• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    张宓, 李玟玟, 黄瑞芳, 2026. 橄榄岩蛇纹石化和碳酸盐化反应动力学、反馈机制及固碳-产氢效应. 地球科学. doi: 10.3799/dqkx.2025.301
    引用本文: 张宓, 李玟玟, 黄瑞芳, 2026. 橄榄岩蛇纹石化和碳酸盐化反应动力学、反馈机制及固碳-产氢效应. 地球科学. doi: 10.3799/dqkx.2025.301
    Zhang Mi, Li Wenwen, Huang Ruifang, 2026. Kinetics of Serpentinization and Carbonation of Peridotite and Their Feedback Mechanisms: Implications for Carbon Sequestration Coupled with Hydrogen Production. Earth Science. doi: 10.3799/dqkx.2025.301
    Citation: Zhang Mi, Li Wenwen, Huang Ruifang, 2026. Kinetics of Serpentinization and Carbonation of Peridotite and Their Feedback Mechanisms: Implications for Carbon Sequestration Coupled with Hydrogen Production. Earth Science. doi: 10.3799/dqkx.2025.301

    橄榄岩蛇纹石化和碳酸盐化反应动力学、反馈机制及固碳-产氢效应

    doi: 10.3799/dqkx.2025.301
    基金项目: 

    科技部重点研发专项 (2023YFF0807101), 广州市南沙区重点科技计划 (2023ZD018).

    详细信息
      作者简介:

      张宓 (2003-), 硕士研究生, 从事蛇纹石化过程中碳的地球化学行为实验研究. ORCID: 0009-0003-2896-3044. E-mail: zhangmi200307@163.com

      通讯作者:

      黄瑞芳(1986-),博士,研究员,从事蛇纹石化反应机制及其地球宜居性效应研究.ORCID:0000-0002-3052-5890.E-mail:rfhuang@scsio.ac.cn

    • 中图分类号: P588.323

    Kinetics of Serpentinization and Carbonation of Peridotite and Their Feedback Mechanisms: Implications for Carbon Sequestration Coupled with Hydrogen Production

    • 摘要: 蛇纹石化通常是指超基性岩 (如橄榄岩和科马提岩)的热液蚀变,岩石中的橄榄石和斜方辉石与富水流体反应,生成蛇纹石、(±)滑石和 (±)磁铁矿等矿物。橄榄岩作为地幔中最具代表性的超镁铁质岩石,其蛇纹石化过程在地壳-地幔水循环和岩石圈演化中扮演关键角色,并且在天然氢生成和固碳方面具有重要潜力。本研究系统探究了影响橄榄岩蛇纹石化与碳酸盐化反应动力学的关键因素,重点分析了二者之间能量与物质传递的反馈机制,以评估其在碳封存与制氢领域的应用前景。温度、压力、盐度、pH及溶液组分 (如NaCl和NaHCO3浓度)是影响蛇纹石化与碳酸盐化反应动力学的核心参数。特定温压条件能够显著加快反应速率,而流体化学成分的变化也对反应整体进程具有关键调控作用。此外,反应的自热特征、自限性以及生成的富硅层共同构成了复杂的动力学反馈机制。蛇纹石化与碳酸盐化本质上均为放热反应,释放的热量能够有效提高体系温度,从而促进反应动力学过程。尽管橄榄石蛇纹石化与碳酸盐化反应速率均高度依赖温度,但两者存在不同的最佳反应温度区间。同时,蛇纹石化与碳酸盐化反应通常伴随着体积膨胀和孔隙度的变化。反应初期,孔隙发育有利于流体渗入与矿物接触,但随着碳酸盐矿物持续沉淀,孔隙率与渗透率显著降低,对流体运移形成负反馈。由于二者沉淀动力学的差异,最终产物在高流速区与低流速区呈现明显的分异分布。此外,固液界面形成的钝化层会抑制矿物溶解和碳酸盐沉淀,严重制约蛇纹石化与碳酸盐化反应的持续进行。未来的研究可通过优化反应条件,提升固碳效率与产氢速率,并针对协同反应中的离子迁移行为展开深入探索,从而有效缓解溶解点位附近因沉淀导致的孔隙堵塞与钝化层问题。同时,推动原位固碳-产氢技术的实际应用,有望为应对气候变化与满足能源需求提供兼具“固碳”与“产氢”双重效益的解决方案。

