|
Adam, N., and Perner, M., 2018. Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents. Frontiers in Microbiology, 9: 2873. https://doi.org/10.3389/fmicb.2018.02873 |
|
Allen, D. E., and Seyfried, W. E., 2003. Compositional Controls on Vent Fluids from Ultramafic-Hosted Hydrothermal Systems at Mid-Ocean Ridges: An Experimental Study at 400°C, 500 bars. Geochimica et Cosmochimica Acta, 67(8): 1531-1542. https://doi.org/10.1016/S0016-7037(02)01173-0 |
|
772. https://doi.org/10.1016/S0016-7037(99)00442-1 |
|
Bach, W., Banerjee, N. R., Dick, H. J. B., et al., 2002. Discovery of Ancient and Active Hydrothermal Systems Along the Ultra-Slow Spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 3: 1044. https://doi.org/10.1029/2001GC000279 |
|
Bischoff, J. L., and Rosenbauer, R. J., 1996. The Alteration of Rhyolite in CO2 Charged Water at 200 and 350°C: The Unreactivity of CO2 at Higher Temperature. Geochimica et Cosmochimica Acta, 60(20): 3859-3867. https://doi.org/10.1016/0016-7037(96)00208-6 |
|
Chang, C., 2025. The Study of Carbon Dioxide Sequestration by Carbonation in Basal - Ultramafic Rocks(Dissertation). Taiyuan: Taiyuan University of Technology (in Chinese with English abstract). |
|
Chizmeshya, A. V. G., McKelvy, M. J., Squires, K., et al., 2007. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost. United States: Arizona State University. |
|
Corre, M., Brunet, F., Schwartz, S., et al., 2023. Quaternary Low-Temperature Serpentinization and Carbonation in the New Caledonia Ophiolite. Scientific Reports, 13(1): 19413. https://doi.org/10.1038/s41598-023-46691-y |
|
Daval, D., Sissmann, O., Menguy, N., et al., 2011. Influence of Amorphous Silica Layer Formation on the Dissolution Rate of Olivine at 90°C and Elevated pCO2. Chemical Geology, 284(1): 193-209. https://doi.org/10.1016/j.chemgeo.2011.02.021 |
|
Decrausaz, T., Godard, M., Menzel, M. D., et al., 2023. Pervasive Carbonation of Peridotite to Listvenite (Semail Ophiolite, Sultanate of Oman): Clues from Iron Partitioning and Chemical Zoning. European Journal of Mineralogy, 35(2): 171-187. https://doi.org/10.5194/ejm-35-171-2023 |
|
Ding, X.,Liu, Z.,Huang, R., et al., 2016. Water-Rock Interaction in Oceanic Subduction Zone: Serpentinization. Journal of Engineering Studies, 8(3): 258-268 (in Chinese with English abstract). |
|
Dry, M. E., 2002. The Fischer–Tropsch Process: 1950–2000. Catalysis Today, 71(3): 227-241. https://doi.org/https://doi.org/10.1016/S0920-5861(01)00453-9 |
|
Duan, Z., Sun, R., Zhu, C., et al., 2006. An Improved Model for the Calculation of CO2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl−, and SO2−4. Marine Chemistry, 98(2-4): 131-139. https://doi.org/10.1016/j.marchem.2005.09.001 |
|
Eikeland, E., Blichfeld, A. B., Tyrsted, C., et al., 2015. Optimized Carbonation of Magnesium Silicate Mineral for CO2 Storage. ACS Applied Materials & Interfaces, 7(9): 5258-5264. https://doi.org/10.1021/am508432w |
|
Emmanuel, S., and Berkowitz, B., 2006. An Experimental Analogue for Convection and Phase Separation in Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 111(B9): https://doi.org/10.1029/2006JB004351 |
|
