|
Casagli, N., Intrieri, E., Tofani, V., et al., 2023. Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques. Nature Reviews Earth & Environment, 4(1): 51-64. https://doi.org/10.1038/s43017-022-00373-x |
|
Chigira, M., Tsou, C. Y., Higaki, D., et al., 2022. A Series of Rockslides and Gravitational Slope Deformations Aligned along the Kali Gandaki across the Nepal Himalaya. Geomorphology, 400: 108098. https://doi.org/10.1016/j.geomorph.2021.108098 |
|
China Railway No.1 Engineering Survey and Design Institute, 1999. Railway Engineering Geology Handbook. Beijing: China Railway Publishing House, 93-106 (in Chinese). |
|
Gao, Y. J., Zhao, S. Y., Deng, J. H., 2020. Developing Law of Damming Landslide and Challenges for Disaster Prevention and Mitigation in the Three–River–Parallel Territory in the Tibetan Plateau. Advanced Engineering Sciences, 52(5): 50-61 (in Chinese with English abstract). |
|
Huang, R. Q., 2007. Large-scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(03): 433-454 (in Chinese with English abstract). |
|
Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y |
|
Korup, O., Clague, J. J., Hermanns, R. L., et al., 2007. Giant Landslides, Topography, and Erosion. Earth and Planetary Science Letters, 261(3-4): 578-589. https://doi.org/10.1016/j.epsl.2007.07.025 |
|
Lan, H., Peng, J., Zhu, Y., et al., 2022. Research on Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin. Science China Earth Sciences, 65(2): 234–256 (in Chinese with English abstract). |
|
Lavé, J., Guérin, C., Valla, P. G., et al., 2023. Medieval Demise of a Himalayan Giant Summit Induced by Mega-Landslide. Nature, 619(7968): 94-101. https://doi.org/10.1038/s41586-023-06040-5 |
|
Liu, J., Sun, Z. T., Wang, W. X., et al., 2025. Surface-Earth Response to Deep-Earth Processes and Consequential Natural Disasters. Earth Science Frontiers, 32(03): 7-22 (in Chinese with English abstract). |
|
Liu, Y., 2021. The Mechanism of Disasters Induced by Coupling of Endogenic and Exogenic Geological Processes in the Yarlung Zangbo River from Gongga County to Jiacha County. Chengdu: Chengdu University of Technology (in Chinese with English abstract). |
|
Pánek, T., Svennevig, K., Břežný, M., et al., 2024. The Occurrence, Mechanisms and Hazards of Large Landslides along Tablelands. Nature Reviews Earth & Environment, 5(10): 686-700. https://doi.org/10.1038/s43017-024-00587-1 |
|
Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advances in Earth Science, 19(3): 457-466 (in Chinese with English abstract). |
|
Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract). |
|
Petley, D., 2012. Global Patterns of Loss of Life from Landslides. Geology, 40(10): 927-930. https://doi.org/10.1130/G33217.1 |
|
Pfluger, F., Weber, S., Steinhauser, J., et al., 2025. Massive Permafrost Rock Slide under a Warming Polythermal Glacier Deciphered through Mechanical Modeling (Bliggspitze, Austria). Earth Surface Dynamics, 13(1): 41-70. https://doi.org/10.5194/esurf-13-41-2025 |
|
Stoffel, M., Trappmann, D. G., Coullie, M. I., et al., 2024. Rockfall from an Increasingly Unstable Mountain Slope Driven by Climate Warming. Nature Geoscience, 17(3): 249-254. https://doi.org/10.1038/s41561-024-01390-9 |
|
Sun, H. L., 1996. Formation and Evolution of Qinghai-Xizang Plateau. Shanghai: Shanghai Science and Technology Press (in Chinese). |
|
