|
Algeo, T. J., Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268(3/4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001 |
|
Bau, M., Koschinsky, A., 2009. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 43(1): 37-47. doi: 10.2343/geochemj.1.0005e |
|
Bau, M., M ̈oller, P., Dulski, P., 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1-2): 123-131. doi: 10.1016/s0304-4203(96)00091-6 |
|
Cañadas, F., Papineau, D., Leng, M. J., et al., 2022. Extensive primary production promoted the recovery of the Ediacaran Shuram excursion. Nature communications, 13(1): 148. doi: 10.1038/s41467-021-27812-5 |
|
Chen, J., Yang, R., Wei, H., et al., 2013. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region. Journal of Rare Earths, 31(1): 101-112. doi: 10.1016/s1002-0721(12)60242-7 |
|
Cook, P. J., Shergold, J. H., 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian—Cambrian boundary. Nature, 308(5956): 231-236. doi: 10.1038/308231a0 |
|
Cowie, J. W., 1985. Continuing work on the Precambrian-Cambrian boundary. Episodes Journal of International Geoscience, 8(2): 93-97. doi: 10.18814/epiiugs/1985/v8i2/003 |
|
Delaney, M. L., 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global biogeochemical cycles, 12(4): 563-572. doi: 10.1029/98gb02263 |
|
Fan, H., Wen, H., Zhu, X., 2016. Marine redox conditions in the Early Cambrian ocean: Insights from the Lower Cambrian phosphorite deposits, South China. Journal of Earth Science, 27: 282-296. doi: 10.1007/s12583-016-0687-3 |
|
Fan, Q. S., Xia, G. Q., Li, G. J., et al., 2022. Analytical Methods and Research Progress of Redox Conditions in the Paleo-Ocean. Acta Sedimentologica Sinica, 40(5): 1151-1171(in Chinese with English abstract). doi: 10.14027/j.issn.1000-0550.2021.023 |
|
Feng, Z. Z., 2004. Single factor analysis and multifactor comprehensive mapping method-reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography, 6(1): 3-19(in Chinese with English abstract). |
|
Fu, J. L., Ding, W. L., Zeng, W. T., et al., 2016. Influence of Structure of Northwest Guizhou Area on Preservation ofLower Cambrian Shale Gas Reservoirs. Journal of Southwest Petroleum University (Science & Technology Edition), 38(5): 22-32(in Chinese with English abstract). doi:10.11885/j.issn.1674 5086.2015.01.08.02 |
|
Hu, Q. H., Zhou, Q., Xia, J. F., et al., 2024. Genesis and prospecting potential of Yangchang phosphorus deposit in northeastern Yunnan Province. Mineral Deposits, 43(05): 1127-1148(in Chinese with English abstract). doi:10. 16111/j. 0258-7106. 2024. 05. 011 |
|
Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Research, 14(1-2): 193-208. doi: 10.1016/j.gr.2007.10.008 |
|
Jiang, Y., Gao, J. B., Lu, Z. T., et al., 2025. The evolution process of sedimentary environment of the phosphorite orebodies within the Lower Cambrian Gezhongwu Formation in the Zhijin phosphorite deposit, Guizhou Province. Acta Mineralogica Sinica, 45(03): 400-410(in Chinese with English abstract). doi: 10.3724/j.1000-4734.2025.45.037e |
|
Jin, Z. K., Shi, L., Gao, B. S., et al., 2013. Carbonate Facies and Facies Models. Acta Sedimentologica Sinica, 31(06): 965-979(in Chinese with English abstract). doi: 10.14027/j.cnki.cjxb.2013.06.002 |
|
Jones B, Manning D A C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1/2/3/4): 111-129. doi: 10.1016/0009-2541(94)90085-x |
|
