Properties and Harmfulness of Lunar Dust: A Review
-
摘要: 月尘是广泛分布于月球表面的微小颗粒,大小约在30 nm~20 μm之间,95%以上小于2 μm,中值粒径约为100~300 nm,形态复杂多变,以玻璃小球、气泡构造、棱角状碎片为主,含有大量纳米颗粒金属铁和玻璃质,玻璃质含量超过50%,尤其是<2 μm的部分中,玻璃质含量高达80%~90%,化学成分与月壤基本类似,在不同地貌单元也体现出SiO2含量的差异.月尘的成分和颗粒特征使其具有独特的电磁性质和生物毒性,容易粘附于航天器表面和进入航天员体内,危害航天器和航天员的安全和健康,严重影响月面探测的正常实施.因此,对月尘的研究是保证月面探测工程正常实施的迫切需要;同时,月尘是月球表面物质经历长期的太空作用形成的,在颗粒成分和结构特征上保留了其演化过程的重要信息,是研究月表物质和大气演化、太空风化作用等科学问题的关键线索.但是目前对月尘的颗粒微观成分和结构差异、电磁特性和光学特性,纳米金属铁的特征和成因等方面的研究还不够深入,限制了月表物质演化历史的研究和月尘粘结腐蚀性、生物毒理学具体机理的认识.在月尘研究中利用模拟月尘弥补月尘样品稀缺的局限,并通过模拟实验加强以上方面的研究,能够更好地满足科学问题和工程探测的实际需要.Abstract: Lunar dust is the small particle widely distributed on the lunar surface, of which sizes range from 30 nm to 20 μm with the median diameter of 100-300 nm and more than 95% are less than 2 μm. The grains have complex shapes and usually show glass beads, vesicular texture, and angular shards. High contents of agglutinate glass and npFe0 are the remarkable properties in mineral composition. The glass content is usually more than 50 vol%, and it can reach 80% to 90% in < 2.5 μm part. Lunar dust is similar to lunar soil in elemental compositions, but it also shows different contents of SiO2 in different areas. The composition and geometrical characteristics of lunar dust lead to special electromagnetic properties and biological toxicity. These properties might cause the lunar dust adhered to spacecraft and inhaled by astronauts easily, and then damage the spacecraft and threaten the health of astronauts. So, it is necessary to study lunar dust further to facilitate lunar surface exploration, which also can better the understanding of the evolution of lunar surface materials and lunar atmosphere due to the fact that lunar dust has been formed during a long time space weathering and conserves important information of space weathering history in the composition and microstructure of lunar dust grain. Currently, the properties of lunar dust grains in micro-morphology and chemical composition, electromagnetic properties and spectral characteristics, the feature and origin of npFe0 are still not clear, which challenges the understanding of the mechanism of lunar dust's adhesion, biological toxicity and space weathering. To meet the needs of lunar science and lunar exploration, studying the properties of lunar soil grains and process of space weathering by simulated experiments using lunar dust stimulants as a candidate might be an important trend in the coming decades.