       

    • Adam, N., and Perner, M., 2018. Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents. Frontiers in Microbiology, 9: 2873. https://doi.org/10.3389/fmicb.2018.02873
      Allen, D. E., and Seyfried, W. E., 2003. Compositional Controls on Vent Fluids from Ultramafic-Hosted Hydrothermal Systems at Mid-Ocean Ridges: An Experimental Study at 400°C, 500 bars. Geochimica et Cosmochimica Acta, 67(8): 1531-1542. https://doi.org/10.1016/S0016-7037(02)01173-0
      772. https://doi.org/10.1016/S0016-7037(99)00442-1
      Bach, W., Banerjee, N. R., Dick, H. J. B., et al., 2002. Discovery of Ancient and Active Hydrothermal Systems Along the Ultra-Slow Spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 3: 1044. https://doi.org/10.1029/2001GC000279
      Bischoff, J. L., and Rosenbauer, R. J., 1996. The Alteration of Rhyolite in CO2 Charged Water at 200 and 350°C: The Unreactivity of CO2 at Higher Temperature. Geochimica et Cosmochimica Acta, 60(20): 3859-3867. https://doi.org/10.1016/0016-7037(96)00208-6
      Chang, C., 2025. The Study of Carbon Dioxide Sequestration by Carbonation in Basal - Ultramafic Rocks(Dissertation). Taiyuan: Taiyuan University of Technology (in Chinese with English abstract).
      Chizmeshya, A. V. G., McKelvy, M. J., Squires, K., et al., 2007. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost. United States: Arizona State University.
      Corre, M., Brunet, F., Schwartz, S., et al., 2023. Quaternary Low-Temperature Serpentinization and Carbonation in the New Caledonia Ophiolite. Scientific Reports, 13(1): 19413. https://doi.org/10.1038/s41598-023-46691-y
      Daval, D., Sissmann, O., Menguy, N., et al., 2011. Influence of Amorphous Silica Layer Formation on the Dissolution Rate of Olivine at 90°C and Elevated pCO2. Chemical Geology, 284(1): 193-209. https://doi.org/10.1016/j.chemgeo.2011.02.021
      Decrausaz, T., Godard, M., Menzel, M. D., et al., 2023. Pervasive Carbonation of Peridotite to Listvenite (Semail Ophiolite, Sultanate of Oman): Clues from Iron Partitioning and Chemical Zoning. European Journal of Mineralogy, 35(2): 171-187. https://doi.org/10.5194/ejm-35-171-2023
      Ding, X.,Liu, Z.,Huang, R., et al., 2016. Water-Rock Interaction in Oceanic Subduction Zone: Serpentinization. Journal of Engineering Studies, 8(3): 258-268 (in Chinese with English abstract).
      Dry, M. E., 2002. The Fischer–Tropsch Process: 1950–2000. Catalysis Today, 71(3): 227-241. https://doi.org/https://doi.org/10.1016/S0920-5861(01)00453-9
      Duan, Z., Sun, R., Zhu, C., et al., 2006. An Improved Model for the Calculation of CO2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl−, and SO2−4. Marine Chemistry, 98(2-4): 131-139. https://doi.org/10.1016/j.marchem.2005.09.001
      Eikeland, E., Blichfeld, A. B., Tyrsted, C., et al., 2015. Optimized Carbonation of Magnesium Silicate Mineral for CO2 Storage. ACS Applied Materials & Interfaces, 7(9): 5258-5264. https://doi.org/10.1021/am508432w
      Emmanuel, S., and Berkowitz, B., 2006. An Experimental Analogue for Convection and Phase Separation in Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 111(B9): https://doi.org/10.1029/2006JB004351
      Frost, B. R., 1985. On the Stability of Sulfides, Oxides, and Native Metals in Serpentinite. Journal of Petrology, 26(1): 31-63. https://doi.org/10.1093/petrology/26.1.31