Li, R., Wang, Y. X., Wang, Z. C., et al., 2023. Geological characteristics of the southern segment of the Late Sinian–Early Cambrian Deyang-Anyue rift trough in Sichuan Basin, SW China. Petroleum Exploration and Development, 50(02): 285-296(in Chinese with English abstract). doi: 10.11698/PED.20220764 |
|
Li, T., Zhu, G., Z, Y., et al., 2025. Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo-Marine Environment. Earth Science, 50(01): 246-268(in Chinese with English abstract). doi: 10.3799/dqkx.2023.202 |
|
Li, X. D., Yang, M., Wei, Z. Y., 2025. Deep-water traction current deposits of the Cambrian Meishucun Formation in Well ZK0816, Yangchang phosphate ore area of northeastern Yunnan Province. Journal of Palaeogeography, 27(04): 853-869(in Chinese with English abstract). doi: 10.7605/gdlxb.2025.025 |
|
Li, Z. Q., Liu, J., Li, Y., et al., 2015. Formation and evolution of Weiyuan-Anyue extension-erosion groove in Sinian system, Sichuan Basin. Petroleum Exploration and Development, 42(01): 26-33(in Chinese with English abstract). doi: 10.11698/PED.20220764 |
|
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian research, 160(1-2): 179-210. doi: 10.1016/j.precamres.2009.01.012 |
|
Liu, W. J., Zhou, Y. L., Mi, Y. C., et al., 2024. Inorganic and organic carbon isotopes from Early Cambrian Yangchang phosphate deposit in Zhenxiong County, Yunnan Province. Acta Petrologica et Mineralogica, 43(05): 1086-1098(in Chinese with English abstract). doi: 10.20086/j.cnki.yskw.2024.0502 |
|
Liu, Z. R. R., Zhou, M. F., 2020. Early Cambrian ocean mixing recorded by phosphorite successions in the Nanhua Basin, South China. Precambrian Research, 349: 105414. doi: 10.1016/j.precamres.2019.105414 |
|
LÜ, J. K., Zhai, S. K., Yu, Z. H., et al., 2021. Application and influence factors of redox-sensitive elements in a sedimentary environment. e, 45(12): 108-124(in Chinese with English abstract). doi: 10.11759/hykx20210712002 |
|
Mao, T., 2015. The analysis of forming environment and ore-controlling factors of phosphorous deposits in the bottom of lower Cambrian, Central Guizhou Province. Guizhou University, Guizhou, China (in Chinese with English abstract). |
|
Mi, Y. C., Du, B., Xia, J. F., et al., 2024. Sedimentary environment and enrichment mineralization mechanism of the Lower Cambrian Meishucun Formation in the Yangchang phosphate deposit of Zhenxiong area, Northeastern Yunnan. Acta Petrologica et Mineralogica, 43(05): 1099-1118(in Chinese with English abstract). doi: 10.20086/j.cnki.yskw.2024.0503 |
|
Pufahl, P. K., Groat, L. A., 2017. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Economic Geology, 112(3): 483-516. doi: 10.2113/econgeo.112.3.483 |
|
Russell, A. D., Morford, J. L., 2001. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 341-354. doi: 10.1016/s0025-3227(00)00159-6 |
|
Shi, L., Feng, Q. L., Shen, J., et al., 2016. Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: Evidence from the Gufeng Formation of western Hubei province. Palaeogeography, Palaeoclimatology, Palaeoecology, 444: 1-14. doi: 10.1016/j.palaeo.2015.11.031 |
|
Steiner, M., Li, G., Qian, Y., et al., 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 67-99. doi: 10.1016/j.palaeo.2007.03.046 |
|
Teng, G. E., Liu, W. H., Xu, W. C., et al, 2004. The Discussion on Anoxic Environments and ItsGeochemical Identifying Indices. Acta Sedimentologica Sinica, (02): 365-372(in Chinese with English abstract). |
|
