• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Li Qiang, Cheng Xueqin, Chen Wei, Liu Hongzhang, Zhang Tao, Zhang Jianzhen, Jia Limin, Yang Ning, Liu Tengfei, 2021. Discovery of Early-Middle Triassic Andesite in Erguna Massif and Its Indication of Southward Subduction of Mongol-Okhotsk Ocean Plate. Earth Science, 46(8): 2768-2785. doi: 10.3799/dqkx.2020.319
    Citation: Li Qiang, Cheng Xueqin, Chen Wei, Liu Hongzhang, Zhang Tao, Zhang Jianzhen, Jia Limin, Yang Ning, Liu Tengfei, 2021. Discovery of Early-Middle Triassic Andesite in Erguna Massif and Its Indication of Southward Subduction of Mongol-Okhotsk Ocean Plate. Earth Science, 46(8): 2768-2785. doi: 10.3799/dqkx.2020.319

    Discovery of Early-Middle Triassic Andesite in Erguna Massif and Its Indication of Southward Subduction of Mongol-Okhotsk Ocean Plate

    doi: 10.3799/dqkx.2020.319
    • Received Date: 2020-08-15
    • Publish Date: 2021-08-01
    • The andesite is closely related to the subduction tectonic environment,and the study of andesite can obtain important information about the age of subduction and related subduction processes. In this paper it presents petrographic characteristics,whole-rock geochemical data and zircon U-Pb ages of the Early to Middle Triassic andesites from the Fengshui Mountain area in the Erguna massif in the northern Great Xing'an Range for the purpose of revealing the initial southward subduction of the Mongol-Okhotsk oceanic plate. Most of the zircons from the andesite in the Fengshui Mountain area are euhedral to subhedral in shape,with typical oscillating growth zonation and relatively high Th/U ratios (0.23-1.34),indicative of magmatic zircons. Zircon LA-ICP-MS U-Pb dating yields two ages of 251±2 Ma and 243±2 Ma for andesite in the Fengshui Mountain area,indicative of Early and Middle Triassic ages for the andesites. These Early Mesozoic andesites have typical geochemical characteristics of active continental margin arc magmatite with SiO2,Al2O3,K2O,Na2O,Fe2O3T,MgO,TiO2 and total alkali (K2O+Na2O) contents ranging from 53.52% to 60.38%,16.17% to 17.41%,1.60% to 4.60%,3.83% to 4.65%,5.55% to 8.93%,1.96% to 5.97%,0.97% to 1.67%,and 5.60% to 8.05%,respectively. These andesites are high K calc-alkaline with Na2O/K2O ratios ranging from 1.23 to 2.51,A/CNK values (aluminum saturation index) from 0.86 to 0.97 and Mg# values ranging from 47 to 75. These volcanic rocks are enriched in large ionic lithophile elements such as Rb,Ba,U,K,Pb and light rare earth elements,but depleted in high field strength elements such as Nb,Ta,Ti,P and heavy rare earth elements,with weak negative Eu anomaly (δEu=0.74-0.99). These Early Mesozoic andesitic rocks are geochemically similar to the typical andesites in Andean,thus indicating that they are most likely formed in the Andean-type active continental margin environment related to the southward subduction of the Mongol-Okhotsk oceanic plate.