      Früh-Green, G. L., Connolly, J. A. D., Plas, A. et al. (2004). Serpentinization of Oceanic Peridotites: Implications for Geochemical Cycles and Biological Activity. In The Subseafloor Biosphere at Mid‐Ocean Ridges (pp. 119-136). https://doi.org/https://doi.org/10.1029/144GM08
      Gadikota, G., Matter, J., Kelemen, P., et al., 2020. Elucidating the Differences in the Carbon Mineralization Behaviors of Calcium and Magnesium Bearing Alumino-Silicates and Magnesium Silicates for CO2 Storage. Fuel, 277: 117900. https://doi.org/10.1016/j.fuel.2020.117900
      Gadikota, G., Matter, J., Kelemen, P., et al., 2014. Chemical and Morphological Changes During Olivine Carbonation for CO2 Storage in the Presence of NaCl and NaHCO3. Physical Chemistry Chemical Physics, 16(10): 4679. https://doi.org/10.1039/c3cp54903h
      Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., et al., 2007. Ex Situ Aqueous Mineral Carbonation. Environmental Science & Technology, 41(7): 2587-2593. https://doi.org/10.1021/es0619253
      Giammar, D. E., Bruant, R. G., and Peters, C. A., 2005. Forsterite Dissolution and Magnesite Precipitation at Conditions Relevant for Deep Saline Aquifer Storage and Sequestration of Carbon Dioxide. Chemical Geology, 217(3-4): 257-276. https://doi.org/10.1016/j.chemgeo.2004.12.013
      Grozeva, N. G., Klein, F., Seewald, S., et al., 2017. Experimental Study of Carbonate Formation in Oceanic Peridotite. Geochimica et Cosmochimica Acta, 199: 264-286. https://doi.org/10.1016/j.gca.2016.10.052
      Guillot, S., and Hattori, K., 2013. Serpentinites: Essential Roles in Geodynamics, Arc Volcanism, Sustainable Development, and the Origin of Life. Elements, 9(2): 95-98. https://doi.org/10.2113/gselements.9.2.95
      Hand, E., 2023. Hidden Hydrogen Does Earth hold Vast Stores of a Renewable, Carbon-Free Fuel? Science, 379(630-636).
      He, S., and Morse, J. W., 1993. The Carbonic Acid System and Calcite Solubility in Aqueous Na-K-Ca-Mg-Cl-SO4 Solutions from 0 to 90°C. Geochimica et Cosmochimica Acta, 57(15): 3533-3554. https://doi.org/10.1016/0016-7037(93)90137-L
      Hövelmann, J., Austrheim, H., and Jamtveit, B., 2012. Microstructure and Porosity Evolution During Experimental Carbonation of a Natural Peridotite. Chemical Geology, 334: 254-265. https://doi.org/10.1016/j.chemgeo.2012.10.025
      Huang, R., Lin, C.-T., Sun, W., et al., 2017a. The Production of Iron Oxide During Peridotite Serpentinization: Influence of Pyroxene. Geoscience Frontiers, 8(6): 1311-1321. https://doi.org/https://doi.org/10.1016/j.gsf.2017.01.001
      Huang, R., Shang, X., Zhao, Y., et al., 2023. Effect of Fluid Salinity on Reaction Rate and Molecular Hydrogen (H2) Formation During Peridotite Serpentinization at 300°C. Journal of Geophysical Research: Solid Earth, 128(3): e2022JB025218. https://doi.org/10.1029/2022JB025218
      Huang, R., Sun, W., Ding, X., et al., 2013. Mechanism for Serpentinization of Mafic and Ultramafic Rocks and the Potential of Mineralization. Acta Petrologica Sinica, 29(12): 4336-4348 (in Chinese with English abstract).
      Huang, R., Song, M., Ding, X., et al., 2017b. Influence of Pyroxene and Spinel on the Kinetics of Peridotite Serpentinization. Journal of Geophysical Research: Solid Earth, 122(9): 7111-7126. https://doi.org/10.1002/2017JB014231