Wang, Y., Xiong, X. X., 2023. Phosphate Ore Series, Metallogenic Regularity, and Prospecting Direction in China. Acta Geoscientica Sinica, 44(04): 625-634(in Chinese with English abstract). doi: 10.3975/cagsb.2022.111501 |
|
Wei, H. Y., 2012. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology, 32(02): 76-88(in Chinese with English abstract). |
|
Wen, H., Fan, H., Zhang, Y., et al., 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta, 164: 1-16. doi: 10.46427/gold2024.21573 |
|
Wright, J., Schrader, H., Holser, W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3): 631-644. doi: 10.1016/0198-0254(87)90207-x |
|
Xing, J. Q., Zhang, Z. Z., Xian, H. Y., et al., 2022. Enrichment Mechanism, Occurrence State and Availability of REEs in the Zhijin Phosphorite Deposit, Guizhou, China. Bulletin of Mineralogy, Petrology and Geochemistry, 41(03): 505-516+463-464(in Chinese with English abstract). doi: 10.19658/j.issn.1007-2802.2022.41.032 |
|
Xing, J., Jiang, Y., Xian, H., et al., 2024. Rare earth element enrichment in sedimentary phosphorites formed during the Precambrian–Cambrian transition, Southwest China. Geoscience Frontiers, 15(2): 101766. doi: 10.1016/j.gsf.2023.101766 |
|
Yang, H. Y., Zhao, Z. F., Wang, T., et al., 2025. A preliminary study of the rare earth element enrichment characteristics and ore formation environment of the Early Cambrian Yangchang phosphorite deposit in the northeastern Yunnan. Bulletin of Mineralogy, Petrology and Geochemistry, 1-20(in Chinese with English abstract). doi: 10.3724/j.issn.1007-2802.20240178 |
|
Yang, H., Xiao, J., Xia, Y., et al., 2021. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions. Geoscience Frontiers, 12(5): 101187. doi: 10.1016/j.gsf.2021.101187 |
|
Yang, H., Xiao, J., Xia, Y., et al., 2022. Diagenesis of Ediacaran-early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA. Ore Geology Reviews, 144: 104813. doi: 10.1016/j.oregeorev.2022.104813 |
|
Yang, R. D., Mao, T., Chen, J. Y., et al., 2017. A Study on Sedimentary Characteristics of Phosphate Rock atthe Bottom of the Cambrian in Central Guizhou Province, China. Acta Mineralogica Sinica, 37(04): 448-455(in Chinese with English abstract). doi: 10.16461/j.cnki.1000-4734.2017.04.01 |
|
Ye, Y., Wang, H., Wang, X., et al., 2020. Elemental geochemistry of lower Cambrian phosphate nodules in Guizhou Province, South China: An integrated study by LA-ICP-MS mapping and solution ICP-MS. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109459. doi: 10.1016/j.palaeo.2019.109459 |
|
Yu, L. M., Liu, M. X., Dan, Y., et al., 2023. The origin of Ediacaran phosphogenesis event: New insights from Doushantuo Formation in the Danzhai phosphorite deposit, South China. Ore Geology Reviews, 152: 105230. doi: 10.1016/j.oregeorev.2022.105230 |
|
Yue, W. H., Huang, Y. H., Dao, T. H., 2022. Geological characteristics and resource potential of the super-large high-quality phosphorite deposit of the Yangchang in Zhenxiong County, Yunnan Province, southwestern margin of the Upper Yangtze Block. Geological Bulletin of China, 41(05): 846-856(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2022.05.010 |
|
Zhang, G., Dong, Y., Lai, S., et al., 2004. Mianlüe tectonic zone and Mianlüe suture zone on southern margin of Qinling-Dabie orogenic belt. Science in China Series D: Earth Sciences, 47(4): 300-316. doi: 10.1360/02yd0526 |
|
Zhang, H., Fan, H., Wen, H., et al., 2022. Controls of REY enrichment in the early Cambrian phosphorites. Geochimica et Cosmochimica Acta, 324: 117-139. doi: 10.1016/j.gca.2022.03.003 |