       

    • loading
    • Annen, C., Blundy, J. D., Sparks, R. S. J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3): 505-539. https://doi.org/10.1093/petrology/egi084
      Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Bailey, J. C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32(1-4): 139-154. https://doi.org/10.1016/0009-2541(81)90135-2
      Bussien, D., Gombojav, N., Winkler, W., et al., 2011. The Mongol-Okhotsk Belt in Mongolia: An Appraisal of the Geodynamic Development by the Study of Sandstone Provenance and Detrital Zircons. Tectonophysics, 510(1-2): 132-150. https://doi.org/10.1016/j.tecto.2011.06.024
      Cantagrel, J. M., Cendrero, A., Fuster, J. M., et al., 1984. K-Ar Chronology of the Volcanic Eruptions in the Canarian Archipelago: Island of La Gomera. Bulletin Volcanologique, 47(3): 597-609. https://doi.org/10.1007/bf01961229
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2010. Geochronology, Geochemistry and Petrogenesis of the Bamco Andesites from the Northern Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2193-2206 (in Chinese with English abstract). http://www.researchgate.net/publication/279769272_Geochronology_geochemistry_and_petrogenesis_of_the_Bamco_andesites_from_the_northern_Gangdese_Tibet
      Cheng, Y.H., Yang, J.Q., Liu, Y.S., et al., 2012. Age and Geochemistry of Andesites in the Qagan Obo Area, Da Hinggan Mountains. Geological Survey and Research, 35(2): 118-127 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-survey-research_thesis/0201254044613.html
      Condie, K. C., 1973. Archean Magmatism and Crustal Thickening. Geological Society of America Bulletin, 84(9): 2981-2992. https://doi.org/10.1130/0016-7606(1973)842981:amact>2.0.co;2 doi: 10.1130/0016-7606(1973)842981:amact>2.0.co;2
      Condie, K.C., 1986. Geochemistry and Tectonic Setting of Early Proterozoic Supracrustal Rocks in the Southwestern United States. Journal of Geology, 94(6): 845-864. doi: 10.1086/629091
      Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1-2): 1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      Cullers, R. L., Graf, J. L., 1984. Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks-Ore Petrogenesis. Rare Earth Element Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-42148-7.50013-7
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks (HMA) and Magnesian Andesitic/Dioritic Rocks(MA): Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4): 1112-1118 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252106240.html
      Derbeko, I. M., Sorokin, A. A., Sal'nikova, E. B., et al., 2008. Age of Felsic Volcanism in the Selitkan Zone of the Khingan-Okhotsk Volcanoplutonic Belt, Russian far East. Doklady Earth Sciences, 418(1): 28-31. https://doi.org/10.1134/s1028334x08010078
      Feeley, T. C., Wilson, L. F., Underwood, S. J., 2008. Distribution and Compositions of Magmatic Inclusions in the Mount Helen Dome, Lassen Volcanic Center, California: Insights into Magma Chamber Processes. Lithos, 106(1-2): 173-189. https://doi.org/10.1016/j.lithos.2008.07.010
      Ge, W.C., Sui, Z.M., Wu, F.Y., et al., 2007. Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northeastern Da Hinggan Mts., Northeastern China. Acta Petrologica Sinica, 23(2): 423-440 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702022.htm
      Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2005. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Erguna Block in the Northern Part of the Daxing'anling. Chinese Science Bulletin, 50(12): 1239-1247 (in Chinese). doi: 10.1360/csb2005-50-12-1239
      Gill, J., 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin.
      Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065
      Gou, J., Sun, D. Y., Ren, Y. S., et al., 2013. Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli-Erguna Area of Inner Mongolia, China: Geochronological, Geochemical and Hf Isotopic Evidence. Journal of Asian Earth Sciences, 67-68: 114-137. https://doi.org/10.1016/j.jseaes.2013.02.016
      Guffanti, M., Clynne, M. A., Muffler, L. J. P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research: Solid Earth, 101(B2): 3003-3013. https://doi.org/10.1029/95jb03463
      Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing in Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
      Halim, N., Kravchinsky, V., Gilder, S., et al., 1998. A Palaeomagnetic Study from the Mongol-Okhotsk Region: Rotated Early Cretaceous Volcanics and Remagnetized Mesozoic Sediments. Earth and Planetary Science Letters, 159(3-4): 133-145. https://doi.org/10.1016/s0012-821x(98)00072-7
      Hawkesworth, C. J., Turner, S. P., McDermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312): 551-555. https://doi.org/10.1126/science.276.5312.551
      Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489. https://doi.org/10.1007/bf00372365
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H
      Jackson, M. D., Cheadle, M. J., Atherton, M. P., 2003. Quantitative Modeling of Granitic Melt Generation and Segregation in the Continental Crust. Journal of Geophysical Research: Solid Earth, 108(B7): 2332. https://doi.org/10.1029/2001jb001050
      Ji, Z., Ge, W.C., Yang, H., et al., 2018. The Late Triassic Andean-Type Andesite from the Central Great Xing'an Range: Products of the Southward Subduction of the Mongol-Okhotsk Oceanic Plate. Acta Petrologica Sinica, 34(10): 2917-2930 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201810007.htm
      Jia, L.M., Liu, H.Z., Ju, J.X., et al., 2018. Protolith Reconstruction and Geotectonic Environmental Research of Xinghuadukou Rock Group in Lülin Forestry Center, Daxing'anling. Journal of Geomechanics, 24(4): 544-554 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201804040.htm
      Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5
      Kushiro, I., 1968. Compositions of Magmas Formed by Partial Zone Melting of the Earth's Upper Mantle. Journal of Geophysical Research Atmospheres, 73(2): 619-634. https://doi.org/10.1029/jb073i002p00619
      le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glosssary of Terms: Recommendations of the International Union of Geological Science Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge.
