• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    何洪茜, 康逊, 李斌, 门欣, 杨光亮, 黄凯, 2026. 上扬子区西南部早寒武世梅树村期沉积环境演化及其对磷富集成矿的意义. 地球科学. doi: 10.3799/dqkx.2026.004
    引用本文: 何洪茜, 康逊, 李斌, 门欣, 杨光亮, 黄凯, 2026. 上扬子区西南部早寒武世梅树村期沉积环境演化及其对磷富集成矿的意义. 地球科学. doi: 10.3799/dqkx.2026.004
    He Hongxi, Kang Xun, Li Bin, Men Xin, Yang Guangliang, Huang Kai, 2026. Sedimentary environment evolution and phosphorus enrichment significance of the Early Cambrian Meishucunian in Southwestern Upper Yangtze. Earth Science. doi: 10.3799/dqkx.2026.004
    Citation: He Hongxi, Kang Xun, Li Bin, Men Xin, Yang Guangliang, Huang Kai, 2026. Sedimentary environment evolution and phosphorus enrichment significance of the Early Cambrian Meishucunian in Southwestern Upper Yangtze. Earth Science. doi: 10.3799/dqkx.2026.004

    上扬子区西南部早寒武世梅树村期沉积环境演化及其对磷富集成矿的意义

    doi: 10.3799/dqkx.2026.004
    基金项目: 

    国家自然科学基金项目(No.42073001)

    贵州省地质勘查专项资金项目(No.2024013)

    详细信息
      作者简介:

      何洪茜(1997-),女,1997年出生,博士研究生,从事沉积矿产研究,E-mail:hehongxi9@163.com,ORCID:0009-0001-8935-8476。

      通讯作者:

      李斌(1985-),男,博士,教授,从事矿床地球化学与同位素地球化学研究,E-mail: cutelb@csu.edu.cn。

    • 中图分类号: P619

    Sedimentary environment evolution and phosphorus enrichment significance of the Early Cambrian Meishucunian in Southwestern Upper Yangtze

    • 摘要: 早寒武世梅树村期磷矿是埃迪卡拉纪-寒武纪转折期重要的成磷事件。研究寒武系梅树村组地层厚度分布、岩相时空变化及海水氧化还原状态,对该时期成磷机制研究具有重要意义。本文实测43条剖面并整理大量露头及钻井资料,开展岩矿学工作,划分岩相类型,结合微量元素地球化学指标,识别出沉积相并刻画了其时空分布特征,进而绘制了该时期岩相古地理图。梅树村期上扬子碳酸盐台地以潮坪沉积为主,相带展布受NNE向裂陷槽控制显著,槽内为潮间滩、潮下滩和潮下泥坪,槽外为潮上滩和云坪等微相。梅树村期早期Ce负异常更显著,Y/Ho值更高,Ni/Co-V/Cr及MoEF-UEF结果均指示氧化水体环境。梅树村期上扬子台地裂陷槽内的潮间-潮下高能带是磷质聚集的有利场所;梅树村早期水体氧化程度较高,为磷矿形成提供了有利条件。裂陷槽内高能氧化环境利于厚层磷块岩发育,据此指出贵州毕节-云南镇雄、贵州威宁-云南鲁甸为潜在磷矿远景区。

       

