• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高伟, 廖贞闵, 秦鹏程, 2025. 基于Copula函数的湖北省短时强降水IDF时空特征分析. 地球科学. doi: 10.3799/dqkx.2025.289
    引用本文: 高伟, 廖贞闵, 秦鹏程, 2025. 基于Copula函数的湖北省短时强降水IDF时空特征分析. 地球科学. doi: 10.3799/dqkx.2025.289
    Wei Gao, Zhenmin Liao, Pengcheng Qin, 2025. Spatiotemporal Analysis of IDF Curves for Short Duration Heavy Rainfall in Hubei Province Based on Copula Functions. Earth Science. doi: 10.3799/dqkx.2025.289
    Citation: Wei Gao, Zhenmin Liao, Pengcheng Qin, 2025. Spatiotemporal Analysis of IDF Curves for Short Duration Heavy Rainfall in Hubei Province Based on Copula Functions. Earth Science. doi: 10.3799/dqkx.2025.289

    基于Copula函数的湖北省短时强降水IDF时空特征分析

    doi: 10.3799/dqkx.2025.289
    基金项目: 

    湖北省自然科学基金气象创新发展联合基金(2023AFD098)

    全国暴雨研究开放基金(BYKJ2025M20)

    中国气象局青年创新团队(CMA2023QN15)

    详细信息
      作者简介:

      高伟(1980-),男,副教授,主要从事气象灾害监测与影响评估方面的工作. Email:Gaowei@cug.edu.cn。ORCID:0000-0001-7814-3712

      通讯作者:

      秦鹏程, qinpengcheng027@163.com

    • 中图分类号: P426

    Spatiotemporal Analysis of IDF Curves for Short Duration Heavy Rainfall in Hubei Province Based on Copula Functions

    • 摘要: 为探究气候变化背景下湖北省短时强降水时空演变特征,基于1961-2025年湖北省74个气象站分钟降水观测数据,采用Copula函数与多种候选边缘分布构建了适用于不同地理区域的短历时(5-180min)强降水强度-历时-频率(IDF)曲线。空间分析表明,中东部地区IDF曲线设计雨强较西部地区偏高10%~224%,且在短历时、高重现期条件下差异更显著。时间序列分析表明,1991-2025年间短时强降水IDF曲线估值较1961-1990年增幅达1%~53%,且以短历时、高重现期增幅最显著。总体上,中东部城市化及平原与山地过渡区域的强降水强度与频率更高,极端强降水事件趋于集中、频发和增强,但东北部地区出现了强度下降的特征。研究结果可为支撑韧性城市规划与基础设施的适应性设计、优化防灾减灾规划提供科学支撑。

       