-
Key words:
- lunar dust /
- particle /
- property /
- harmfulness /
- lunar dust stimulant
-
图 2 月尘颗粒基本形态的SEM图像,除了j图显示颗粒以外的所有颗粒均经过表面活性剂清洗处理(Liu et al., 2006)
Fig. 2. Represent SEM images of lunar dust particles; particles in all images except Fig. 2j were cleaned with the surfactant solution
表 1 高Ti月海月尘化学特征
Table 1. Elemental content of high-Ti mare lunar dust
样品 10084-78 71061-14 71501-35 70181-47 79221-81 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm SiO2 41.20 42.10 39.50 40.20 39.00 40.40 40.40 41.50 40.90 42.30 TiO2 7.94 7.25 8.94 7.89 9.83 8.27 7.88 6.54 7.21 5.83 MgO 7.98 7.20 10.40 9.18 9.52 8.76 9.97 9.12 10.40 9.59 FeO 14.70 12.00 17.50 14.80 16.40 13.50 15.50 12.70 15.00 11.30 Al2O3 13.20 15.90 10.80 13.80 11.60 14.50 12.70 15.40 12.90 15.90 CaO 11.80 12.30 9.79 10.70 10.10 11.20 10.40 11.50 10.40 11.70 Na2O 0.43 0.46 0.40 0.46 0.39 0.42 0.34 0.46 0.39 0.49 Cr2O3 0.30 0.27 0.48 0.44 0.45 0.40 0.42 0.39 0.40 0.35 MnO 0.21 0.19 0.23 0.20 0.23 0.19 0.23 0.18 0.20 0.17 K2O 0.13 0.15 0.09 0.11 0.09 0.11 0.08 0.13 0.10 0.15 P2O5 0.11 0.20 0.06 0.05 0.06 0.06 0.05 0.10 0.07 0.07 SO2 0.13 0.14 0.02 0.25 0.19 0.25 0.15 0.20 0.19 0.17 Total 98.13 98.16 98.25 98.19 97.93 98.11 98.15 98.16 98.23 98.10 表 2 低Ti月海月尘化学特征
Table 2. Elemental content of low-Ti mare lunar dust
样品 12030-14 12001-56 15071-52 15041-94 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm SiO2 46.30 46.20 45.00 46.00 45.70 46.90 46.20 46.60 TiO2 3.32 3.01 2.96 2.78 1.88 1.57 1.88 1.79 MgO 9.86 8.37 10.00 8.79 11.00 9.85 10.80 9.37 FeO 17.20 14.30 15.90 12.50 15.40 9.59 14.40 11.00 Al2O3 10.70 13.90 12.30 14.90 12.90 17.10 13.50 16.40 CaO 9.64 10.40 10.20 11.20 10.20 11.80 10.20 11.60 Na2O 0.44 0.53 0.44 0.51 0.39 0.48 0.41 0.49 Cr2O3 0.50 0.43 0.46 0.42 0.53 0.40 0.41 0.37 MnO 0.20 0.19 0.23 0.19 0.22 0.15 0.21 0.17 K2O 0.26 0.35 0.23 0.30 0.18 0.22 0.18 0.23 P2O5 0.23 0.32 0.28 0.24 0.19 0.09 0.24 0.20 SO2 0.12 0.15 0.18 0.29 0.10 0.14 0.12 0.11 Total 98.27 98.14 98.18 98.12 98.69 98.30 98.55 98.35 表 3 月球高地月尘化学特征
Table 3. Elemental content of highland lunar dust
样品 14141-5.7 141631-57 61221-9.2 67481-31 64801-82 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm 10~20 μm <10 μm SiO2 48.40 49.20 47.40 47.20 44.50 44.50 44.40 44.50 44.50 44.80 TiO2 1.71 1.51 1.88 2.07 0.50 0.05 0.40 0.42 0.68 0.61 Al2O3 17.20 19.20 17.00 18.90 27.50 28.50 28.40 29.10 26.30 27.70 Cr2O3 0.23 0.21 0.22 0.21 0.09 0.08 0.09 0.08 0.12 0.12 MgO 9.08 6.99 9.57 8.14 5.16 4.35 4.54 4.09 6.18 5.22 CaO 10.70 11.30 10.80 11.60 16.00 16.50 16.40 16.70 15.60 16.10 MnO 0.13 0.10 0.13 0.12 0.05 0.06 0.05 0.07 0.08 0.07 FeO 9.46 7.66 10.10 8.83 4.40 3.64 4.04 3.61 4.78 3.84 Na2O 0.71 0.91 0.67 0.70 0.45 0.53 0.45 0.46 0.41 0.42 K2O 0.66 0.96 0.51 0.55 0.09 0.13 0.07 0.08 0.11 0.14 P2O5 0.32 0.40 0.27 0.33 0.05 0.06 0.04 0.04 0.06 0.04 SO3 0.07 0.10 0.10 0.11 0.06 0.10 0.06 0.07 0.07 0.11 Total 98.68 98.61 98.72 98.85 98.93 99.00 99.08 99.22 98.99 99.21 -