    • Algeo, T. J., Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268(3/4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001
      Bau, M., Koschinsky, A., 2009. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 43(1): 37-47. doi: 10.2343/geochemj.1.0005e
      Bau, M., M ̈oller, P., Dulski, P., 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1-2): 123-131. doi: 10.1016/s0304-4203(96)00091-6
      Cañadas, F., Papineau, D., Leng, M. J., et al., 2022. Extensive primary production promoted the recovery of the Ediacaran Shuram excursion. Nature communications, 13(1): 148. doi: 10.1038/s41467-021-27812-5
      Chen, J., Yang, R., Wei, H., et al., 2013. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region. Journal of Rare Earths, 31(1): 101-112. doi: 10.1016/s1002-0721(12)60242-7
      Cook, P. J., Shergold, J. H., 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian—Cambrian boundary. Nature, 308(5956): 231-236. doi: 10.1038/308231a0
      Cowie, J. W., 1985. Continuing work on the Precambrian-Cambrian boundary. Episodes Journal of International Geoscience, 8(2): 93-97. doi: 10.18814/epiiugs/1985/v8i2/003
      Delaney, M. L., 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global biogeochemical cycles, 12(4): 563-572. doi: 10.1029/98gb02263
      Fan, H., Wen, H., Zhu, X., 2016. Marine redox conditions in the Early Cambrian ocean: Insights from the Lower Cambrian phosphorite deposits, South China. Journal of Earth Science, 27: 282-296. doi: 10.1007/s12583-016-0687-3
      Fan, Q. S., Xia, G. Q., Li, G. J., et al., 2022. Analytical Methods and Research Progress of Redox Conditions in the Paleo-Ocean. Acta Sedimentologica Sinica, 40(5): 1151-1171(in Chinese with English abstract). doi: 10.14027/j.issn.1000-0550.2021.023
      Feng, Z. Z., 2004. Single factor analysis and multifactor comprehensive mapping method-reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography, 6(1): 3-19(in Chinese with English abstract).
      Fu, J. L., Ding, W. L., Zeng, W. T., et al., 2016. Influence of Structure of Northwest Guizhou Area on Preservation ofLower Cambrian Shale Gas Reservoirs. Journal of Southwest Petroleum University (Science & Technology Edition), 38(5): 22-32(in Chinese with English abstract). doi:10.11885/j.issn.1674 5086.2015.01.08.02
      Hu, Q. H., Zhou, Q., Xia, J. F., et al., 2024. Genesis and prospecting potential of Yangchang phosphorus deposit in northeastern Yunnan Province. Mineral Deposits, 43(05): 1127-1148(in Chinese with English abstract). doi:10. 16111/j. 0258-7106. 2024. 05. 011
      Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Research, 14(1-2): 193-208. doi: 10.1016/j.gr.2007.10.008
      Jiang, Y., Gao, J. B., Lu, Z. T., et al., 2025. The evolution process of sedimentary environment of the phosphorite orebodies within the Lower Cambrian Gezhongwu Formation in the Zhijin phosphorite deposit, Guizhou Province. Acta Mineralogica Sinica, 45(03): 400-410(in Chinese with English abstract). doi: 10.3724/j.1000-4734.2025.45.037e
      Jin, Z. K., Shi, L., Gao, B. S., et al., 2013. Carbonate Facies and Facies Models. Acta Sedimentologica Sinica, 31(06): 965-979(in Chinese with English abstract). doi: 10.14027/j.cnki.cjxb.2013.06.002
      Jones B, Manning D A C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1/2/3/4): 111-129. doi: 10.1016/0009-2541(94)90085-x