Frost, B. R., 1985. On the Stability of Sulfides, Oxides, and Native Metals in Serpentinite. Journal of Petrology, 26(1): 31-63. https://doi.org/10.1093/petrology/26.1.31 |
|
Früh-Green, G. L., Connolly, J. A. D., Plas, A. et al. (2004). Serpentinization of Oceanic Peridotites: Implications for Geochemical Cycles and Biological Activity. In The Subseafloor Biosphere at Mid‐Ocean Ridges (pp. 119-136). https://doi.org/https://doi.org/10.1029/144GM08 |
|
Gadikota, G., Matter, J., Kelemen, P., et al., 2020. Elucidating the Differences in the Carbon Mineralization Behaviors of Calcium and Magnesium Bearing Alumino-Silicates and Magnesium Silicates for CO2 Storage. Fuel, 277: 117900. https://doi.org/10.1016/j.fuel.2020.117900 |
|
Gadikota, G., Matter, J., Kelemen, P., et al., 2014. Chemical and Morphological Changes During Olivine Carbonation for CO2 Storage in the Presence of NaCl and NaHCO3. Physical Chemistry Chemical Physics, 16(10): 4679. https://doi.org/10.1039/c3cp54903h |
|
Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., et al., 2007. Ex Situ Aqueous Mineral Carbonation. Environmental Science & Technology, 41(7): 2587-2593. https://doi.org/10.1021/es0619253 |
|
Giammar, D. E., Bruant, R. G., and Peters, C. A., 2005. Forsterite Dissolution and Magnesite Precipitation at Conditions Relevant for Deep Saline Aquifer Storage and Sequestration of Carbon Dioxide. Chemical Geology, 217(3-4): 257-276. https://doi.org/10.1016/j.chemgeo.2004.12.013 |
|
Grozeva, N. G., Klein, F., Seewald, S., et al., 2017. Experimental Study of Carbonate Formation in Oceanic Peridotite. Geochimica et Cosmochimica Acta, 199: 264-286. https://doi.org/10.1016/j.gca.2016.10.052 |
|
Guillot, S., and Hattori, K., 2013. Serpentinites: Essential Roles in Geodynamics, Arc Volcanism, Sustainable Development, and the Origin of Life. Elements, 9(2): 95-98. https://doi.org/10.2113/gselements.9.2.95 |
|
Hand, E., 2023. Hidden Hydrogen Does Earth hold Vast Stores of a Renewable, Carbon-Free Fuel? Science, 379(630-636). |
|
He, S., and Morse, J. W., 1993. The Carbonic Acid System and Calcite Solubility in Aqueous Na-K-Ca-Mg-Cl-SO4 Solutions from 0 to 90°C. Geochimica et Cosmochimica Acta, 57(15): 3533-3554. https://doi.org/10.1016/0016-7037(93)90137-L |
|
Hövelmann, J., Austrheim, H., and Jamtveit, B., 2012. Microstructure and Porosity Evolution During Experimental Carbonation of a Natural Peridotite. Chemical Geology, 334: 254-265. https://doi.org/10.1016/j.chemgeo.2012.10.025 |
|
Huang, R., Lin, C.-T., Sun, W., et al., 2017a. The Production of Iron Oxide During Peridotite Serpentinization: Influence of Pyroxene. Geoscience Frontiers, 8(6): 1311-1321. https://doi.org/https://doi.org/10.1016/j.gsf.2017.01.001 |
|
Huang, R., Shang, X., Zhao, Y., et al., 2023. Effect of Fluid Salinity on Reaction Rate and Molecular Hydrogen (H2) Formation During Peridotite Serpentinization at 300°C. Journal of Geophysical Research: Solid Earth, 128(3): e2022JB025218. https://doi.org/10.1029/2022JB025218 |
|
Huang, R., Sun, W., Ding, X., et al., 2013. Mechanism for Serpentinization of Mafic and Ultramafic Rocks and the Potential of Mineralization. Acta Petrologica Sinica, 29(12): 4336-4348 (in Chinese with English abstract). |
|