Allen, C.C., Morris, R.V., McKay, D.S., 1995. Experimental Space Weathering of Lunar Soils. Meteoritics, 30(5): 479-480. Anand, M., Taylor, L.A., Nazaraov, M.A., et al., 2003. New Lunar Mineral HAPKEITE-Product of Impact-Induced Vapor-Phase Deposition in the Regolith. In: 34th Proceedings of Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 1818-1819. Anand, M., Taylor, L.A., Nazarov, M.A., et al., 2004. Space Weathering on Airless Planetary Bodies: Clues from the Lunar Mineral Hapkeite. Proceedings of the National Academy of Sciences, 101(18): 6847-6851. doi: 10.1073/pnas.0401565101 Batsura, L.D., Kruglikov, G.G., Arutyunov, V.D., 1981. Morphology of Experimental Pneumoconiosis Developing after Exposure to Lunar Soil. Bulletin of Experimental Biology and Medicine, 92(9): 376-379. http://europepmc.org/abstract/MED/7295997 Bentley, P.M., Wildes, A.R., Kilcoyne, S.H., et al., 2010. The Effect of α-Fe Crystallites on the Magnetic Structures of Fe100-xZrx Glasses. Journal of Physical: Conference Series, 200(3): 3. doi: 10.1088/1742-6596/200/3/032006 Bernatowicz, T.J., Nichols, R.H., Hohenburg, C.M., 1994. Origin of Amorphous Rims on Lunar Soil Grains. In: 25th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, XXV: 105-106. Bibring, J.P., Duraud, J.P., Durrieu, L., et al., 1972. Ultrathin Amorphouscoatings on Lunar Dust Grains. Science, 175(4023): 753-755. doi: 10.1126/science.175.4023.753 Buhler, C.R., Calle, C.R., Clements, J.S., et al., 2007. Test Method for in Situ Electrostatic Characterization of Lunar Dust. Institute of Electrical and Electronics Engineers, 1-19. doi: 10.1109/aero.2007.352755 Calle, C.I., Buhler, C.R., Mcfall, J.L., et al., 2009. Particle Removal by Electrostatic and Dielectrophoretic Forces for Dust Control during Lunar Exploration Missions. Journal of Electrostatics, 67(2-3): 89-92. doi: 10.1016/j.elstat.2009.02.012 Christoffersen, R., Keller, L.P., Mckay, D.S., 1996. Microstructure, Chemistry, and Origin of Grain Rims on Ilmenite from the Lunar Soil Finest Fraction. Meteoritics & Planetary Science, 31(6): 835-848. doi: 10.1111/j.1945-5100.1996.tb02117.x Doug, R., Kenneth, W.S., 2008. Some Expected Mechanical Characteristics of Lunar Dust: A Gological View. In: Space Technology and Applications International Forum. University of New Mexico, New Mexico, AIP Conf. Proc., 969: 949-955. doi: 10.1063/1.2845062 Fischer, E.M., Pieters, C.M., 1994. Remote Determination of Exposure Degree and Iron Concentration of Lunar Soils Using VIS-NIR Spectroscopic Methods. Icarus, 111: 475-488. doi: 10.1006/icar.1994.1158 Fuller, M., Wu, Y.M., Wasilewski, P.J., 1975. The Magnetic Characterstics of Returned Lunar Samples and Their Implications for Regolith Processes. Moon, 13: 327-328. doi: 10.1007/BF00567524 Grommé, C.S., Doell, R.R., 1971. Magnetic Properties of Lunar Samples 12502 and 12065. Second Lunar Science Conference. Geochimica et Cosmochimica Acta, 3(Suppl. 2): 2491-2499. http://adsabs.harvard.edu/abs/1971LPSC....2.2491G Guthrie, G.D., 1997. Mineral Properties and Their Contribution to Particle Toxicity. Environment Health Perspect, 105(Suppl. 5): 1003-1011. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=1739&site=ehost-live Hanneken, J.W., Carnes, J.G., Vant-Hull, L.L., 1976. The Frequency Dependence of the Viscous Component of the Magnetic Susceptibility of Lunar Rock and Soil Samples. Earth and Planetary Science Letters, 32(1): 45-50. doi: 10.1016/0012-821X(76)90183-7 Hapke, B.W., 1998. The Vapor Deposition Model of Space Weathering: Strawman Pardigm for the Moon. In: Jolliff, B.L., and Ryder, G., eds., Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datesets. Lunar and Planetary Institute, Houston. Hapke, B.W., 2001. Space Weathering from Mercury to the Asteroid Belt. Journal of Geophysical Research, 106(E5): 10039-10073. doi: 10.1029/2002JE001338 