• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陈梅, 林棋文, 杨虎锋, 宋章, 罗肖, 崔浩文, 程谦恭, 王玉峰, 2026. 内外动力耦合作用下雅鲁藏布江中游崩滑灾害分布规律. 地球科学. doi: 10.3799/dqkx.2025.292
    引用本文: 陈梅, 林棋文, 杨虎锋, 宋章, 罗肖, 崔浩文, 程谦恭, 王玉峰, 2026. 内外动力耦合作用下雅鲁藏布江中游崩滑灾害分布规律. 地球科学. doi: 10.3799/dqkx.2025.292
    Chen Mei, Lin Qiwen, Yang Hufeng, Song Zhang, Luo Xiao, Cui Haowen, Cheng Qiangong, Wang Yufeng, 2026. Distribution of Rockfalls and Rockslides in Middle Zone of Yarlung Zangbo River under the Coupling Effects of Endogenic and Exogenic Geological Processes. Earth Science. doi: 10.3799/dqkx.2025.292
    Citation: Chen Mei, Lin Qiwen, Yang Hufeng, Song Zhang, Luo Xiao, Cui Haowen, Cheng Qiangong, Wang Yufeng, 2026. Distribution of Rockfalls and Rockslides in Middle Zone of Yarlung Zangbo River under the Coupling Effects of Endogenic and Exogenic Geological Processes. Earth Science. doi: 10.3799/dqkx.2025.292

    内外动力耦合作用下雅鲁藏布江中游崩滑灾害分布规律

    doi: 10.3799/dqkx.2025.292
    基金项目: 

    国家自然科学基金资助项目 (42577233

    U2244229

    42207203);宜宾西南交通大学研究院博士后补助经费项目(42207203);中央高校基本科研业务经费 (2682024CX076)

    详细信息
      作者简介:

      陈梅 (2000-),女,博士研究生,主要从事地质灾害机理研究. ORCID:0009-0007-1010-3555. E-mail:chenmei@my.swjtu.edu.cn

      通讯作者:

      林棋文(1992-),男,副研究员,主要从事高速远程滑坡动力学机理研究.ORCID:0000-0002-4610-3684.E-mail:linqiwen@my.swjtu.edu.cn

    • 中图分类号: P642

    Distribution of Rockfalls and Rockslides in Middle Zone of Yarlung Zangbo River under the Coupling Effects of Endogenic and Exogenic Geological Processes

    • 摘要: 雅鲁藏布江中游独特的区域地质环境与气候条件孕育了广泛的崩滑灾害,为研究内外动力耦合作用下地表崩滑响应提供了天然良好的实验室。本研究通过遥感解译和野外调查,识别贡嘎-林芝雅江河段滑坡483处,近岸重点崩塌26处和变形体18处,分析揭示内外动力耦合作用下崩滑灾害分区分带规律:崩滑灾害沿桑日-朗县段密集发育,该段与构造活动密切相关;崩滑灾害主要分布在季节冻土区;滑坡集中在加查-朗县、贡嘎-桑日的千枚岩等软岩中,其次是里龙-林芝的片麻岩等地层,崩塌集中在桑日-里龙的花岗闪长岩类中;贡嘎-桑日段宽谷地形低缓,小规模滑坡更为发育。此外,加查-朗县沿岸连续分布几处大规模滑坡与河流凹岸侵蚀有关。灾害分布体现了构造对灾害密度、气候对灾害孕育、岩性对灾害类型、地形地貌对灾害规模的主控作用。

       