Huang, R., Song, M., Ding, X., et al., 2017b. Influence of Pyroxene and Spinel on the Kinetics of Peridotite Serpentinization. Journal of Geophysical Research: Solid Earth, 122(9): 7111-7126. https://doi.org/10.1002/2017JB014231 |
|
Huang, R., Sun, W., Ding, X., et al., 2020. Effect of Pressure on the Kinetics of Peridotite Serpentinization. Physics and Chemistry of Minerals, 47(7): 33. https://doi.org/10.1007/s00269-020-01101-x |
|
Huang, R., Sun, W., Song, M., et al., 2019. Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates During Serpentinization of Peridotite and Olivine. Minerals, 9(11): 661. https://doi.org/10.3390/min9110661 |
|
Iyer, K., Rüpke, L. H., Phipps Morgan, J., et al., 2012. Controls of Faulting and Reaction Kinetics on Serpentinization and Double Benioff Zones. Geochemistry, Geophysics, Geosystems, 13(9). https://doi.org/10.1029/2012GC004304 |
|
Jiang, H., Wang, J., and Wan, Bo., 2023. Review in Research Progress in Carbon Sequestration Technology from a Petrological and Geochemical Perspective. Quaternary Sciences, 43(2): 494-508 (in Chinese with English abstract). |
|
Johnson, N. C., Thomas, B., Maher, K., et al., 2014. Olivine Dissolution and Carbonation Under Conditions Relevant for in Situ Carbon Storage. Chemical Geology, 373: 93-105. https://doi.org/10.1016/j.chemgeo.2014.02.026 |
|
Jones, L. C., Rosenbauer, R., Goldsmith, J. I., et al., 2010. Carbonate Control of H2 and CH4 Production in Serpentinization Systems at Elevated P‐Ts. Geophysical Research Letters, 37(14): 2010GL043769. https://doi.org/10.1029/2010GL043769 |
|
Kelemen, P. B., and Hirth, G., 2012. Reaction-Driven Cracking During Retrograde Metamorphism: Olivine Hydration and Carbonation. Earth and Planetary Science Letters, 345-348: 81-89. https://doi.org/10.1016/j.epsl.2012.06.018 |
|
Kelemen, P. B., and Matter, J., 2008. In Situ Carbonation of Peridotite for CO2 Storage. Proceedings of the National Academy of Sciences, 105(45): 17295-17300. https://doi.org/10.1073/pnas.0805794105 |
|
Kelemen, P. B., Matter, J., Streit, E. E., et al., 2011. Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in Situ CO2 Capture and Storage. Annual Review of Earth and Planetary Sciences, 39(1): 545-576. https://doi.org/10.1146/annurev-earth-092010-152509 |
|
Kelemen, P. B., McQueen, N., Wilcox, J., et al., 2020. Engineered Carbon Mineralization in Ultramafic Rocks for CO2 Removal from Air: Review and New Insights. Chemical Geology, 550, 119628. https://doi.org/10.1016/j.chemgeo.2020.119628 |
|
Kelley, D. S., Karson, J. A., Blackman, D. K., et al., 2001. An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30° N. Nature, 412(6843): 145-149. https://doi.org/10.1038/35084000 |
|
King, H. E., Plümper, O., and Putnis, A., 2010. Effect of Secondary Phase Formation on the Carbonation of Olivine. Environmental Science & Technology, 44(16): 6503-6509. https://doi.org/10.1021/es9038193 |
|
Klein, F., Bach, W., Jöns, N., et al., 2009. Iron Partitioning and Hydrogen Generation During Serpentinization of Abyssal Peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73(22): 6868-6893. https://doi.org/10.1016/j.gca.2009.08.021 |
|
Klein, F., and Garrido, C. J., 2011. Thermodynamic Constraints on Mineral Carbonation of Serpentinized Peridotite. Lithos, 126(3): 147-160. https://doi.org/https://doi.org/10.1016/j.lithos.2011.07.020 |