      Li, R., Wang, Y. X., Wang, Z. C., et al., 2023. Geological characteristics of the southern segment of the Late Sinian–Early Cambrian Deyang-Anyue rift trough in Sichuan Basin, SW China. Petroleum Exploration and Development, 50(02): 285-296(in Chinese with English abstract). doi: 10.11698/PED.20220764
      Li, T., Zhu, G., Z, Y., et al., 2025. Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo-Marine Environment. Earth Science, 50(01): 246-268(in Chinese with English abstract). doi: 10.3799/dqkx.2023.202
      Li, X. D., Yang, M., Wei, Z. Y., 2025. Deep-water traction current deposits of the Cambrian Meishucun Formation in Well ZK0816, Yangchang phosphate ore area of northeastern Yunnan Province. Journal of Palaeogeography, 27(04): 853-869(in Chinese with English abstract). doi: 10.7605/gdlxb.2025.025
      Li, Z. Q., Liu, J., Li, Y., et al., 2015. Formation and evolution of Weiyuan-Anyue extension-erosion groove in Sinian system, Sichuan Basin. Petroleum Exploration and Development, 42(01): 26-33(in Chinese with English abstract). doi: 10.11698/PED.20220764
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian research, 160(1-2): 179-210. doi: 10.1016/j.precamres.2009.01.012
      Liu, W. J., Zhou, Y. L., Mi, Y. C., et al., 2024. Inorganic and organic carbon isotopes from Early Cambrian Yangchang phosphate deposit in Zhenxiong County, Yunnan Province. Acta Petrologica et Mineralogica, 43(05): 1086-1098(in Chinese with English abstract). doi: 10.20086/j.cnki.yskw.2024.0502
      Liu, Z. R. R., Zhou, M. F., 2020. Early Cambrian ocean mixing recorded by phosphorite successions in the Nanhua Basin, South China. Precambrian Research, 349: 105414. doi: 10.1016/j.precamres.2019.105414
      LÜ, J. K., Zhai, S. K., Yu, Z. H., et al., 2021. Application and influence factors of redox-sensitive elements in a sedimentary environment. e, 45(12): 108-124(in Chinese with English abstract). doi: 10.11759/hykx20210712002
      Mao, T., 2015. The analysis of forming environment and ore-controlling factors of phosphorous deposits in the bottom of lower Cambrian, Central Guizhou Province. Guizhou University, Guizhou, China (in Chinese with English abstract).
      Mi, Y. C., Du, B., Xia, J. F., et al., 2024. Sedimentary environment and enrichment mineralization mechanism of the Lower Cambrian Meishucun Formation in the Yangchang phosphate deposit of Zhenxiong area, Northeastern Yunnan. Acta Petrologica et Mineralogica, 43(05): 1099-1118(in Chinese with English abstract). doi: 10.20086/j.cnki.yskw.2024.0503
      Pufahl, P. K., Groat, L. A., 2017. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Economic Geology, 112(3): 483-516. doi: 10.2113/econgeo.112.3.483
      Russell, A. D., Morford, J. L., 2001. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 341-354. doi: 10.1016/s0025-3227(00)00159-6
      Shi, L., Feng, Q. L., Shen, J., et al., 2016. Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: Evidence from the Gufeng Formation of western Hubei province. Palaeogeography, Palaeoclimatology, Palaeoecology, 444: 1-14. doi: 10.1016/j.palaeo.2015.11.031
      Steiner, M., Li, G., Qian, Y., et al., 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 67-99. doi: 10.1016/j.palaeo.2007.03.046
      Teng, G. E., Liu, W. H., Xu, W. C., et al, 2004. The Discussion on Anoxic Environments and ItsGeochemical Identifying Indices. Acta Sedimentologica Sinica, (02): 365-372(in Chinese with English abstract).
      Wang, Y., Xiong, X. X., 2023. Phosphate Ore Series, Metallogenic Regularity, and Prospecting Direction in China. Acta Geoscientica Sinica, 44(04): 625-634(in Chinese with English abstract). doi: 10.3975/cagsb.2022.111501