Hapke, B., Cassidy, W., Wells, E., 1975. Effects of Vapor-Phase Deposition Processes on the Optical, Chemical, and Magnetic Properties of the Lunar Regolith. Earth, Moon, and Planets, 13(1-3): 339-353. doi: 10.1007/BF00567525 Heiken, G.H., Vaniman, D.T., French, B.M., 1991. Lunar Sourcebook: A User's Guide to the Moon. Cambridge University Press and Lunar and Planetary Institute, Houston. Helsley, C., 1970. Magnetic Properties of Lunar Dust and Rock Samples. Science, 167(3918): 693-695. doi: 10.1126/science.167.3918.693 Holland, J.M., Simmonds, R.C., 1973. The Mammalian Response to Lunar Particles. Space Life Sciences, 4(1): 97-109. doi: 10.1007/BF02626346 Keller, L.P., McKay, D.S., 1993. Discovery of Vapor Deposits in the Lunar Regolith. Science, 261(5126): 1305-1307. doi: 10.1126/science.261.5126.1305 Keller, L.P., McKay, D.S., 1994. The Nature of Agglutinitic Glass in the Fine-Size Fraction of Lunar Soil 10084. In: 25th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, XXV: 685-686. Keller, L.P., Mckay, D.S., 1997. The Nature and Origin of Rims on Lunar Soil Grains. Geochimica et Cosmochimica Acta, 61(11): 2332-2341. dio: 10.1016/S0016-7037(97)00085-9 http://www.sciencedirect.com/science/article/pii/S0016703797000859 Keller, L.P., Wentworth, S.J., Gezo, J., et al., 1999. Space Weathering Altertion of Lunar Soil Grains. Lunar and Planetary Science, XXX: 1820. Keller, L.P., Wentworth, S.J., McKay, D.S., 1998. Surface Correlated Nanophase Iron Metal in Lunar Soils: Petrography and Space Weathering Effects. Workshop on New View of the Moon, 44. Lam, C.W., James, J.T., Latch, J.N., et al., 2002a. Pulmonary Toxicity of Simulated Lunar and Martian Dusts in Mice: II. Biomarkers of Acute Responses after Intratracheal Instillation. Inhalation Toxicology, 14(9): 917-928. doi: 10.1080/08958370290084692 Lam, C.W., James, J.T., Mccluskey, R., et al., 2002b. Pulmonary Toxicity of Simulated Lunar and Martian Dusts in Mice: I. Histopathology 7 and 90 Days after Intratracheal Instillation. Inhalation Toxicology, 14(9): 901-916. doi: 10.1080/08958370290084683 Larochelle, A., Schwarz, E.J., 1970. Magnetic Properties of Lunar Sample 10084-22. Science, 167(3918): 700-701. doi: 10.1126/science.167.3918.700 Latch, J.N., Raymond, R.F.J., Hamilton, A., et al., 2008. Toxicity of Lunar and Martian Dust Simulants to Alveolar Macrophages Isolated from Human Volunteers. Inhalation Toxicology, 20(2): 157-165. doi: 10.1080/08958370701821219 Liu, Y., Park, J.S., Hill, E., et al., 2006. Morphology and Physical Characteristics of Apollo 17 Dust Particles. In: 10th ASCE Aerospace Division International Conference. American Society for Civil Engineers Proceedings, Houston, CD-ROM. Liu, Y., Park, J.S., Schnare, D., et al., 2008. Characterization of Lunar Dust for Toxicological Studies II: Texture and Shape Characteristics. Journal of Aerospace Engineering, 21(4): 272-279. doi: 10.1061/(ASCE)0893-1321(2008)21:4(272) Liu, Y., Schmare, J.S., Park, J.S., 2007. Shape Analyses of Lunar Dust Particles for Astrounant Toxicological Studies. In: 38th Proceedings of Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, XXXVIII: 1383. Liu, Y., Taylor, L.A., 2008. Lunar Dust: Chemistry and Physical Properties and Implications for Toxicity. Lunar and Planetary Institute Contributions, 1415: 2072. http://adsabs.harvard.edu/abs/2008LPICo1415.2072L Liu, Y., Taylor, L.A., Thompson, J.R., et