., 2004. Method for avalanche risk evaluation along Qingha-i Tibet Plateau Railway. China safety science journal, 14(4): 40-42. (in Chinese with English abstract)
      Wen, H., 2018. Spatio-temporal evolution mechanism of channeled snow avalaaanches in the Parlung Tsangpo catchment. Chengdu: Southwest Jiaotong University,118-140. (in Chinese with English abstract)
      Wen, H., Wang, D., Wang, S.R., et al., 2021. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment,southeast Tibetan plateau. Journal of Engineering Geology, 29(2): 404-415. (in Chinese with English abstract)
      Wen, L.K., Xiang, L.Z., Cai, Y., et al., 2016. Research on the formation mechanism of avalanche. Mountain research, 34(1): 1-11. (in Chinese with English abstract)
      Wen, L.K., Jia, J., Yao, T.D., 2023. A review of study on snow avalanches monitorin. Journal of Glaciology and Geocryology, 2023, 45(6): 1679-1702. (in Chinese with English abstract)
      Williams, K., 1994. The U.S. Forest Service Westwide Avalanche Net work//Proceedings of the International Snow Science Workshop, 30 October–3 November, Snowbird, Utah, 644 pp.
      Winkler, K., Schweizer, J., 2009. Comparison of snow stability tests: extended column test, rutschblock test and compression test. Cold Regions Science and Technology, 59(2-3): 217-226.
      Xie, Z.C., Иван, В., 1996. Snow and Avalanche in Tianshan. Changsha: Hunan Normal University Press, 101-156. (in Chinese)
      Zhang, T.Y., Liu, J., Yang, Z.W., et al., 2023. Numerical simulation of avalanche process in Aerxiangou, West Tianshan Mountains, based on air-ground cooperative investigation. Arid zone research, 40(11): 1729-1743. (in Chinese with English abstract)
      Zhou, S.Q., Xie, Z.C., 2003. Categories and methods of avalanche hazard evaluation. Journal of natural disasters, 12(2): 45-50. (in Chinese with English abstract)
      陈楚江, 余绍淮, 王丽园, 等, 2009. 雪崩灾害的遥感量化分析与工程选线. 山地学报, 27(1): 63-69.
      段书苏, 姚令侃, 郭海强, 2016. 基于等价摩擦系数的沟槽式湿雪雪崩拋程预测. 地球物理学进展, 31(3): 1307-1312.
      郝建盛, 黄法融, 冯挺, 等, 2021. 亚洲高山区雪崩灾害时空分布特点及其诱发因素分析. 山地学报, 39(2): 304-312.
      富翔, 2020. 东北地区季节性积雪热特性及力学性质研究. 哈尔滨: 东北农业大学, 35-50.
      仇家琪. 2004. 雪崩学. 乌鲁木齐: 新疆科学技术出版社, 115-125.
      王彦龙, 1986a. 我国的干雪崩. 冰川冻土, 8(4): 381-387.
      王彦龙, 1986b. 我国危害性较大的湿雪雪崩. 冰川冻土, 8(1): 56-60.
      王彦龙, 张志忠, 谢自楚, 1979. 雪崩及其防治. 北京: 科学出版社.
      王世金, 任贾文, 2012. 国内外雪崩灾害研究综述. 地理科学进展, 31(11): 1529-1536.
      魏玉光, 杨浩, 韩学雷, 2004. 青藏高原铁路沿线雪崩危险度评价方法. 中国安全科学学报, 14(4): 40-42.
      文洪, 2018. 帕隆藏布流域沟槽型雪崩时空演化机制研究. 成都: 西南交通大学, 118-140.
      文洪, 王栋, 王生仁, 等, 2021. 藏东南帕隆藏布流域雪崩关键影响因素与易发性区划研究. 工程地质学报, 29(2): 404-415.
      汶林科, 向灵芝, 蔡毅, 等, 2016. 雪崩的形成机理研究. 山地学报, 34(1): 1-11.
      汶林科, 贾靖, 姚檀栋, 2023. 雪崩的监测研究综述. 冰川冻土, 45(6): 1679-1702.
      谢自楚, 谢维尔斯基, 1996. 天山积雪和雪崩. 长沙: 湖南师范大学出版社, 101-156 .
      张天意, 刘杰 ,杨治纬, 等, 2023. 基于空-地协同调查的西天山阿尔先沟雪崩过程数值模拟. 干旱区研究, 40(11): 1729-1743.
      周石硚, 谢自楚, 2003. 雪崩危险度评价的类型、特征和方法. 自然资源学报, 12(2): 45-50.
    • 加载中
    计量
    • 文章访问数:  84
    • HTML全文浏览量:  3
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-05-30
    • 网络出版日期:  2025-12-29

    目录

      /

      返回文章
      返回