      Huang, R., Sun, W., Ding, X., et al., 2020. Effect of Pressure on the Kinetics of Peridotite Serpentinization. Physics and Chemistry of Minerals, 47(7): 33. https://doi.org/10.1007/s00269-020-01101-x
      Huang, R., Sun, W., Song, M., et al., 2019. Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates During Serpentinization of Peridotite and Olivine. Minerals, 9(11): 661. https://doi.org/10.3390/min9110661
      Iyer, K., Rüpke, L. H., Phipps Morgan, J., et al., 2012. Controls of Faulting and Reaction Kinetics on Serpentinization and Double Benioff Zones. Geochemistry, Geophysics, Geosystems, 13(9). https://doi.org/10.1029/2012GC004304
      Jiang, H., Wang, J., and Wan, Bo., 2023. Review in Research Progress in Carbon Sequestration Technology from a Petrological and Geochemical Perspective. Quaternary Sciences, 43(2): 494-508 (in Chinese with English abstract).
      Johnson, N. C., Thomas, B., Maher, K., et al., 2014. Olivine Dissolution and Carbonation Under Conditions Relevant for in Situ Carbon Storage. Chemical Geology, 373: 93-105. https://doi.org/10.1016/j.chemgeo.2014.02.026
      Jones, L. C., Rosenbauer, R., Goldsmith, J. I., et al., 2010. Carbonate Control of H2 and CH4 Production in Serpentinization Systems at Elevated P‐Ts. Geophysical Research Letters, 37(14): 2010GL043769. https://doi.org/10.1029/2010GL043769
      Kelemen, P. B., and Hirth, G., 2012. Reaction-Driven Cracking During Retrograde Metamorphism: Olivine Hydration and Carbonation. Earth and Planetary Science Letters, 345-348: 81-89. https://doi.org/10.1016/j.epsl.2012.06.018
      Kelemen, P. B., and Matter, J., 2008. In Situ Carbonation of Peridotite for CO2 Storage. Proceedings of the National Academy of Sciences, 105(45): 17295-17300. https://doi.org/10.1073/pnas.0805794105
      Kelemen, P. B., Matter, J., Streit, E. E., et al., 2011. Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in Situ CO2 Capture and Storage. Annual Review of Earth and Planetary Sciences, 39(1): 545-576. https://doi.org/10.1146/annurev-earth-092010-152509
      Kelemen, P. B., McQueen, N., Wilcox, J., et al., 2020. Engineered Carbon Mineralization in Ultramafic Rocks for CO2 Removal from Air: Review and New Insights. Chemical Geology, 550, 119628. https://doi.org/10.1016/j.chemgeo.2020.119628
      Kelley, D. S., Karson, J. A., Blackman, D. K., et al., 2001. An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30° N. Nature, 412(6843): 145-149. https://doi.org/10.1038/35084000
      King, H. E., Plümper, O., and Putnis, A., 2010. Effect of Secondary Phase Formation on the Carbonation of Olivine. Environmental Science & Technology, 44(16): 6503-6509. https://doi.org/10.1021/es9038193
      Klein, F., Bach, W., Jöns, N., et al., 2009. Iron Partitioning and Hydrogen Generation During Serpentinization of Abyssal Peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73(22): 6868-6893. https://doi.org/10.1016/j.gca.2009.08.021
      Klein, F., and Garrido, C. J., 2011. Thermodynamic Constraints on Mineral Carbonation of Serpentinized Peridotite. Lithos, 126(3): 147-160. https://doi.org/https://doi.org/10.1016/j.lithos.2011.07.020