al., 2007. Unique Properties of Lunar Impact Glass: Nanophase Metallic Fe Synthesis. American Mineralogist, 92(8-9): 1420-1427. doi: 10.2138/am.2007.2333 Liu, Y., Thompson, J.R., Taylor, L.A., et al., 2007. Magnetic Properties of Unique Apollo 17 Soil 70051. In: 38th Proceedings of Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, XXXVII: 1945-1946. Martel, L., 2004. New Mineral Proves an Old Idea about Space Weathering. Planetary Science Research Discoveries, 1-7. Mayberry, N.K., 2008. The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts. Acta Astronautica, 63(7-10): 1006-1014. doi: 10.1016/j.actaastro.2008.03.015 McKay, D., Heiken, G., Basu, A., et al., 1991. The Lunar Regolith. In: Heiken, G., Vaniman, D., French, B.M., et al., eds., Lunar Sourcebook: A User's Guide To The Moon. Cambridge University Press, New York. Miroshnichenko, L.I., 2001. Solar Comic Rays. Kluwer Academic Publishers, Netherlands. Morea, S.F., 1992. The Lunar Roving Vehicle: Historical Perspective in NASA. In: The Second Conference on Lunar Bases and Space Activities of the 21st Century. Johnson Space Center, Houston, 2: 619-632. Mouélic, S.L., Lucey, P.G., Langevin, Y., et al., 2002. Calculating Iron Contents of Lunar Highland Materials Surrounding Tycho Crater from Integrated Clementine UV-Visible and Near-Infrared Data. Journal of Geophysical Research, 107(5074): 1-9. doi: 10.1029/2000JE001484 Nagata, T., Ishikawa, Y., Kinoshita, H., et al., 1970. Magnetic Properties and Natural Remanent Magnetization of Lunar Materials. Geochimica et Cosmochimica Acta, Supplement: 2325-2340. https://ntrs.nasa.gov/search.jsp?R=19700065555 Noble, S.K., Pieters, C.M., Taylor, L.A., et al., 2001. The Optical Properties of the Finest Fraction of Lunar Soil: Implication for Space Weathering. Meteorisics & Planetary Science, 36(1): 31-42. doi: 10.1111/j.1945-5100.2001.tb01808.x Noble, S.K., Keller, L.P., 2006. Investigating the Nanoscale Complexity of Lunar Space Weathering. Geochimica et Cosmochimica Acta, 70(18): A448-A448. doi: 10.1016/j.gca.2006.06.900 Noble, S.K., Pieters, C.M., Hirori, T., et al., 2000. Initial Results of MGM Analysis on Apollo 17 Soil Suite. In: 31th Proceedings of Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, XXXI: 1880. Ouyang, Z.Y., 2005. Introduction of Lunar Science. China Aerospace Publishing House, Beijing(in Chinese). Park, J.S., Liu, Y., Kihm, K.D., et al., 2006a. Micromorphology and Toxicological Effects of Lunar Dust. In: 37th Proceedings of Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 2193. Park, J.S., Liu. Y., Kihm, K.D., et al., 2006b. Toxicity of Lunar Dust for Humans at a Lunar Base. In: Southeastern 55th Annual Meeting. Section Geological Society of America Conference. The Geological Society of America, Knoxville, 102500. Park, J., Liu, Y., Kihm, K.D., et al., 2008. Characterization of Lunar Dust for Toxicological Studies. I: Particle Size Distribution. Journal of Aerospace Engineering, 21(4): 266-271. doi: 10.1061/(ASCE)0893-1321(2008)21:4(266) Pearce, G.W., Gose, W.A., Strangway, D.W., 1973. Magnetic Studies on Apollo 15 and 16 Lunar Samples. In: 4th Proceedings of Lunar Science Conference. Lunar and Planetary Institute, Houston, 4: 3045-3076. Pearce, G.W., Strangway, D.W., Gose, W.A., 1974. Magnetic Properties of Apollo Samples and Implications for Regolith Formation. In: 5th