• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Zhang Weibo, Wang Fengxiang, Liu Yifei, Jiang Sihong, He Xuezhou, Yu Rui, Li Qianqian, 2022. Zircon Geochronology and Hf Isotope of Intermediate Acidity Magmatic Rocks in the Island Arc Terrane of South Mongolia and Their Geological Significance. Earth Science, 47(8): 2824-2838. doi: 10.3799/dqkx.2021.197
    Citation: Zhang Weibo, Wang Fengxiang, Liu Yifei, Jiang Sihong, He Xuezhou, Yu Rui, Li Qianqian, 2022. Zircon Geochronology and Hf Isotope of Intermediate Acidity Magmatic Rocks in the Island Arc Terrane of South Mongolia and Their Geological Significance. Earth Science, 47(8): 2824-2838. doi: 10.3799/dqkx.2021.197

    Zircon Geochronology and Hf Isotope of Intermediate Acidity Magmatic Rocks in the Island Arc Terrane of South Mongolia and Their Geological Significance

    doi: 10.3799/dqkx.2021.197
    • Received Date: 2021-08-11
    • Publish Date: 2022-09-25
    • The Mandalovoo⁃Gurvansaikhan island⁃arc Terrane in South Mongolia is an important part of Central Asian Orogenic Belt (CAOB). In order to constrain the genetic relationship between the large⁃scale magmatism, porphyry⁃type Cu⁃polymetallic mineralization and regional crustal evolution, petrography, LA⁃MC⁃ICP⁃MS zircon geochronology and Hf⁃isotop were completed on the typical deposits. Based on geological evidence, the metallogenic⁃related rocks at Kharmagtai Cu⁃Au deposit is the andesite⁃monzodiorite porphyritem, and the LA⁃ICP⁃MS zircon U⁃Pb dating of them yields crystallization age of 332 to 324 Ma. The monzonitic granite hosting the Tsagaan Suvarga Cu⁃Mo ore⁃bodies and the diorite granodiorite porphyry related to Bronze Fox porphyry⁃type mineralization yield crystallization age of ~372 Ma and ~333 Ma respectively. The monzonite intrusions and andesite⁃granodiorite complexes at Oyut Ulaan were emplaced at ~381 Ma and 338 to 332 Ma. Based on geological evidence, and chronology data, the Late Paleozoic magmatic activity at Mandalovoo⁃Gurvansaikhan island⁃arc Terrane is mainly divided into three stages: 383 to 369 Ma, 367 to 363 Ma and 338 to 321 Ma. Among them, the metallogenic⁃related magmatic active are mainly concentrated in two periods of 375 to 369 Ma and 338 to 328 Ma, which may be the two most important mineralization periods in the region. Moreover, the in⁃situ zircon εHf(t) show positive values between +7.85 to +16.14, which are above the chondrite evolution line, partial sample are markedly close to the depleted mantle (DM) evolution line, indicating that the source of the diagenetic material may be the new material formed by the DM partial⁃melting, and the new material subject to partial melting after a short stay in the crust, mixed with a certain amount of mature crust. The tDM2 are 331~717 Ma, indicating that the time of important crustal accretion events in region is from Neoproterozoic to Late Paleozoic.

       