      Klein, F., and McCollom, T. M., 2013. From Serpentinization to Carbonation: New Insights from a CO2 Injection Experiment. Earth and Planetary Science Letters, 379: 137-145. https://doi.org/10.1016/j.epsl.2013.08.017
      Kularatne, K., Sissmann, O., Kohler, E., et al., 2018. Simultaneous Ex-Situ CO2 Mineral Sequestration and Hydrogen Production from Olivine-Bearing Mine Tailings. Applied Geochemistry, 95: 195-205. https://doi.org/10.1016/j.apgeochem.2018.05.020
      Lafay, R., Montes-Hernandez, G., Janots, E., et al., 2012. Mineral Replacement Rate of Olivine by Chrysotile and Brucite Under High Alkaline Conditions. Journal of Crystal Growth, 347(1): 62-72. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2012.02.040
      Lafay, R., Montes-Hernandez, G., Janots, E., et al., 2014. Simultaneous Precipitation of Magnesite and Lizardite from Hydrothermal Alteration of Olivine Under High-Carbonate Alkalinity. Chemical Geology, 368: 63-75. https://doi.org/10.1016/j.chemgeo.2014.01.008
      Lafay, R., Montes-Hernandez, G., Renard, F., et al., 2018. Intracrystalline Reaction-Induced Cracking in Olivine Evidenced by Hydration and Carbonation Experiments. Minerals, 8(9): 412. https://doi.org/10.3390/min8090412
      Lamadrid, H. M., Rimstidt, J. D., Schwarzenbach, E. M., et al., 2017. Effect of Water Activity on Rates of Serpentinization of Olivine. Nature Communications, 8(1): 16107. https://doi.org/10.1038/ncomms16107
      Li, J., Jacobs, A. D., and Hitch, M., 2019. Direct Aqueous Carbonation on Olivine at a CO2 Partial Pressure of 6.5 MPa. Energy, 173: 902-910. https://doi.org/10.1016/j.energy.2019.02.125
      Li, S., Suo, Y., Jiang, Z., et al., 2024. Hydrogen Tectonics and Oceanfloor Hydrogen Systems. Chinese Science Bulletin, 69(32): 4696-4703. https://doi.org/10.13745/j.esf.sf.2024.6.98 (in Chinese with English abstract).
      Liu, Q., Wei, Y., Li, P., et al., 2025a. Natural Hydrogen in the Volcanic-Bearing Sedimentary Basin: Origin, Conversion, and Production Rates. Science Advances, 11(4): eadr6771. https://doi.org/doi: 10.1126/sciadv.adr6771
      Liu, Q., Wu, X., Huang, X., et al., 2024. Integrated Geochemical Identification of Natural Hydrogen Sources. Science Bulletin, 69(19): 2993-2996. https://doi.org/https://doi.org/10.1016/j.scib.2024.07.004
      Liu, Q., Wu, X., Huang, X., et al., 2025b. Occurrence of Global Natural Hydrogen and Profitable Preservation. Journal of Earth Science, 36(4): 1525-1554. https://doi.org/10.1007/s12583-024-0120-2
      Liu, Q., Wu, X., Meng, Q., et al., 2024. Natural hydrogen: A Potential Carbon-Free Energy Source. Chinese Science Bulletin, 69(17): 2344-2350 (in Chinese with English abstract).
      Macdonald, A. H., and Fyfe, W. S., 1985. Rate of Serpentinization in Seafloor Environments. Tectonophysics, 116(1): 123-135. https://doi.org/10.1016/0040-1951(85)90225-2
      Malvoisin, B., and Brunet, F., 2014. Water Diffusion-Transport in a Synthetic Dunite: Consequences for Oceanic Peridotite Serpentinization. Earth and Planetary Science Letters, 403: 263-272. https://doi.org/10.1016/j.epsl.2014.07.004
      Malvoisin, B., Brunet, F., Carlut, J., et al., 2012a. Serpentinization of Oceanic Peridotites: 2. Kinetics and Processes of San Carlos Olivine Hydrothermal Alteration. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008842