Proceeding Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 3: 2815-2826. Plumlee, G.S., Morman, S.A., Ziegler, T.L., 2006. The Toxicological Geochemistry of Earth Materials: An Overview of Processes and the Interdisciplinary Methods Used to Understand Them. Reviews in Mineralogy and Geochemistry, 64(1): 5-57. doi: 10.2138/rmg.2006.64.2 Rochette, P., Gattacceca, J., Ivanov, A.V., et al., 2010. Magnetic Properties of Lunar Materials: Meteorites, Luna and Apollo Returned Samples. Earth and Planetary Science Letters, 292(3-4): 383-391. doi: 10.1016/j.epsl.2010.02.007 Simpson, J.A., 1983. Elemental and Isotopic Composition of the Galactic Cosmic Rays. Annual Review of Nuclear and Particle Science, 33(1): 323-381. doi: 10.1146/annurev.ns.33.120183.001543 Stephen, J., Ronald, E.D., Robert, S.H., 1971. Lunar Dust Deposition on the Solar Absorptance of Thermal Control Materials. American Institute of Aeronautics and Astronautics, 71-459. Stubbs, T.J., Vondrak, R.R., Farrell, W.M., 2005. Impart of Lunar Dust on the Experience Initiative. In: 36th Proceedings of Lunar Science Conference. Lunar and Planetary Institute, Houston, XXXVI: 2277. Sunshine, J.M., Pieters, C.M., 1998. Determining the Composition of Olivine from Reflectance Spectroscopy. Journal of Geophysical Research, 103(E6): 13675-13688. doi: 10.1029/98JE01217 Taylor, L.A., Cahill, J.T., Patchen, A., et al., 2001. Mineralogical and Chemical Characterization of Lunar High-Land Regolith: Lessons Learned from Mare Soils. In: 32th Lunar and Plantary Science Conference. Lunar and Planetary Institute, Houston, 2196. Taylor, L.A., Cahill1, J., et al., 2002. Mineral and Glass Characterization of Apollo 14 Soils. In: 33th Lunar and Plantary Science Conference. Lunar and Planetary Institute, Houston, 1302. Taylor, L.A., Liu, Y., Zhang, A. Ch., 2009. Shape and Size Relationship of Several Lunar Dusts: Preliminary Results. In: 40th Lunar and Plantary Science Conference. Lunar and Planetary Institute, Houston, 2106. Taylor, L.A., Pieters, C.M., Keller, L.P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface-Correlated Nanophase Fe. Journal of Geophysical Research, 106(E11): 27985-27999. doi: 10.1029/2000JE001402 Taylor, L.A., Pieters, C.M., Patchen, A., et al., 2003. Mineralogical Characterization of Lunar Highland Soils. In: 34th Lunar and Plantary Science Conference. Lunar and Planetary Institute, Houston, 34: 1774-1775. Taylor, L.A., Schmitt, H., Carrier, W.D., et al., 2005. The Lunar Dust Problem: from Liability to Asset. In: 1st Space Exploration Conference. American Institute of Aeronautics and Astronautics, Orlando, 1-8. Tsay, D.U., Chan, S, U., Manatt, S.L., 1971. Magnetic Resonance Studies of Apollo 11 and Appllo 12 Samples. In: Proceedings of the Second Lunar Science Conference. Lunar and Planetary Institute, Houston, 3: 2515-2518. http://adsabs.harvard.edu/abs/1971LPSC....2.2515T Vernet, N.M., 2007. Basics of the Solar Wind. Cambridge University Press, New York. Wiesli, R.A., Beard, B.L., Taylor, L.A., et al., 2003. Space Weathering Processes on Airless Bodies: Fe Isotope Fractionation in the Lunar Regolith. Earth and Planetary Science Letters, 216(4): 457-465. doi: 10.1016/S0012-821X(03)00552-1 Wilcox, B.B., Lucey, P.G., Gillis, J.J., 2005. Mapping Iron in the Lunar Mare: An Improved Approach. Journal of Geophysical Research, 110(E11001): 1-10. doi: 10.1029/2005JE002512 欧阳自远, 2005. 月球科学概论. 北京: 中国宇航出版社. -