|
Klein, F., and McCollom, T. M., 2013. From Serpentinization to Carbonation: New Insights from a CO2 Injection Experiment. Earth and Planetary Science Letters, 379: 137-145. https://doi.org/10.1016/j.epsl.2013.08.017 |
|
Kularatne, K., Sissmann, O., Kohler, E., et al., 2018. Simultaneous Ex-Situ CO2 Mineral Sequestration and Hydrogen Production from Olivine-Bearing Mine Tailings. Applied Geochemistry, 95: 195-205. https://doi.org/10.1016/j.apgeochem.2018.05.020 |
|
Lafay, R., Montes-Hernandez, G., Janots, E., et al., 2012. Mineral Replacement Rate of Olivine by Chrysotile and Brucite Under High Alkaline Conditions. Journal of Crystal Growth, 347(1): 62-72. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2012.02.040 |
|
Lafay, R., Montes-Hernandez, G., Janots, E., et al., 2014. Simultaneous Precipitation of Magnesite and Lizardite from Hydrothermal Alteration of Olivine Under High-Carbonate Alkalinity. Chemical Geology, 368: 63-75. https://doi.org/10.1016/j.chemgeo.2014.01.008 |
|
Lafay, R., Montes-Hernandez, G., Renard, F., et al., 2018. Intracrystalline Reaction-Induced Cracking in Olivine Evidenced by Hydration and Carbonation Experiments. Minerals, 8(9): 412. https://doi.org/10.3390/min8090412 |
|
Lamadrid, H. M., Rimstidt, J. D., Schwarzenbach, E. M., et al., 2017. Effect of Water Activity on Rates of Serpentinization of Olivine. Nature Communications, 8(1): 16107. https://doi.org/10.1038/ncomms16107 |
|
Li, J., Jacobs, A. D., and Hitch, M., 2019. Direct Aqueous Carbonation on Olivine at a CO2 Partial Pressure of 6.5 MPa. Energy, 173: 902-910. https://doi.org/10.1016/j.energy.2019.02.125 |
|
Li, S., Suo, Y., Jiang, Z., et al., 2024. Hydrogen Tectonics and Oceanfloor Hydrogen Systems. Chinese Science Bulletin, 69(32): 4696-4703. https://doi.org/10.13745/j.esf.sf.2024.6.98 (in Chinese with English abstract). |
|
Liu, Q., Wei, Y., Li, P., et al., 2025a. Natural Hydrogen in the Volcanic-Bearing Sedimentary Basin: Origin, Conversion, and Production Rates. Science Advances, 11(4): eadr6771. https://doi.org/doi: 10.1126/sciadv.adr6771 |
|
Liu, Q., Wu, X., Huang, X., et al., 2024. Integrated Geochemical Identification of Natural Hydrogen Sources. Science Bulletin, 69(19): 2993-2996. https://doi.org/https://doi.org/10.1016/j.scib.2024.07.004 |
|
Liu, Q., Wu, X., Huang, X., et al., 2025b. Occurrence of Global Natural Hydrogen and Profitable Preservation. Journal of Earth Science, 36(4): 1525-1554. https://doi.org/10.1007/s12583-024-0120-2 |
|
Liu, Q., Wu, X., Meng, Q., et al., 2024. Natural hydrogen: A Potential Carbon-Free Energy Source. Chinese Science Bulletin, 69(17): 2344-2350 (in Chinese with English abstract). |
|
Macdonald, A. H., and Fyfe, W. S., 1985. Rate of Serpentinization in Seafloor Environments. Tectonophysics, 116(1): 123-135. https://doi.org/10.1016/0040-1951(85)90225-2 |
|
Malvoisin, B., and Brunet, F., 2014. Water Diffusion-Transport in a Synthetic Dunite: Consequences for Oceanic Peridotite Serpentinization. Earth and Planetary Science Letters, 403: 263-272. https://doi.org/10.1016/j.epsl.2014.07.004 |
|