      Wei, H. Y., 2012. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology, 32(02): 76-88(in Chinese with English abstract).
      Wen, H., Fan, H., Zhang, Y., et al., 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta, 164: 1-16. doi: 10.46427/gold2024.21573
      Wright, J., Schrader, H., Holser, W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3): 631-644. doi: 10.1016/0198-0254(87)90207-x
      Xing, J. Q., Zhang, Z. Z., Xian, H. Y., et al., 2022. Enrichment Mechanism, Occurrence State and Availability of REEs in the Zhijin Phosphorite Deposit, Guizhou, China. Bulletin of Mineralogy, Petrology and Geochemistry, 41(03): 505-516+463-464(in Chinese with English abstract). doi: 10.19658/j.issn.1007-2802.2022.41.032
      Xing, J., Jiang, Y., Xian, H., et al., 2024. Rare earth element enrichment in sedimentary phosphorites formed during the Precambrian–Cambrian transition, Southwest China. Geoscience Frontiers, 15(2): 101766. doi: 10.1016/j.gsf.2023.101766
      Yang, H. Y., Zhao, Z. F., Wang, T., et al., 2025. A preliminary study of the rare earth element enrichment characteristics and ore formation environment of the Early Cambrian Yangchang phosphorite deposit in the northeastern Yunnan. Bulletin of Mineralogy, Petrology and Geochemistry, 1-20(in Chinese with English abstract). doi: 10.3724/j.issn.1007-2802.20240178
      Yang, H., Xiao, J., Xia, Y., et al., 2021. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions. Geoscience Frontiers, 12(5): 101187. doi: 10.1016/j.gsf.2021.101187
      Yang, H., Xiao, J., Xia, Y., et al., 2022. Diagenesis of Ediacaran-early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA. Ore Geology Reviews, 144: 104813. doi: 10.1016/j.oregeorev.2022.104813
      Yang, R. D., Mao, T., Chen, J. Y., et al., 2017. A Study on Sedimentary Characteristics of Phosphate Rock atthe Bottom of the Cambrian in Central Guizhou Province, China. Acta Mineralogica Sinica, 37(04): 448-455(in Chinese with English abstract). doi: 10.16461/j.cnki.1000-4734.2017.04.01
      Ye, Y., Wang, H., Wang, X., et al., 2020. Elemental geochemistry of lower Cambrian phosphate nodules in Guizhou Province, South China: An integrated study by LA-ICP-MS mapping and solution ICP-MS. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109459. doi: 10.1016/j.palaeo.2019.109459
      Yu, L. M., Liu, M. X., Dan, Y., et al., 2023. The origin of Ediacaran phosphogenesis event: New insights from Doushantuo Formation in the Danzhai phosphorite deposit, South China. Ore Geology Reviews, 152: 105230. doi: 10.1016/j.oregeorev.2022.105230
      Yue, W. H., Huang, Y. H., Dao, T. H., 2022. Geological characteristics and resource potential of the super-large high-quality phosphorite deposit of the Yangchang in Zhenxiong County, Yunnan Province, southwestern margin of the Upper Yangtze Block. Geological Bulletin of China, 41(05): 846-856(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2022.05.010
      Zhang, G., Dong, Y., Lai, S., et al., 2004. Mianlüe tectonic zone and Mianlüe suture zone on southern margin of Qinling-Dabie orogenic belt. Science in China Series D: Earth Sciences, 47(4): 300-316. doi: 10.1360/02yd0526
      Zhang, H., Fan, H., Wen, H., et al., 2022. Controls of REY enrichment in the early Cambrian phosphorites. Geochimica et Cosmochimica Acta, 324: 117-139. doi: 10.1016/j.gca.2022.03.003