      Lee, C. T. A., Lee, T. C., Wu, C. T., 2014. Modeling the Compositional Evolution of Recharging, Evacuating, and Fractionating (REFC) Magma Chambers: Implications for Differentiation of Arc Magmas. Geochimica et Cosmochimica Acta, 143: 8-22. https://doi.org/10.1016/j.gca.2013.08.009
      Li, J.Y., Zhang, J., Yang, T.N., et al., 2009. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904002.htm
      Li, L., Sun, F.Y., Li, B.L., et al., 2018. Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area. Earth Science, 43(2): 417-435 (in Chinese with English abstract). http://www.researchgate.net/publication/324644584_Geochemistry_Hf_Isotopes_and_Petrogenesis_of_Biotite_Granodiorites_in_the_Mohe_Area
      Li, S.C., Zhang, L.Y., Li, P.C., et al., 2017. Discovery and Tectonic Implications of Early Triassic O-Type Adakite in Middle of Great Xing'an Range. Earth Science, 42(12): 2117-2128 (in Chinese with English abstract).
      Li, Y., 2018. Geochronology and Geochemistry of the Mesozoic Igneous Rocks in the Xing'an Massif, NE China: Constraints on the Evolution of the Mongol-Okhotsk Tectonic Regime (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Li, Y., Xu, W. L., Wang, F., et al., 2017a. Triassic Volcanism along the Eastern Margin of the Xing'an Massif, NE China: Constraints on the Spatial-Temporal Extent of the Mongol-Okhotsk Tectonic Regime. Gondwana Research, 48: 205-223. https://doi.org/10.1016/j.gr.2017.05.002
      Li, Y. L., Brouwer, F. M., Xiao, W. J., et al., 2017b. Subduction-Related Metasomatic Mantle Source in the Eastern Central Asian Orogenic Belt: Evidence from Amphibolites in the Xilingol Complex, Inner Mongolia, China. Gondwana Research, 43: 193-212. https://doi.org/10.1016/j.gr.2015.11.015
      Li, Y. L., Zhou, H. W., Brouwer, F. M., et al., 2014a. Nature and Timing of the Solonker Suture of the Central Asian Orogenic Belt: Insights from Geochronology and Geochemistry of Basic Intrusions in the Xilin Gol Complex, Inner Mongolia, China. International Journal of Earth Sciences, 103(1): 41-60. https://doi.org/10.1007/s00531-013-0931-3
      Li, Y. L., Zhou, H. W., Brouwer, F. M., et al., 2014b. Early Paleozoic to Middle Triassic Bivergent Accretion in the Central Asian Orogenic Belt: Insights from Zircon U-Pb Dating of Ductile Shear Zones in Central Inner Mongolia, China. Lithos, 205: 84-111. https://doi.org/10.1016/j.lithos.2014.06.017
      Lin, Q., Ge, W.C., Sun, D.Y., et al., 1998. Tectonic Significance of Mesozoic Volcanic Rocks in Northeastern China. Scientia Geologica Sinica, 33(2): 129-139 (in Chinese with English abstract). http://www.researchgate.net/publication/296397418_Tectonic_significance_of_mesozoic_volcanic_rocks_in_Northeastern_China
      Liu, H. C., Li, Y. L., He, H. Y., et al., 2018. Two-Phase Southward Subduction of the Mongol-Okhotsk Oceanic Plate Constrained by Permian-Jurassic Granitoids in the Erguna and Xing'an Massifs (NE China). Lithos, 304-307: 347-361. https://doi.org/10.1016/j.lithos.2018.01.016
      Liu, X.W., Yang, H., Dong, Y., et al., 2015. Zircon U-Pb Ages and Geochemical Characteristics of the Triassic Granites from the Mingshui Area in the Da Hinggan Mountains and Their Tectonic Implications. Acta Petrologica et Mineralogica, 34(2): 143-158 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSKW201502002.htm
      Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ma, Y.F., Liu, Y.J., Wen, Q.B., et al., 2017. Petrogenesis and Tectonic Settings of Volcanic Rocks from Late Triassic Hadataolegai Fm. at Central Part of Great Xing'an Range. Earth Science, 42(12): 2146-2173 (in Chinese with English abstract).