      Malvoisin, B., Carlut, J., and Brunet, F., 2012b. Serpentinization of Oceanic Peridotites: 1. A High‐Sensitivity Method to Monitor Magnetite Production in Hydrothermal Experiments. Journal of Geophysical Research: Solid Earth, 117(B1): 2011JB008612. https://doi.org/10.1029/2011JB008612
      Martin, B., and Fyfe, W. S., 1970. Some Experimental and Theoretical Observations on the Kinetics of Hydration Reactions with Particular Reference to Serpentinization. Chemical Geology, 6: 185-202. https://doi.org/10.1016/0009-2541(70)90018-5
      Matter, J. M., and Kelemen, P. B., 2009. Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nature Geoscience, 2(12): 837-841. https://doi.org/10.1038/ngeo683
      McCollom, T. M., and Bach, W., 2009. Thermodynamic Constraints on Hydrogen Generation During Serpentinization of Ultramafic Rocks. Geochimica et Cosmochimica Acta, 73(3): 856-875. https://doi.org/10.1016/j.gca.2008.10.032
      McCollom, T. M., Klein, F., Robbins, M., et al., 2016. Temperature Trends for Reaction Rates, Hydrogen Generation, and Partitioning of Iron During Experimental Serpentinization of Olivine. Geochimica et Cosmochimica Acta, 181: 175-200. https://doi.org/10.1016/j.gca.2016.03.002
      McCollom, T. M., Klein, F., Solheid, P., et al., 2020. The Effect of pH on Rates of Reaction and Hydrogen Generation During Serpentinization. Philosophical Transactions of The Royal Society A-mathematical Physical and Engineering Sciences, 378(2165): 20180428. https://doi.org/10.1098/rsta.2018.0428
      Menzel, M. D., Urai, J. L., Ukar, E., et al., 2022. Ductile Deformation During Carbonation of Serpentinized Peridotite. Nature Communications, 13(1): 3478. https://doi.org/10.1038/s41467-022-31049-1
      Mével, C., 2003. Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges. Comptes Rendus Geoscience, 335(10): 825-852. https://doi.org/10.1016/j.crte.2003.08.006
      Miller, Q. R. S., Schaef, H. T., Kaszuba, J. P., et al., 2019. Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends, Mechanistic Insights, and Research Frontiers. Environmental Science & Technology Letters, 6(8): 431-442. https://doi.org/10.1021/acs.estlett.9b00301
      Moody, J. B., 1976. Serpentinization: a Review. Lithos, 9(2): 125-138. https://doi.org/https://doi.org/10.1016/0024-4937(76)90030-X
      Munz, I. A., Brandvoll, Ø., Haug, T. A., et al., 2012. Mechanisms and Rates of Plagioclase Carbonation Reactions. Geochimica et Cosmochimica Acta, 77: 27-51. https://doi.org/10.1016/j.gca.2011.10.036
      Neubeck, A., Duc, N. T., Hellevang, H., et al., 2014. Olivine Alteration and H2 Production in Carbonate-Rich, Low Temperature Aqueous Environments. Planetary and Space Science, 96: 51-61.
      Oconnor, W., Dahlin, D. C., Rush, G. E., et al., 2005. Aqueous Mineral Carbonation: Mineral Availability, Pretreatment, Reaction Parametrics, and Process Studies. https://doi.org/10.13140/RG.2.2.23658.31684
      Osselin, F., Pichavant, M., Champallier, R., et al., 2022. Reactive Transport Experiments of Coupled Carbonation and Serpentinization in a Natural Serpentinite. Implication for Hydrogen Production and Carbon Geological Storage. Geochimica et Cosmochimica Acta, 318: 165-189. https://doi.org/10.1016/j.gca.2021.11.039