      Zhang, S., Luo, B., Wang, Z. C., et al., 2025. Genesis of the Deyang-Anyue intracratonic rift in the Sichuan Basin and itsconnection with the Proto-Tethys Ocean. Natural Gas Industry, 45(02): 37-50(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2025.02.004
      Zhang, X., Zhou, X., Hu, D, 2020. High-resolution paired carbon isotopic records from the Meishucun section in South China: Implications for carbon cycling and environmental changes during the Ediacaran-Cambrian transition. Precambrian Research, 337: 105561. doi: 10.1016/j.precamres.2019.105561
      Zhang, Z., Jiang, Y., Niu, H., et al., 2021. Enrichment of rare earth elements in the early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micro-petrography and geochemistry. Ore Geology Reviews, 138: 104342. doi: 10.1016/j.oregeorev.2021.104342
      Zhao, G., Cawood, P. A., 2012. Precambrian geology of China. Precambrian Research, 222: 13-54. doi: 10.1016/j.precamres.2012.09.017
      Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology, 39(4): 299-302. doi: 10.1130/g31701.1
      Zhou, J. G., Shen, A. J., Zhang, J. Y., et al., 2018. Deyang-Anyue Interplatform Rift in Sichuan Basin and Its Direction of Exploration in Sinian. Marine Origin Petroleum Geology, 23(02): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2018.02.001
      Zhu, M., Zhang, J., Yang, A., et al., 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710
      Zhu, R. X., Li, X. H., Hou, X. G., et al., 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Science in China Series D: Earth Sciences, 52(9): 1385-1392. doi: 10.1007/s11430-009-0152-6
      樊秋爽, 夏国清, 李高杰, 等, 2022. 古海洋氧化还原条件分析方法与研究进展. 沉积学报, 40(5): 1151-1171.
      冯增昭, 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报, 6(1): 3-19.
      付景龙, 丁文龙, 曾维特, 等, 2016. 黔西北地区构造对下寒武统页岩气藏保存的影响. 西南石油大学学报(自然科学版), 38(5): 22-32.
      胡清华, 周骞, 夏建峰, 等, 2024. 滇东北羊场磷矿床成因与找矿前景. 矿床地质, 43(05): 1127-1148.
      蒋元, 高军波, 路志通, 等, 2025. 贵州织金下寒武统戈仲伍组磷矿床的沉积环境演化过程. 矿物学报, 45(03): 400-410.
      金振奎, 石良, 高白水, 等, 2013. 碳酸盐岩沉积相及相模式. 沉积学报, 31(06): 965-979.
      黎荣, 王永骁, 汪泽成, 等, 2023. 四川盆地晚震旦世—早寒武世德阳—安岳裂陷槽南段地质特征. 石油勘探与开发, 50(02): 285-296.
      李婷婷, 朱光有, 张义杰, 等, 2025. 磷循环及磷组分在古海洋环境重建中的应用. 地球科学, 50(01): 246-268.
      李向东, 杨敏, 魏泽昳, 2025. 滇东北羊场磷矿区ZK0816井寒武系梅树村组深水牵引流沉积. 古地理学报, 27(04): 853-869.
      李忠权, 刘记, 李应, 等, 2015. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化. 石油勘探与开发, 42(01): 26-33.
      刘文杰, 周艳玲, 米云川, 等, 2024. 云南镇雄羊场磷矿早寒武世无机碳、有机碳同位素研究. 岩石矿物学杂志, 43(05): 1086-1098.
      吕荐阔, 翟世奎, 于增慧, 等, 2021. 氧化还原敏感性元素在沉积环境判别中的应用研究进展. 海洋科学, 45(12): 108-124.
      毛铁, 2015. 黔中地区寒武系底部成磷环境及成矿控制因素分析. 贵州: 贵州大学.
      米云川, 杜斌, 夏建峰, 等, 2024. 滇东北镇雄羊场磷矿区下寒武统梅树村组沉积环境及富集成矿机制. 岩石矿物学杂志, 43(05): 1099-1118.
      腾格尔, 刘文汇, 徐永昌, 等, 2004. 缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例. 沉积学报, (02): 365-372.
      王莹, 熊先孝, 2023. 中国磷矿成矿系列、成矿规律与找矿方向. 地球学报, 44(04): 625-634.
      韦恒叶, 2012. 古海洋生产力与氧化还原指标——元素地球化学综述. 沉积与特提斯地质, 32(02): 76-88.
      邢介奇, 张泽阳, 鲜海洋, 等, 2022. 贵州织金磷矿稀土富集机制、赋存状态及可利用性. 矿物岩石地球化学通报, 41(03): 505-516+463-464.
      杨海英, 赵志芳, 王涛, 等, 2025. 滇东北早寒武世羊场磷矿沉积环境及稀土富集特征浅析. 矿物岩石地球化学通报, 1-20.
      杨瑞东, 毛铁, 陈吉艳, 等, 2017. 黔中寒武系底部磷块岩沉积特征. 矿物学报, 37(04): 448-455.
      岳维好, 黄艳华, 刀听红, 2022. 上扬子西南缘云南镇雄县羊场超大型优质磷矿地质特征及资源潜力. 地质通报, 41(05): 846-856.
      张帅, 罗冰, 汪泽成, 等, 2025. 四川盆地德阳—安岳克拉通内裂陷成因及其与原特提斯洋的联系. 天然气工业, 45(02): 37-50.
      周进高, 沈安江, 张建勇, 等, 2018. 四川盆地德阳—安岳台内裂陷与震旦系勘探方向. 海相油气地质, 23(02): 1-9.
    • 加载中
    计量
    • 文章访问数:  11
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-08-25
    • 网络出版日期:  2026-01-28

    目录

      /

      返回文章
      返回