Malvoisin, B., Brunet, F., Carlut, J., et al., 2012a. Serpentinization of Oceanic Peridotites: 2. Kinetics and Processes of San Carlos Olivine Hydrothermal Alteration. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008842 |
|
Malvoisin, B., Carlut, J., and Brunet, F., 2012b. Serpentinization of Oceanic Peridotites: 1. A High‐Sensitivity Method to Monitor Magnetite Production in Hydrothermal Experiments. Journal of Geophysical Research: Solid Earth, 117(B1): 2011JB008612. https://doi.org/10.1029/2011JB008612 |
|
Martin, B., and Fyfe, W. S., 1970. Some Experimental and Theoretical Observations on the Kinetics of Hydration Reactions with Particular Reference to Serpentinization. Chemical Geology, 6: 185-202. https://doi.org/10.1016/0009-2541(70)90018-5 |
|
Matter, J. M., and Kelemen, P. B., 2009. Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nature Geoscience, 2(12): 837-841. https://doi.org/10.1038/ngeo683 |
|
McCollom, T. M., and Bach, W., 2009. Thermodynamic Constraints on Hydrogen Generation During Serpentinization of Ultramafic Rocks. Geochimica et Cosmochimica Acta, 73(3): 856-875. https://doi.org/10.1016/j.gca.2008.10.032 |
|
McCollom, T. M., Klein, F., Robbins, M., et al., 2016. Temperature Trends for Reaction Rates, Hydrogen Generation, and Partitioning of Iron During Experimental Serpentinization of Olivine. Geochimica et Cosmochimica Acta, 181: 175-200. https://doi.org/10.1016/j.gca.2016.03.002 |
|
McCollom, T. M., Klein, F., Solheid, P., et al., 2020. The Effect of pH on Rates of Reaction and Hydrogen Generation During Serpentinization. Philosophical Transactions of The Royal Society A-mathematical Physical and Engineering Sciences, 378(2165): 20180428. https://doi.org/10.1098/rsta.2018.0428 |
|
Menzel, M. D., Urai, J. L., Ukar, E., et al., 2022. Ductile Deformation During Carbonation of Serpentinized Peridotite. Nature Communications, 13(1): 3478. https://doi.org/10.1038/s41467-022-31049-1 |
|
Mével, C., 2003. Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges. Comptes Rendus Geoscience, 335(10): 825-852. https://doi.org/10.1016/j.crte.2003.08.006 |
|
Miller, Q. R. S., Schaef, H. T., Kaszuba, J. P., et al., 2019. Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends, Mechanistic Insights, and Research Frontiers. Environmental Science & Technology Letters, 6(8): 431-442. https://doi.org/10.1021/acs.estlett.9b00301 |
|
Moody, J. B., 1976. Serpentinization: a Review. Lithos, 9(2): 125-138. https://doi.org/https://doi.org/10.1016/0024-4937(76)90030-X |
|
Munz, I. A., Brandvoll, Ø., Haug, T. A., et al., 2012. Mechanisms and Rates of Plagioclase Carbonation Reactions. Geochimica et Cosmochimica Acta, 77: 27-51. https://doi.org/10.1016/j.gca.2011.10.036 |
|
Neubeck, A., Duc, N. T., Hellevang, H., et al., 2014. Olivine Alteration and H2 Production in Carbonate-Rich, Low Temperature Aqueous Environments. Planetary and Space Science, 96: 51-61. |
|
Oconnor, W., Dahlin, D. C., Rush, G. E., et al., 2005. Aqueous Mineral Carbonation: Mineral Availability, Pretreatment, Reaction Parametrics, and Process Studies. https://doi.org/10.13140/RG.2.2.23658.31684 |
|
Osselin, F., Pichavant, M., Champallier, R., et al., 2022. Reactive Transport Experiments of Coupled Carbonation and Serpentinization in a Natural Serpentinite. Implication for Hydrogen Production and Carbon Geological Storage. Geochimica et Cosmochimica Acta, 318: 165-189. https://doi.org/10.1016/j.gca.2021.11.039 |