      Peuble, S., Godard, M., Gouze, P., et al., 2019. Control of CO2 on Flow and Reaction Paths in Olivine-Dominated Basements: An Experimental Study. Geochimica et Cosmochimica Acta, 252: 16-38. https://doi.org/10.1016/j.gca.2019.02.007
      Plümper, O., and Matter, J., 2023. Olivine—the Alteration Rock Star. Elements, 19(3): 165-172. https://doi.org/10.2138/gselements.19.3.165
      Pokrovsky, O. S., and Schott, J., 2000. Kinetics and Mechanism of Forsterite Dissolution at 25°C and pH from 1 to 12. Geochimica et Cosmochimica Acta, 64(19): 3313-3325. https://doi.org/https://doi.org/10.1016/S0016-7037(00)00434-8
      Portella, Y. d. M., Conceição, R. V., Siqueira, T. A., et al., 2024. Experimental Evidence of Pressure Effects on Spinel Dissolution and Peridotite Serpentinization Kinetics under Shallow Hydrothermal Conditions. Geoscience Frontiers, 15(2): 101763. https://doi.org/10.1016/j.gsf.2023.101763
      Power, I. M., Wilson, S., and Dipple, G. M., 2013. Serpentinite Carbonation for CO2 Sequestration. Elements, 9(2): 115-121. https://doi.org/10.2113/gselements.9.2.115
      Qian, J., Yu, G., Liu, C., et al., 2006. Lost City Cryogenic Hydrothermal Field - A New Type of Subsea Hydrothermal Activity. Journal of Marine Sciences, (1): 43-49 (in Chinese).
      Ribeiro da Costa, I., Barriga, F. J. A. S., and Taylor, R. N., 2008. Late Seafloor Carbonate Precipitation in Serpentinites from the Rainbow and Saldanha Sites (mid-atlantic ridge). European Journal of Mineralogy, 20(2): 173-181. https://doi.org/10.1127/0935-1221/2008/0020-1803
      Saldi, G. D., Daval, D., Morvan, G., et al., 2013. The Role of Fe and Redox Conditions in Olivine Carbonation Rates: An Experimental Study of the Rate Limiting Reactions at 90 and 150°C in Open and Closed Systems. Geochimica et Cosmochimica Acta, 118: 157-183. https://doi.org/10.1016/j.gca.2013.04.029
      Saldi, G. D., Daval, D., Guo, H., et al., 2015. Mineralogical Evolution of Fe–Si-Rich Layers at the Olivine-Water Interface During Carbonation Reactions. American Mineralogist, 100(11-12): 2655-2669. https://doi.org/10.2138/am-2015-5340
      Santos, R. M., Knops, P. C. M., Rijnsburger, K. L., et al., 2016. CO2 Energy Reactor – Integrated Mineral Carbonation: PERSPECTIVES on Lab-Scale Investigation and Products Valorization. Frontiers in Energy Research, 4: 5. https://doi.org/10.3389/fenrg.2016.00005
      Scambelluri, M., Bebout, G. E., Belmonte, D., et al., 2016. Carbonation of Subduction-Zone Serpentinite (High-Pressure Ophicarbonate; Ligurian Western Alps) and Implications for the Deep Carbon Cycling. Earth and Planetary Science Letters, 441: 155-166. https://doi.org/10.1016/j.epsl.2016.02.034
      Sissmann, O., Brunet, F., Martinez, I., et al., 2014. Enhanced Olivine Carbonation within a Basalt as Compared to Single-Phase Experiments: Reevaluating the Potential of CO2 Mineral Sequestration. Environmental Science & Technology, 48(10): 5512-5519. https://doi.org/10.1021/es405508a
      Streit, E., Kelemen, P., and Eiler, J., 2012. Coexisting Serpentine and Quartz from Carbonate-Bearing Serpentinized Peridotite in the Samail Ophiolite, Oman. Contributions to Mineralogy and Petrology, 164(5): 821-837. https://doi.org/10.1007/s00410-012-0775-z