      Maury, R. C., Andriambololona, R., Dupuy, C., 1978. Evolution Comparée de Deux Séries Alcalines Du Pacifique Central: Rôle de La Fugacité d'oxygène et de La Pression d'eau. Bulletin Volcanologique, 41(2): 97-118. https://doi.org/10.1007/bf02597024
      Mortazavi, M., Sparks, R. S. J., 2004. Origin of Rhyolite and Rhyodacite Lavas and Associated Mafic Inclusions of Cape Akrotiri, Santorini: The Role of Wet Basalt in Generating Calcalkaline Silicic Magmas. Contributions to Mineralogy and Petrology, 146(4): 397-413. https://doi.org/10.1007/s00410-003-0508-4
      Ninkovich, D., Donn, W.L., 1976. Explosive Cenozoic Volcanism and Climatic Implications. Science, 194(4268): 899-906. https://doi.org/10.1126/science.194.4268.899
      Niu, X.L., Liu, F., Feng, G.Y., et al., 2018. Discovery and Significance of Early Silurian Andesites in Wuwamen Area, Southern Margin of Central Tianshan Block. Earth Science, 43(4): 1350-1366 (in Chinese with English abstract).
      Parman, S. W., Grove, T. L., 2004. Harzburgite Melting with and without H2O: Experimental Data and Predictive Modeling. Journal of Geophysical Research: Solid Earth, 109(B2): B02201. https://doi.org/10.1029/2003jb002566
      Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thoepe, R.S., ed., Andesites. John Willey and Suns, New York.
      Pearce, J.A., 1983. The Role of Sub-Continental Lithosphere in Magma Genesis at Destructive Plate Margin. In: Zartman, R.E., ed., Continental Basalts and Mantle Xenoliths. Nantwich Shiva Academic Press, Chester.
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
      Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Reubi, O., Blundy, J., 2009. A Dearth of Intermediate Melts at Subduction Zone Volcanoes and the Petrogenesis of Arc Andesites. Nature, 461(7268): 1269-1273. https://doi.org/10.1038/nature08510
      Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006
      Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific Technical, New York, 160-250.
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R., ed., The Crust, Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
      She, H.Q., Liang, Y.W., Li, J.W., et al., 2011. The Early-Mesozoic Magmatic Activity at Moerdaoga District in Inner Mongolia and Its Geodynamic Implication. Journal of Jilin University (Earth Science Edition), 41(6): 1831-1864 (in Chinese with English abstract). http://www.researchgate.net/publication/279762295_The_Early-Mesozoic_magmatic_activity_at_Moerdaoga_district_in_Inner_Mongolia_and_its_geodynamic_implication
      Si, Q.L., Tang, Z., Ma, Y.F., et al., 2017. Chronology Study on Volcanic Rocks of Hadataolegai Formation in Moguqi Area, Central Great Xing'an Mountains. Geological Review, 63(S1): 261-262 (in Chinese with English abstract).
      Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/bf00283225
      Sorokin, A. A., Ponomarchuk, A. V., Buchko, I.V., et al., 2019. 40Ar/39Ar Age of Gold Mineralization of the Albyn Deposit (Eastern Part of the Mongol-Okhotsk Fold Belt). Doklady Earth Sciences, 466: 64-69. https://doi.org/10.1134/s1028334x16010153
      Sun, D. Y., Gou, J., Wang, T. H., et al., 2013. Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China: Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 55(14): 1801-1816. https://doi.org/10.1080/00206814.2013.804664
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, G.J., Wang, Q., 2010. High-Mg Andesites and Their Geodynamic Implications. Acta Petrologica Sinica, 26(8): 2495-2512 (in Chinese with English abstract). http://www.researchgate.net/publication/285765484_High-Mg_andesites_and_their_geodynamic_implications
      Tang, G.J., Wang, Q., Zhao, Z.H., et al., 2009. LA-ICP-MS Zircon U-Pb Geochronology, Element Geochemistry and Petrogenesis of the Andesites in the Eastern Taerbieke Gold Deposit of the Western Tianshan Region. Acta Petrologica Sinica, 25(6): 1341-1352 (in Chinese with English abstract). http://www.oalib.com/paper/1472533
      Tang, J., 2016. Geochronology and Geochemistry of the Mesozoic Igneous Rocks in the Erguna Massif, NE China: Constraints on the Tectonic Evolution of the Mongol-Okhotsk Suture Zone (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Tang, J., Xu, W. L., Wang, F., et al., 2014. Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif, NE China: Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean. Lithos, 184-187: 1-16. https://doi.org/10.1016/j.lithos.2013.10.024
      Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218-240. https://doi.org/10.1016/j.gr.2014.12.010
      Tischendorf, G., Paelchen, W., 1985. Classification of Granitoids. Zeitschrift für Geologische Wissenschaften, 13(5): 615-627.
      Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97: 365-392. https://doi.org/10.1016/j.jseaes.2014.10.005
      Wang, Y., Yang, X.P., Na, F.C., et al., 2017. Discovery of the Late Cambrian Intermediate-Basic Volcanic Rocks in Tahe, Northern Da Hinggan Mountain and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 47(1): 126-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201701012.htm
      Wilson, B.M., 1989. Igneous Petrogenesis a Global Tectonic Approach. Springer, Berlin.
      Winter, J.D., 2001. An Introduction to Igneous and Metamorphic Petrology. Prentic Hall, New York.
      Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
      Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      Wu, G., 2006. Metallogenic Setting and Metallogenesis of Nonferrous-Precious Metals in Northern Da Hinggan Moutain (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Wu, Y.B., Zheng, Y.F., 2004. The Genesis of Zircon and the Constraints on the Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xu, B., Zhao, P., Bao, Q.Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201407001
      Xu, J.L., Zheng, C.Q., Shi, L., et al., 2013. Geochronology and Geochemistry of the Yaergenchu I Type Granites in Northern Da Hinggan Range and Its Geodynamic Implications. Acta Geologica Sinica, 87(9): 1311-1323 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201309009&dbcode=CJFD&year=2013&dflag=pdfdown
      Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). http://www.researchgate.net/publication/337905371_Basement_nature_and_tectonic_evolution_of_the_Xing'an-Mongolian_Orogenic_Belt_in_Chinese/download
      Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98201302001.aspx
      Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007. Tracing Magma Mixing in Granite Genesis: In Situ U-Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177-190. https://doi.org/10.1007/s00410-006-0139-7
      Zhang, J.F., Zhu, Q., Shao, J., et al., 2003. U-Pb Age of Monomineral Zircon of Badaoka Quartz-dioite in Inner Mongolia and Its Significance. Journal of Changchun University of Science and Technology, 33(4): 430-433 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200304007.htm
      Zhang, K. J., 2014. Genesis of the Late Mesozoic Great Xing'an Range Large Igneous Province in Eastern Central Asia: A Mongol-Okhotsk Slab Window Model. International Geology Review, 56(13): 1557-1583. https://doi.org/10.1080/00206814.2014.946541