Tang, H., 2025. Mechanism of the Coevolution of Landslides and River Valleys in the Three Gorges Reservoir Area. Chin Sci Bull, 70(21): 3505-3515 (in Chinese with English abstract). |
|
Valagussa, A., Marc, O., Frattini, P., et al., 2019. Seismic and Geological Controls on Earthquake-Induced Landslide Size. Earth and Planetary Science Letters, 506: 268-281. https://doi.org/10.1016/j.epsl.2018.11.005 |
|
Wang, R. Q., Wang, X. L., Liu, H. Y., et al., 2019. Identification and Main Controlling Factor Analysis of Collapse and Landslide Based on Fine DEM—Taking Jiacha-Langxian Section of Yarlung Zangbo Suture Zone as an Example. Journal of Engineering Geology, 31(05): 956-964 (in Chinese with English abstract). |
|
Wang, Y., Wang, H., Cui, P., et al., 2024. Disaster Effects of Climate Change and the Associated Scientific Challenges. Chin Sci Bull, 69: 286-300 (in Chinese with English abstract). |
|
Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2025. Research on Rock Avalanches in Tibetan Plateau: From Field Observations to Dynamic Mechanisms. Earth Science, 50(10): 4071-4095 (in Chinese with English abstract). |
|
Wu, R. A., Guo, C. B., Du, Y. B., et al., 2017. Research on Geohazard Developing Characteristics in Jiacha to Langxian Section of Sichuan-Tibet Railway. Geoscience, 31(05): 956-964 (in Chinese with English abstract). |
|
Wu, X., Xu, X., Yu, G., et al., 2024. The China Active Faults Database (CAFD) and Its Web System. Earth Syst. Sci. Data, 16, 3391-3417. https://doi.org/10.5194/essd-16-3391-2024 |
|
Yanites, B. J., Clark, M. K., Roering, J. J., et al., 2025. Cascading Land Surface Hazards as a Nexus in the Earth System. Science, 388(6754): eadp9559. https://doi.org/10.1126/science.adp9559 |
|
Yao, T. D., Wu, G. J., Xu, B. Q., et al., 2019. Asian Water Tower Change and Its Impacts. Bulletin of Chinese Academy of Sciences, 34(11): 1203-1209 (in Chinese with English abstract). |
|
Zhang, B., Wang, F., Sheng, P., et al., 2025. Research Progress on the Influence Patterns of Endogenic and Exogenic Dynamics on Geological Hazards in Southeastern Tibet Plateau. Earth Science (in Chinese with English abstract). |
|
Zhao, B., Su, L., 2025. Complex Spatial and Size Distributions of Landslides in the Yarlung Tsangpo River (YTR) Basin. Journal of Rock Mechanics and Geotechnical Engineering, 17(2): 897-914. https://doi.org/10.1016/j.jrmge.2024.01.021 |
|
Zou, D., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc-11-2527-2017 |
|
高云建,赵思远,邓建辉,2020. 青藏高原三江并流区重大堵江滑坡孕育规律及其防灾挑战. 工程科学与技术,52(5): 50-61. |
|
黄润秋,2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报,26(03): 433-454. |
|
兰恒星,彭建兵,祝艳波,等,2022. 黄河流域地质地表过程与重大灾害效应研究与展望. 中国科学:地球科学,52(2): 199-221. |
|
刘静,孙照通,王文鑫,等,2025. 表层地球系统的深部过程响应与地表自然灾害. 地学前缘,32(03): 7-22. |
|
刘勇,2021. 内外动力耦合下雅鲁藏布江贡嘎-加查河段的成灾机制研究. 成都:成都理工大学. |
|
彭建兵,马润勇,卢全中,等,2004. 青藏高原隆升的地质灾害效应. 地球科学进展,19(3): 457-466. |
|
彭建兵,张永双,黄达,等,2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学,48(08): 3099-3114. |
|
孙鸿烈,1996. 青藏高原的形成演化. 上海:上海科学技术出版社. |
|
唐辉明,2025. 三峡库区滑坡与河谷协同演化机制. 科学通报,70(21): 3505-3515. |
|
铁道部第一勘测设计院,1999. 铁路工程地质手册. 北京:中国铁道出版社,93-106. |
|
王瑞琪,王学良,刘海洋,等,2019. 基于精细DEM的崩塌滑坡灾害识别及主控因素分析——以雅鲁藏布江缝合带加查—朗县段为例. 工程地质学报,31(05): 956-964. |
|
王岩,王昊,崔鹏,等,2024. 气候变化的灾害效应与科学挑战. 科学通报,69: 286–300. |
|
王玉峰,程谦恭,林棋文,等,2025. 青藏高原高速远程滑坡研究:从地质现象到动力学机理. 地球科学,50(10): 4071-4095. |
|
吴瑞安,郭长宝,杜宇本,等,2017. 川藏铁路加查——朗县段地质灾害发育特征研究. 现代地质,31(05): 956-964. |
|
姚檀栋,邬光剑,徐柏青,等,2019. “亚洲水塔”变化与影响. 中国科学院院刊,34(11): 1203-1209. |
|
张波,汪发武,盛鹏,等,2025. 藏东南地质灾害的内外动力影响模式研究进展. 地球科学. |