    • Allen M. R., Ingram W. J., 2002. Constraints On Future Changes in Climate and the Hydrologic Cycle. Nature, 419: 224.
      Ariff N. M., Jemain A. A., Ibrahim K, et al. 2012. IDF Relationships Using Bivariate Copula for Storm Events in Peninsular Malaysia. Journal of Hydrology, 470: 158-171.
      Bernard M. M., 1932. Formulas for Rainfall Intensities of Long Duration. Transactions of the American Society of Civil Engineers, 96: 592-606.
      Burn D. H., 2014. A Framework for Regional Estimation of Intensity-Duration-Frequency (IDF) Curves. Hydrological Processes, 28: 4209-4218.
      Castillo E., 1988. Extreme Value Theory in Engineering. Boston: Academic Press. 389.
      Chitrakar P., Sana A., Almalki S. H. N., 2023. Regional Distribution of Intensity-Duration-Frequency (IDF) Relationships in Sultanate of Oman. Journal of King Saud University Science, 35: 14.
      Chow, Maidment D. R., Mays L. W., 1988. Applied Hydrology. McGraw-Hill.
      Coronado-Hernandez O. E., Merlano-Sabalza E., Diaz-Vergara Z., et al. 2020. Selection of Hydrological Probability Distributions for Extreme Rainfall Events in the Regions of Colombia. Water, 12: 12.
      Fowler H. J., Lenderink G., Prein A. F., et al. 2021. Anthropogenic Intensification of Short-Duration Rainfall Extremes. Nature Reviews Earth & Environment, 2: 107-122.
      Gong L., Zhang X., Liu J., et al. 2024. Exploring the Influence of Urban Agglomeration On Extreme Precipitation: Evidence From the Middle Reaches of the Yangtze River, China. Journal of Hydrology-Regional Studies, 55: 16.
      Hong H. P., Li S. H., Mara T. G., 2013. Performance of the Generalized Least-Squares Method for the Gumbel Distribution and its Application to Annual Maximum Wind Speeds. Journal of Wind Engineering and Industrial Aerodynamics, 119: 121-132.
      Hoskings J., 1990. L-Moment - Analysis and Estimation of Distributions Using Linear-Combinations of Order-Statistics. Journal of The Royal Statistical Society Series B-Methodological, 52: 105-124.
      Hu H., Ayyub B. M., 2019. Machine Learning for Projecting Extreme Precipitation Intensity for Short Durations in a Changing Climate. 9.
      Huang Z., Zhao T., 2025. How Suitable are Copula Models for Post-Processing Global Precipitation Forecasts? Journal of Hydrology, 656: 14.
      IPCC. 2023. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel On Climate Change [Core Writing Team, H. Lee and J. Romero (Eds.)]. IPCC, 35-115.
      Kao S., Govindaraju R. S., 2008. Trivariate Statistical Analysis of Extreme Rainfall Events Via the Plackett Family of Copulas. Water Resources Research, 44: 19.
      Kourtis I. M., Tsihrintzis V. A., 2022. Update of Intensity-Duration-Frequency (IDF) Curves Under Climate Change: A Review. Water Supply, 22: 4951-4974.
      Koutsoyiannis D., Kozonis D., Manetas A., 1998. A Mathematical Framework for Studying Rainfall Intensity-Duration-Frequency Relationships. Journal of Hydrology, 206: 118-135.
      Lima C. H. R., Kwon H., Kim Y., 2018. A Local-Regional Scaling-Invariant Bayesian GEV Model for Estimating Rainfall IDF Curves in a Future Climate. Journal of Hydrology, 566: 73-88.
      Noor M., Ismail T., Shahid S., et al. 2021. Evaluating Intensity-Duration-Frequency (IDF) Curves of Satellite-Based Precipitation Datasets in Peninsular Malaysia. Atmospheric Research, 248: 15.
      Ribeiro A. F. S., Russo A., Gouveia C. M., et al. 2019. Copula-Based Agricultural Drought Risk of Rainfed Cropping Systems. Agricultural Water Management, 223: 11.
      Vishnupriya M. S., Agilan V., 2025. Expert System for Updating the Rainfall Intensity Duration Frequency Curve Under Climate Change and Non-Stationarity Over India. Water Resources Management: 16.
      Westra S., Fowler H. J., Evans J. P., et al. 2014. Future Changes to the Intensity and Frequency of Short-Duration Extreme Rainfall. Reviews of Geophysics, 52: 522-555.
      Wu M., Luo Y., Chen F., et al. 2019. Observed Link of Extreme Hourly Precipitation Changes to Urbanization over Coastal South China. Journal of Applied Meteorology and Climatology, 58: 1799-1819.
      Yan L., Xiong L. H., Jiang C., et al. 2021. Updating Intensity-Duration-Frequency Curves for Urban Infrastructure Design Under a Changing Environment. Wiley Interdisciplinary Reviews-Water, 8.