|
Zhang, S., Luo, B., Wang, Z. C., et al., 2025. Genesis of the Deyang-Anyue intracratonic rift in the Sichuan Basin and itsconnection with the Proto-Tethys Ocean. Natural Gas Industry, 45(02): 37-50(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2025.02.004 |
|
Zhang, X., Zhou, X., Hu, D, 2020. High-resolution paired carbon isotopic records from the Meishucun section in South China: Implications for carbon cycling and environmental changes during the Ediacaran-Cambrian transition. Precambrian Research, 337: 105561. doi: 10.1016/j.precamres.2019.105561 |
|
Zhang, Z., Jiang, Y., Niu, H., et al., 2021. Enrichment of rare earth elements in the early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micro-petrography and geochemistry. Ore Geology Reviews, 138: 104342. doi: 10.1016/j.oregeorev.2021.104342 |
|
Zhao, G., Cawood, P. A., 2012. Precambrian geology of China. Precambrian Research, 222: 13-54. doi: 10.1016/j.precamres.2012.09.017 |
|
Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology, 39(4): 299-302. doi: 10.1130/g31701.1 |
|
Zhou, J. G., Shen, A. J., Zhang, J. Y., et al., 2018. Deyang-Anyue Interplatform Rift in Sichuan Basin and Its Direction of Exploration in Sinian. Marine Origin Petroleum Geology, 23(02): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2018.02.001 |
|
Zhu, M., Zhang, J., Yang, A., et al., 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710 |
|
Zhu, R. X., Li, X. H., Hou, X. G., et al., 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Science in China Series D: Earth Sciences, 52(9): 1385-1392. doi: 10.1007/s11430-009-0152-6 |
|
樊秋爽, 夏国清, 李高杰, 等, 2022. 古海洋氧化还原条件分析方法与研究进展. 沉积学报, 40(5): 1151-1171. |
|
冯增昭, 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报, 6(1): 3-19. |
|
付景龙, 丁文龙, 曾维特, 等, 2016. 黔西北地区构造对下寒武统页岩气藏保存的影响. 西南石油大学学报(自然科学版), 38(5): 22-32. |
|
胡清华, 周骞, 夏建峰, 等, 2024. 滇东北羊场磷矿床成因与找矿前景. 矿床地质, 43(05): 1127-1148. |
|
蒋元, 高军波, 路志通, 等, 2025. 贵州织金下寒武统戈仲伍组磷矿床的沉积环境演化过程. 矿物学报, 45(03): 400-410. |
|
金振奎, 石良, 高白水, 等, 2013. 碳酸盐岩沉积相及相模式. 沉积学报, 31(06): 965-979. |
|
黎荣, 王永骁, 汪泽成, 等, 2023. 四川盆地晚震旦世—早寒武世德阳—安岳裂陷槽南段地质特征. 石油勘探与开发, 50(02): 285-296. |
|
李婷婷, 朱光有, 张义杰, 等, 2025. 磷循环及磷组分在古海洋环境重建中的应用. 地球科学, 50(01): 246-268. |
|
李向东, 杨敏, 魏泽昳, 2025. 滇东北羊场磷矿区ZK0816井寒武系梅树村组深水牵引流沉积. 古地理学报, 27(04): 853-869. |
|
李忠权, 刘记, 李应, 等, 2015. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化. 石油勘探与开发, 42(01): 26-33. |
|
刘文杰, 周艳玲, 米云川, 等, 2024. 云南镇雄羊场磷矿早寒武世无机碳、有机碳同位素研究. 岩石矿物学杂志, 43(05): 1086-1098. |
|
吕荐阔, 翟世奎, 于增慧, 等, 2021. 氧化还原敏感性元素在沉积环境判别中的应用研究进展. 海洋科学, 45(12): 108-124. |
|
毛铁, 2015. 黔中地区寒武系底部成磷环境及成矿控制因素分析. 贵州: 贵州大学. |
|
米云川, 杜斌, 夏建峰, 等, 2024. 滇东北镇雄羊场磷矿区下寒武统梅树村组沉积环境及富集成矿机制. 岩石矿物学杂志, 43(05): 1099-1118. |
|
腾格尔, 刘文汇, 徐永昌, 等, 2004. 缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例. 沉积学报, (02): 365-372. |
|
王莹, 熊先孝, 2023. 中国磷矿成矿系列、成矿规律与找矿方向. 地球学报, 44(04): 625-634. |
|
韦恒叶, 2012. 古海洋生产力与氧化还原指标——元素地球化学综述. 沉积与特提斯地质, 32(02): 76-88. |
|
邢介奇, 张泽阳, 鲜海洋, 等, 2022. 贵州织金磷矿稀土富集机制、赋存状态及可利用性. 矿物岩石地球化学通报, 41(03): 505-516+463-464. |
|
杨海英, 赵志芳, 王涛, 等, 2025. 滇东北早寒武世羊场磷矿沉积环境及稀土富集特征浅析. 矿物岩石地球化学通报, 1-20. |
|
杨瑞东, 毛铁, 陈吉艳, 等, 2017. 黔中寒武系底部磷块岩沉积特征. 矿物学报, 37(04): 448-455. |
|
岳维好, 黄艳华, 刀听红, 2022. 上扬子西南缘云南镇雄县羊场超大型优质磷矿地质特征及资源潜力. 地质通报, 41(05): 846-856. |
|
张帅, 罗冰, 汪泽成, 等, 2025. 四川盆地德阳—安岳克拉通内裂陷成因及其与原特提斯洋的联系. 天然气工业, 45(02): 37-50. |
|
周进高, 沈安江, 张建勇, 等, 2018. 四川盆地德阳—安岳台内裂陷与震旦系勘探方向. 海相油气地质, 23(02): 1-9. |