|
Peuble, S., Godard, M., Gouze, P., et al., 2019. Control of CO2 on Flow and Reaction Paths in Olivine-Dominated Basements: An Experimental Study. Geochimica et Cosmochimica Acta, 252: 16-38. https://doi.org/10.1016/j.gca.2019.02.007 |
|
Plümper, O., and Matter, J., 2023. Olivine—the Alteration Rock Star. Elements, 19(3): 165-172. https://doi.org/10.2138/gselements.19.3.165 |
|
Pokrovsky, O. S., and Schott, J., 2000. Kinetics and Mechanism of Forsterite Dissolution at 25°C and pH from 1 to 12. Geochimica et Cosmochimica Acta, 64(19): 3313-3325. https://doi.org/https://doi.org/10.1016/S0016-7037(00)00434-8 |
|
Portella, Y. d. M., Conceição, R. V., Siqueira, T. A., et al., 2024. Experimental Evidence of Pressure Effects on Spinel Dissolution and Peridotite Serpentinization Kinetics under Shallow Hydrothermal Conditions. Geoscience Frontiers, 15(2): 101763. https://doi.org/10.1016/j.gsf.2023.101763 |
|
Power, I. M., Wilson, S., and Dipple, G. M., 2013. Serpentinite Carbonation for CO2 Sequestration. Elements, 9(2): 115-121. https://doi.org/10.2113/gselements.9.2.115 |
|
Qian, J., Yu, G., Liu, C., et al., 2006. Lost City Cryogenic Hydrothermal Field - A New Type of Subsea Hydrothermal Activity. Journal of Marine Sciences, (1): 43-49 (in Chinese). |
|
Ribeiro da Costa, I., Barriga, F. J. A. S., and Taylor, R. N., 2008. Late Seafloor Carbonate Precipitation in Serpentinites from the Rainbow and Saldanha Sites (mid-atlantic ridge). European Journal of Mineralogy, 20(2): 173-181. https://doi.org/10.1127/0935-1221/2008/0020-1803 |
|
Saldi, G. D., Daval, D., Morvan, G., et al., 2013. The Role of Fe and Redox Conditions in Olivine Carbonation Rates: An Experimental Study of the Rate Limiting Reactions at 90 and 150°C in Open and Closed Systems. Geochimica et Cosmochimica Acta, 118: 157-183. https://doi.org/10.1016/j.gca.2013.04.029 |
|
Saldi, G. D., Daval, D., Guo, H., et al., 2015. Mineralogical Evolution of Fe–Si-Rich Layers at the Olivine-Water Interface During Carbonation Reactions. American Mineralogist, 100(11-12): 2655-2669. https://doi.org/10.2138/am-2015-5340 |
|
Santos, R. M., Knops, P. C. M., Rijnsburger, K. L., et al., 2016. CO2 Energy Reactor – Integrated Mineral Carbonation: PERSPECTIVES on Lab-Scale Investigation and Products Valorization. Frontiers in Energy Research, 4: 5. https://doi.org/10.3389/fenrg.2016.00005 |
|
Scambelluri, M., Bebout, G. E., Belmonte, D., et al., 2016. Carbonation of Subduction-Zone Serpentinite (High-Pressure Ophicarbonate; Ligurian Western Alps) and Implications for the Deep Carbon Cycling. Earth and Planetary Science Letters, 441: 155-166. https://doi.org/10.1016/j.epsl.2016.02.034 |
|
Sissmann, O., Brunet, F., Martinez, I., et al., 2014. Enhanced Olivine Carbonation within a Basalt as Compared to Single-Phase Experiments: Reevaluating the Potential of CO2 Mineral Sequestration. Environmental Science & Technology, 48(10): 5512-5519. https://doi.org/10.1021/es405508a |
|
Streit, E., Kelemen, P., and Eiler, J., 2012. Coexisting Serpentine and Quartz from Carbonate-Bearing Serpentinized Peridotite in the Samail Ophiolite, Oman. Contributions to Mineralogy and Petrology, 164(5): 821-837. https://doi.org/10.1007/s00410-012-0775-z |