    • Casagli, N., Intrieri, E., Tofani, V., et al., 2023. Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques. Nature Reviews Earth & Environment, 4(1): 51-64. https://doi.org/10.1038/s43017-022-00373-x
      Chigira, M., Tsou, C. Y., Higaki, D., et al., 2022. A Series of Rockslides and Gravitational Slope Deformations Aligned along the Kali Gandaki across the Nepal Himalaya. Geomorphology, 400: 108098. https://doi.org/10.1016/j.geomorph.2021.108098
      China Railway No.1 Engineering Survey and Design Institute, 1999. Railway Engineering Geology Handbook. Beijing: China Railway Publishing House, 93-106 (in Chinese).
      Gao, Y. J., Zhao, S. Y., Deng, J. H., 2020. Developing Law of Damming Landslide and Challenges for Disaster Prevention and Mitigation in the Three–River–Parallel Territory in the Tibetan Plateau. Advanced Engineering Sciences, 52(5): 50-61 (in Chinese with English abstract).
      Huang, R. Q., 2007. Large-scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(03): 433-454 (in Chinese with English abstract).
      Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y
      Korup, O., Clague, J. J., Hermanns, R. L., et al., 2007. Giant Landslides, Topography, and Erosion. Earth and Planetary Science Letters, 261(3-4): 578-589. https://doi.org/10.1016/j.epsl.2007.07.025
      Lan, H., Peng, J., Zhu, Y., et al., 2022. Research on Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin. Science China Earth Sciences, 65(2): 234–256 (in Chinese with English abstract).
      Lavé, J., Guérin, C., Valla, P. G., et al., 2023. Medieval Demise of a Himalayan Giant Summit Induced by Mega-Landslide. Nature, 619(7968): 94-101. https://doi.org/10.1038/s41586-023-06040-5
      Liu, J., Sun, Z. T., Wang, W. X., et al., 2025. Surface-Earth Response to Deep-Earth Processes and Consequential Natural Disasters. Earth Science Frontiers, 32(03): 7-22 (in Chinese with English abstract).
      Liu, Y., 2021. The Mechanism of Disasters Induced by Coupling of Endogenic and Exogenic Geological Processes in the Yarlung Zangbo River from Gongga County to Jiacha County. Chengdu: Chengdu University of Technology (in Chinese with English abstract).
      Pánek, T., Svennevig, K., Břežný, M., et al., 2024. The Occurrence, Mechanisms and Hazards of Large Landslides along Tablelands. Nature Reviews Earth & Environment, 5(10): 686-700. https://doi.org/10.1038/s43017-024-00587-1
      Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advances in Earth Science, 19(3): 457-466 (in Chinese with English abstract).
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract).
      Petley, D., 2012. Global Patterns of Loss of Life from Landslides. Geology, 40(10): 927-930. https://doi.org/10.1130/G33217.1
      Pfluger, F., Weber, S., Steinhauser, J., et al., 2025. Massive Permafrost Rock Slide under a Warming Polythermal Glacier Deciphered through Mechanical Modeling (Bliggspitze, Austria). Earth Surface Dynamics, 13(1): 41-70. https://doi.org/10.5194/esurf-13-41-2025
      Stoffel, M., Trappmann, D. G., Coullie, M. I., et al., 2024. Rockfall from an Increasingly Unstable Mountain Slope Driven by Climate Warming. Nature Geoscience, 17(3): 249-254. https://doi.org/10.1038/s41561-024-01390-9
      Sun, H. L., 1996. Formation and Evolution of Qinghai-Xizang Plateau. Shanghai: Shanghai Science and Technology Press (in Chinese).
      Tang, H., 2025. Mechanism of the Coevolution of Landslides and River Valleys in the Three Gorges Reservoir Area. Chin Sci Bull, 70(21): 3505-3515 (in Chinese with English abstract).