      Sun, Z., Zhang, M., Wang, X. et al. 2018. A Review of the Coupling Relationship Between Serpentinization and Carbonization of Ultrabasic Rocks. Bulletin of Mineralogy,Petrology and Geochemistry, 37(6): 1190-1197 (in Chinese with English abstract).
      Suo, Y., Jiang, Z., Li, S., et al., 2024. Ocean-Floor Hydrogen Accumulation Model and Global Distribution. Earth Science Frontiers, 31(4): 175-182 (in Chinese with English abstract).
      Tamblyn, R., and Hermann, J., 2023. Geological Evidence for High H2 Production from Komatiites in the Archaean. Nature Geoscience, 16(12): 1194-1199. https://doi.org/10.1038/s41561-023-01316-x
      Wang, F., Dreisinger, D., Jarvis, M., et al., 2019c. Kinetics and Mechanism of Mineral Carbonation of Olivine for CO2 Sequestration. Minerals Engineering, 131: 185-197. https://doi.org/10.1016/j.mineng.2018.11.024
      Wang, J., Watanabe, N., Okamoto, A., et al., 2019a. Enhanced Hydrogen Production with Carbon Storage by Olivine Alteration in CO2-rich Hydrothermal Environments. Journal of CO2 Utilization, 30: 205-213. https://doi.org/10.1016/j.jcou.2019.02.008
      Wang, J., Watanabe, N., Okamoto, A., et al., 2019b. Pyroxene Control of H2 Production and Carbon Storage During Water-Peridotite-CO2 Hydrothermal Reactions. International Journal of Hydrogen Energy, 44(49): 26835-26847. https://doi.org/10.1016/j.ijhydene.2019.08.161
      Ye, H., Liu, Q., Bao, Q., et al., 2025. Review on in-Situ CO2 Mineralization Sequestration: Mechanistic Understanding and Research Frontiers. International Journal of Coal Science & Technology, 12(1): 15. https://doi.org/10.1007/s40789-025-00755-8
      Yu, Z., Liu, H., Zhu, G., et al., 2023. New Thoughts on Hydrogen Production Method Based on the Influencing Factors of Hydrogen Generation in Serpentinization Reaction. Natural Gas Industry, 43(8): 156-169 (in Chinese with English abstract).
      Zhang, L., Yang, J., Paul, T. R., et al., 2015. Origin of Listwanite in the Luobusa Ophiolite,Tibet,Implications for Chromite Stability in Hydrothermal Systems. Acta Geologica Sinica(English Edition), 89(02): 402-417.
      Zhang, Z., and Zhang, H., 2012. Carbonation of Mafic Ultramafic Rocks: A New Approach to Carbon Dioxide Geological Sequestration. Earth Science Journal of China University of Geosciences, 37(1): 156-162 (in Chinese with English abstract).
      附中文参考文献
      常承兵, 2025, 基性-超基性岩矿物碳酸化封存二氧化碳研究. 硕士学位论文. 太原: 太原理工大学.
      丁兴, 刘志锋, 黄瑞芳, 等, 2016. 大洋俯冲带的水岩作用——蛇纹石化. 工程研究-跨学科视野中的工程, 8(3): 258–268.
      黄瑞芳, 孙卫东, 丁兴, 等, 2013. 基性和超基性岩蛇纹石化的机理及成矿潜力. 岩石学报, 29(12): 4336–4348.
      姜禾禾, 王佳敏, 和 万博, 2023. 国际岩矿地球化学固碳技术研究进展. 第四纪研究, 43(02): 494-508.
      李三忠, 索艳慧, 姜兆霞, 等, 2024. 氢构造与海底氢能系统. 科学通报, 69(32): 4696-4703.
      刘全有, 吴小奇, 孟庆强, 等., 2024. 天然氢气:一种潜在的零碳能源. 科学通报, 69(17): 2344-2350.
      钱江初,于刚,刘春秋, 等, 2006. Lost city低温热液场——一种新的海底热液活动类型. 海洋学研究, (1): 43–49.
      孙泽祥, 张明峰, 王先彬, 等, 2018. 超基性岩的蛇纹石化和碳酸盐化耦合关系. 矿物岩石地球化学通报, 37(6): 1190-1197.
      索艳慧, 姜兆霞, 李三忠, 等, 2024. 海底氢气成藏模式与全球分布. 地学前缘, 31(04): 175-182.
      于志琪, 刘汇川, 朱光有, 等, 2023. 基于蛇纹石化生氢影响因素的制氢方式新思考. 天然气工业, 43(8): 156–169.
      张舟, 张宏福, 2012. 基性、超基性岩:二氧化碳地质封存的新途径. 地球科学(中国地质大学学报), 37(1): 156–162.
    • 加载中
    计量
    • 文章访问数:  113
    • HTML全文浏览量:  0
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-08-11
    • 网络出版日期:  2026-01-05

    目录

      /

      返回文章
      返回