|
Sun, Z., Zhang, M., Wang, X. et al. 2018. A Review of the Coupling Relationship Between Serpentinization and Carbonization of Ultrabasic Rocks. Bulletin of Mineralogy,Petrology and Geochemistry, 37(6): 1190-1197 (in Chinese with English abstract). |
|
Suo, Y., Jiang, Z., Li, S., et al., 2024. Ocean-Floor Hydrogen Accumulation Model and Global Distribution. Earth Science Frontiers, 31(4): 175-182 (in Chinese with English abstract). |
|
Tamblyn, R., and Hermann, J., 2023. Geological Evidence for High H2 Production from Komatiites in the Archaean. Nature Geoscience, 16(12): 1194-1199. https://doi.org/10.1038/s41561-023-01316-x |
|
Wang, F., Dreisinger, D., Jarvis, M., et al., 2019c. Kinetics and Mechanism of Mineral Carbonation of Olivine for CO2 Sequestration. Minerals Engineering, 131: 185-197. https://doi.org/10.1016/j.mineng.2018.11.024 |
|
Wang, J., Watanabe, N., Okamoto, A., et al., 2019a. Enhanced Hydrogen Production with Carbon Storage by Olivine Alteration in CO2-rich Hydrothermal Environments. Journal of CO2 Utilization, 30: 205-213. https://doi.org/10.1016/j.jcou.2019.02.008 |
|
Wang, J., Watanabe, N., Okamoto, A., et al., 2019b. Pyroxene Control of H2 Production and Carbon Storage During Water-Peridotite-CO2 Hydrothermal Reactions. International Journal of Hydrogen Energy, 44(49): 26835-26847. https://doi.org/10.1016/j.ijhydene.2019.08.161 |
|
Ye, H., Liu, Q., Bao, Q., et al., 2025. Review on in-Situ CO2 Mineralization Sequestration: Mechanistic Understanding and Research Frontiers. International Journal of Coal Science & Technology, 12(1): 15. https://doi.org/10.1007/s40789-025-00755-8 |
|
Yu, Z., Liu, H., Zhu, G., et al., 2023. New Thoughts on Hydrogen Production Method Based on the Influencing Factors of Hydrogen Generation in Serpentinization Reaction. Natural Gas Industry, 43(8): 156-169 (in Chinese with English abstract). |
|
Zhang, L., Yang, J., Paul, T. R., et al., 2015. Origin of Listwanite in the Luobusa Ophiolite,Tibet,Implications for Chromite Stability in Hydrothermal Systems. Acta Geologica Sinica(English Edition), 89(02): 402-417. |
|
Zhang, Z., and Zhang, H., 2012. Carbonation of Mafic Ultramafic Rocks: A New Approach to Carbon Dioxide Geological Sequestration. Earth Science Journal of China University of Geosciences, 37(1): 156-162 (in Chinese with English abstract). |
|
附中文参考文献 |
|
常承兵, 2025, 基性-超基性岩矿物碳酸化封存二氧化碳研究. 硕士学位论文. 太原: 太原理工大学. |
|
丁兴, 刘志锋, 黄瑞芳, 等, 2016. 大洋俯冲带的水岩作用——蛇纹石化. 工程研究-跨学科视野中的工程, 8(3): 258–268. |
|
黄瑞芳, 孙卫东, 丁兴, 等, 2013. 基性和超基性岩蛇纹石化的机理及成矿潜力. 岩石学报, 29(12): 4336–4348. |
|
姜禾禾, 王佳敏, 和 万博, 2023. 国际岩矿地球化学固碳技术研究进展. 第四纪研究, 43(02): 494-508. |
|
李三忠, 索艳慧, 姜兆霞, 等, 2024. 氢构造与海底氢能系统. 科学通报, 69(32): 4696-4703. |
|
刘全有, 吴小奇, 孟庆强, 等., 2024. 天然氢气:一种潜在的零碳能源. 科学通报, 69(17): 2344-2350. |
|
钱江初,于刚,刘春秋, 等, 2006. Lost city低温热液场——一种新的海底热液活动类型. 海洋学研究, (1): 43–49. |
|
孙泽祥, 张明峰, 王先彬, 等, 2018. 超基性岩的蛇纹石化和碳酸盐化耦合关系. 矿物岩石地球化学通报, 37(6): 1190-1197. |
|
索艳慧, 姜兆霞, 李三忠, 等, 2024. 海底氢气成藏模式与全球分布. 地学前缘, 31(04): 175-182. |
|
于志琪, 刘汇川, 朱光有, 等, 2023. 基于蛇纹石化生氢影响因素的制氢方式新思考. 天然气工业, 43(8): 156–169. |
|
张舟, 张宏福, 2012. 基性、超基性岩:二氧化碳地质封存的新途径. 地球科学(中国地质大学学报), 37(1): 156–162. |