      Yu C., Cheng L., 2013. Distribution and Mechanisms of Orographic Precipitation Associated with Typhoon Morakot ( 2009 ). Journal of the Atmospheric Sciences, 70: 2894-2915.
      Zhang H., Zhang R., Ju Q., et al. 2023. Analysis of Extreme Precipitation Variation Characteristics and the Influencing Factors in the Yunnan-Guizhou Plateau Region, China. Sustainability, 15: 28.
      曹经福, 杨艳娟, 郭军, 等. 2021. 天津市短时暴雨雨型时空分异及其对城市内涝的影响. 气象与环境学报, 37: 114-121.
      Cao J. F.,Yang Y. J.,Guo J.,et al. 2021. Spatiotemporal Differentiation of Short-Duration Rainstorm Pattern and its Influence on Urban Waterlogging in Tianjin. Journal of Meteorology and Environment, 37( 4) : 114-121.
      曹伟华, 梁旭东, 赵晗萍, 等. 2016. 基于Copula函数的北京强降水频率及危险性分析. 气象学报, 74: 772-783.
      Cao W., Liang X. D., Zhao H. P., et al. 2016. Copula-Based Frequency Analysis and its Application in Hazard Risk Assessment of Heavy Rainfall in Beijing. Acta Meteorologica Sinica, 74(5): 772-783
      陈浩铭, 庞博, 任汉承, 等. 2024. 基于Copula函数的昆明市降水特征组合风险空间分布研究. 北京师范大学学报(自然科学版), 60: 607-616.
      Chen H. M., Pang B., Ren H. C., et al. 2024. Spatial Distribution of Combined Risk of Precipitation Characteristics in Kunming City Based on Copula Functions. Journal of Beijing Normal University(Natural Science), 60(5): 607-616.
      谌伟, 刘佩廷, 徐枝芳, 等. 2022. 湖北强降水频次时空特征及基于Gwr模型的地形关系分析. 热带气象学报, 38: 216-226.
      Chen W., Liu P. T., Xu Z. F., et al. 2022. Spatio-Temporal Characteristics of Frequency of Heavy Rainfall Events in Hubei Province and Analysis of Topographic Relationship Based on GWR. Journal of Tropical Meteorology, 38(2): 216-226.
      冯文凯, 赵家琛, 易小宇, 等. 2025. 闽粤赣边区“6·16”强降雨诱发群发滑坡特征与驱动因素. 地球科学, 50: 4111-4124.
      Feng W. K., Zhao J. C., Yi X. Y., et al. 2025. Characteristics and Drivers of Clustered Landslides Induced by Extreme Rainstorm on June 16 in Fujian-Guangdong-Jiangxi Junction Area. Earth Science, 50(10): 4111-4124.
      高鹏举, 周翔, 郑玉烽, 等. 2025. 台风大风暴雨复合致灾的灾害风险评估研究:以福州市为例. 水利水电技术(中英文), 56: 1-14.
      Gao P. J., Zhou X., Zheng Y. F., et al. 2025. Study on Risk Assessment of Compound Disasters Caused by Typhoon-Induced Gales Andstorms: A Case Study of Fuzhou City. Water Resources and Hydropower Engineering, 56( 5) :1- 14.
      冷亮, 周伶俐, 肖艳姣, 等. 2021. 基于地面分钟雨量数据的湖北省短时强降水时空分布特征分析. 暴雨灾害, 40: 61-68.
      Leng L., Zhou L. L., Xiao Y. J., et al. 2021. Analysis of temporal and spatial distribution characteristics of flash heavy rain in Hubei Province based on minute rain gauge data[J]. Torrential Rain and Disasters, 40(1): 61-68.
      刘思宇, 车军辉, 董旭光, 等. 2025. 基于Copula函数的山东强降水重现期分析. 气象, 51: 1006-1017.
      Liu S. Y., Che J. h., Dong X. G., et al. 2025. Analysis on the Return Period of Heavy Precipitation in Shandong Based on Copula Function. Meteor Mon, 51(8):1006-1017.
      苏燕, 付仲洋, 赖晓鹤, 等. 2025. 多特征空间自适应下的公路临水区地质灾害易发性评价. 地球科学, 50: 3823-3843.
      Su Y., Fu Z. Y., Lai X. H., et al. 2025. Geohazard Susceptibility Assessment of Riverside Highway Zones under Multiple Feature Spaces Adaptation Network. Earth Science, 50(10): 3823-3843.
      唐永兰, 于晓晶, 徐桂荣, 等. 2018. 近54 a湖北极端降水的变化特征及其与城市化的关系研究. 暴雨灾害, 37: 73-82.
      Tang Y. L., Yu X. J., Xu G. R., et al. 2018. Study on the Change Characteristics of Extreme Precipitation and its Relationship with Urbanization in Hubei Province in Recent 54 Years. Torrential Rain and Disasters, 37(1): 73-82.
      严正宵, 夏军, 宋进喜, 等. 2020. 中小流域设计暴雨雨型研究进展. 地理科学进展, 39: 1224-1235.
      Yan Z. X., Xia J., Song J. X., et al. 2020, Research progress on design hyetographs in small and medium-scale basins. Progress in Geography, 39(7): 1224-1235
      俞小鼎. 2013. 短时强降水临近预报的思路与方法. 暴雨灾害, 32: 202-209.
      Yu X. D., 2013. Nowcasting Thinking and Method of Flash Heavy Rain. Torrential Rain and Disasters, 32(3): 202-209.
      左斌斌, 徐宗学, 叶陈雷, 等. 2021. 基于Copula函数的北京市设计降雨研究. 水力发电学报, 40: 77-88.
      Zuo B. B., Xu Z.X., Ye C. L., et al. Study on Design Rainfalls in Beijing Based on Copula Functions . Journal of Hydroelectric Engineering, 2021, 40(2): 77-88.
    • 加载中
    计量
    • 文章访问数:  101
    • HTML全文浏览量:  11
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-11-06
    • 网络出版日期:  2025-12-29

    目录

      /

      返回文章
      返回