      Zhang, K. J., Yan, L. L., Ji, C., 2019a. Switch of NE Asia from Extension to Contraction at the Mid-Cretaceous: A Tale of the Okhotsk Oceanic Plateau from Initiation by the Perm Anomaly to Extrusion in the Mongol-Okhotsk Ocean? Earth-Science Reviews, 198: 102941. https://doi.org/10.1016/j.earscirev.2019.102941
      Zhang, X. R., Chung, S. L., Lai, Y. M., et al., 2019b. A 6 000-km-Long Neo-Tethyan Arc System with Coherent Magmatic Flare-Ups and Lulls in South Asia. Geology, 47(6): 573-576. https://doi.org/10.1130/g46172.1
      Zorin, Y. A., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56. https://doi.org/10.1016/s0040-1951(99)00042-6
      陈越, 朱弟成, 赵志丹, 等, 2010. 西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因. 岩石学报, 26(7): 2193-2206. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007021.htm
      程银行, 杨俊泉, 刘永顺, 等, 2012. 大兴安岭敖包查干地区安山岩年代学、地球化学研究. 地质调查与研究, 35(2): 118-127. doi: 10.3969/j.issn.1672-4135.2012.02.005
      邓晋福, 刘翠, 冯艳芳, 等, 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025
      葛文春, 隋振民, 吴福元, 等, 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm
      葛文春, 吴福元, 周长勇, 等, 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通报, 50(12): 1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      纪政, 葛文春, 杨浩, 等, 2018. 大兴安岭中段晚三叠世安第斯型安山岩: 蒙古-鄂霍茨克大洋板片南向俯冲作用的产物. 岩石学报, 34(10): 2917-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810007.htm
      贾立民, 刘洪章, 鞠佳星, 等, 2018. 大兴安岭绿林林场一带兴华渡口岩群原岩恢复及大地构造环境探讨. 地质力学学报, 24(4): 544-554. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201804040.htm
      李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
      李良, 孙丰月, 李碧乐, 等, 2018. 漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因. 地球科学, 43(2): 417-435. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802006.htm
      李世超, 张凌宇, 李鹏川, 等, 2017. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义. 地球科学, 42(12): 2117-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712002.htm
      李宇, 2018. 兴安地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克构造体系演化的制约(博士学位论文). 长春: 吉林大学.
      林强, 葛文春, 孙德有, 等, 1998. 中国东北地区中生代火山岩的大地构造意义. 地质科学, 33(2): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.000.htm
      刘希雯, 杨浩, 董玉, 等, 2015. 大兴安岭明水地区三叠纪花岗岩的锆石U-Pb年龄、地球化学特征及构造意义. 岩石矿物学杂志, 34(2): 143-158. doi: 10.3969/j.issn.1000-6524.2015.02.002
      马永非, 刘永江, 温泉波, 等, 2017. 大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景. 地球科学, 42(12): 2146-2173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712005.htm
      牛晓露, 刘飞, 冯光英, 等, 2018. 中天山南缘乌瓦门早志留世安第斯型安山岩的发现及意义. 地球科学, 43(4): 1350-1366. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201804027.htm
      佘宏全, 梁玉伟, 李进文, 等, 2011. 内蒙古莫尔道嘎地区早中生代岩浆作用及其地球动力学意义. 吉林大学学报(地球科学版), 41(6): 1831-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106016.htm
      司秋亮, 唐振, 马永非, 等, 2017. 大兴安岭中段蘑菇气地区哈达陶勒盖组火山岩年代学研究. 地质论评, 63(增刊1): 261-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1126.htm
      唐功建, 王强, 2010. 高镁安山岩及其地球动力学意义. 岩石学报, 26(8): 2495-2512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008022.htm
      唐功建, 王强, 赵振华, 等, 2009. 西天山东塔尔别克金矿区安山岩LA-ICP-MS锆石U-Pb年代学、元素地球化学与岩石成因. 岩石学报, 25(6): 1341-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906006.htm
      唐杰, 2016. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约(博士学位论文). 长春: 吉林大学.
      汪岩, 杨晓平, 那福超, 等, 2017. 大兴安岭北段塔河地区晚寒武世中基性火山岩的发现及其地质意义. 吉林大学学报(地球科学版), 47(1): 126-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701012.htm
      武广, 2006. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用(博士学位论文). 长春: 吉林大学.
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      徐备, 赵盼, 鲍庆中, 等, 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm
      徐久磊, 郑常青, 施璐, 等, 2013. 大兴安岭北段雅尔根楚Ⅰ型花岗岩年代学、岩石地球化学及其地球动力学意义. 地质学报, 87(9): 1311-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309009.htm
      许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm
      许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
      张炯飞, 朱群, 邵军, 等, 2003. 内蒙古八道卡石英闪长岩单颗粒锆石U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 33(4): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200304007.htm
    • dqkxzx-46-8-2768-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (2127) PDF downloads(115) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return