      Valagussa, A., Marc, O., Frattini, P., et al., 2019. Seismic and Geological Controls on Earthquake-Induced Landslide Size. Earth and Planetary Science Letters, 506: 268-281. https://doi.org/10.1016/j.epsl.2018.11.005
      Wang, R. Q., Wang, X. L., Liu, H. Y., et al., 2019. Identification and Main Controlling Factor Analysis of Collapse and Landslide Based on Fine DEM—Taking Jiacha-Langxian Section of Yarlung Zangbo Suture Zone as an Example. Journal of Engineering Geology, 31(05): 956-964 (in Chinese with English abstract).
      Wang, Y., Wang, H., Cui, P., et al., 2024. Disaster Effects of Climate Change and the Associated Scientific Challenges. Chin Sci Bull, 69: 286-300 (in Chinese with English abstract).
      Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2025. Research on Rock Avalanches in Tibetan Plateau: From Field Observations to Dynamic Mechanisms. Earth Science, 50(10): 4071-4095 (in Chinese with English abstract).
      Wu, R. A., Guo, C. B., Du, Y. B., et al., 2017. Research on Geohazard Developing Characteristics in Jiacha to Langxian Section of Sichuan-Tibet Railway. Geoscience, 31(05): 956-964 (in Chinese with English abstract).
      Wu, X., Xu, X., Yu, G., et al., 2024. The China Active Faults Database (CAFD) and Its Web System. Earth Syst. Sci. Data, 16, 3391-3417. https://doi.org/10.5194/essd-16-3391-2024
      Yanites, B. J., Clark, M. K., Roering, J. J., et al., 2025. Cascading Land Surface Hazards as a Nexus in the Earth System. Science, 388(6754): eadp9559. https://doi.org/10.1126/science.adp9559
      Yao, T. D., Wu, G. J., Xu, B. Q., et al., 2019. Asian Water Tower Change and Its Impacts. Bulletin of Chinese Academy of Sciences, 34(11): 1203-1209 (in Chinese with English abstract).
      Zhang, B., Wang, F., Sheng, P., et al., 2025. Research Progress on the Influence Patterns of Endogenic and Exogenic Dynamics on Geological Hazards in Southeastern Tibet Plateau. Earth Science (in Chinese with English abstract).
      Zhao, B., Su, L., 2025. Complex Spatial and Size Distributions of Landslides in the Yarlung Tsangpo River (YTR) Basin. Journal of Rock Mechanics and Geotechnical Engineering, 17(2): 897-914. https://doi.org/10.1016/j.jrmge.2024.01.021
      Zou, D., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc-11-2527-2017
      高云建,赵思远,邓建辉,2020. 青藏高原三江并流区重大堵江滑坡孕育规律及其防灾挑战. 工程科学与技术,52(5): 50-61.
      黄润秋,2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报,26(03): 433-454.
      兰恒星,彭建兵,祝艳波,等,2022. 黄河流域地质地表过程与重大灾害效应研究与展望. 中国科学:地球科学,52(2): 199-221.
      刘静,孙照通,王文鑫,等,2025. 表层地球系统的深部过程响应与地表自然灾害. 地学前缘,32(03): 7-22.
      刘勇,2021. 内外动力耦合下雅鲁藏布江贡嘎-加查河段的成灾机制研究. 成都:成都理工大学.
      彭建兵,马润勇,卢全中,等,2004. 青藏高原隆升的地质灾害效应. 地球科学进展,19(3): 457-466.
      彭建兵,张永双,黄达,等,2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学,48(08): 3099-3114.
      孙鸿烈,1996. 青藏高原的形成演化. 上海:上海科学技术出版社.
      唐辉明,2025. 三峡库区滑坡与河谷协同演化机制. 科学通报,70(21): 3505-3515.
      铁道部第一勘测设计院,1999. 铁路工程地质手册. 北京:中国铁道出版社,93-106.
      王瑞琪,王学良,刘海洋,等,2019. 基于精细DEM的崩塌滑坡灾害识别及主控因素分析——以雅鲁藏布江缝合带加查—朗县段为例. 工程地质学报,31(05): 956-964.
      王岩,王昊,崔鹏,等,2024. 气候变化的灾害效应与科学挑战. 科学通报,69: 286–300.
      王玉峰,程谦恭,林棋文,等,2025. 青藏高原高速远程滑坡研究:从地质现象到动力学机理. 地球科学,50(10): 4071-4095.
      吴瑞安,郭长宝,杜宇本,等,2017. 川藏铁路加查——朗县段地质灾害发育特征研究. 现代地质,31(05): 956-964.
      姚檀栋,邬光剑,徐柏青,等,2019. “亚洲水塔”变化与影响. 中国科学院院刊,34(11): 1203-1209.
      张波,汪发武,盛鹏,等,2025. 藏东南地质灾害的内外动力影响模式研究进展. 地球科学.
    • 加载中
    计量
    • 文章访问数:  45
    • HTML全文浏览量:  0
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-15
    • 网络出版日期:  2026-01-05

    目录

      /

      返回文章
      返回