    • loading
    • Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early⁃Middle Archaean Crustal Evolution Deduced from Lu⁃Hf and U⁃Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. https://doi.org/10.1016/S0016⁃7037(00)00493⁃2
      Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21: 87-110. https://doi.org/10.1016/S1367⁃9120(02)00017⁃2
      Batkhishig, B., Noriyoshi, T., Bignall, G., 2014. Magmatic⁃Hydrothermal Activity in the Shuteen Area, South Mongolia. Economic Geology, 109(7): 1929-1942. https://doi.org/10.2113/econgeo.109.7.1929
      Batkhishig, B., Noriyoshi, T., Greg, B., 2010. Magmatism of the Shuteen Complex and Carboniferous Subduction of the Gurvansaikhan Terrane, South Mongolia. Journal of Asian Earth Sciences, 37(5-6): 399-411. https://doi.org/10.1016/j.landusepol.2010.03.002
      Blight, J. H. S., Petterson, M. G., Crowley, Q. G., et al., 2010a. The Oyut Ulaan Volcanic Group: Stratigraphy, Magmatic Evolution and Timing of Carboniferous Arc Development in SE Mongolia. Journal of the Geological Society, 167(3): 491-509. https://doi.org/10.1144/0016⁃76492009⁃094
      Blight, J. H. S., Crowley, Q. G., Petterson, M. G., 2010b. Granites of the Southern Mongolia Carboniferous Arc: New Geochronological and Geochemical Constraints. Lithos, 116: 35-52. https://doi.org/10.1016/j.lithos.2010.01.001
      Cao, S. N., Wang, B., 2021. Age, Origin and Geological Implications of Early Paleozoic Marine Bentonites, Northern Yili Block of Central Asian Orogenic Belt. Earth Science, 46(8): 2804-2818(in Chinese with English abstract).
      Cheng, Y., Xiao, Q. H., Li T. D., et al., 2019. Magmatism and Tectonic Background of Early Permian Intra⁃Oceanic Arc in Diyanmiao Subduction Accretion Complex Belt in Eastern Margin of Central Asian Orogenic Belt. Earth Science, 44(10): 3454-3468(in Chinese with English abstract).
      Claesson, S., Vetrin, V., Bayanova, T., et al., 2000. U⁃Pb Zircon Age from a Devonian Carbonatite Dyke, Kola Peninsula, Russia: A Record of Geological Evolution from the Archean to the Paleozoic. Lithos, 51: 95-108. https://doi.org/10.1016/S0024⁃4937(99)00076⁃6
      Dejidmaa, G., 2005. Mineral Resources and Metallogenic Belts in Southern Mongolia. Geodynamics and Metallogeny of Mongolia, With Special Emphasis on Copper and Gold Deposits. CERCAMS, London, 221.
      Dolgopolova, A., Seltmann, R., Armstrong, R., et al., 2013. Sr⁃Nd⁃Pb⁃Hf Isotope Systematics of the Hugo Dummett Cu⁃Au Porphyry Deposit (Oyu Tolgoi, Mongolia). Lithos, 164: 47-64. https://doi.org/10.1016/j.lithos.2012.11.017
      Enkhjargal, B., Jargalan, S., 2016. Porphyry Copper Deposits in South Mongolia. ShigenChishitsu, 66(3), 135-146. https://doi.org/10.11456/shigenchishitsu.66.135
      Gerel, O., Myagmarsuren, S., Oyungerel, S., et al., 2006. Granitoids of Mongolia and Related Metallogeny: Example on South Mongolia//Structural and Tectonic Correlation Across the Central Asia Orogenic Collage: Implication for Continental Growth and Intracontinental Deformation. Second International Workshop and Field Excursions for IGC Project. 480: 59-64.
      Gerel, O., Pirajno, F., Batkhishig, B., et al., 2021. Mineral Resources of Mongolia. Springer, Switzerland.
      Helo, C., Hegner, E., Kröner, A., et al., 2006. Geochemical Signature of Paleozoic Accretionary Complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on Arc Environments and Crustal Growth. Chemical Geology, 227(3-4): 236-257. https://doi.org/10.1016/j.chemgeo.2005.10.003
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In⁃Situ U⁃Pb Zircon Dating Using Laser Ablation⁃Multi Ion Counting⁃ICP⁃MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract).
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract).
      Hou, W. R., Nie, F. J., Jiang, S. H., et al., 2010. The Geology and Ore⁃Forming Mechanism of the Tsagaan Suvarga Large⁃Size Cu⁃Mo Porphyry Deposit In Mongolia. Acta Geoscientica Sinica, 31(03): 307-320(in Chinese with English abstract).
      Hou, Z. Q., 2004. Porphyry Cu⁃Mo⁃Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract).
      Jahn, B. M., Litvinovsky, B. A., Zanvilevich A. N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian⁃Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113: 521-539. https://doi.org/10.1016/j.lithos.2009.06.015
      Jiang, S. H., Han, S. J., Chen, Z. H. et al., 2019. Summary on Metallogeny of Copper Deposits in Mongolia. Geological Science and Technology Information, 38(5) : 1-19(in Chinese with English abstract).
      Kirwin, D. J., Wilson, C. C., Turmagnai, D., et al., 2005a. Exploration History, Geology, and Mineralisation of the Kharmagtai Gold⁃Copper Porphyry District, South Gobi Region, Mongolia. Geodynamics and Metallogeny of Mongolia With A Special Emphasis on Copper and Gold Deposits. SEG⁃IAGOD Field Trip, 14: 16.
      Kirwin, D. J., Forster, C. N., Kavalieris, I., et al. 2005b. The Oyu Tolgoi Copper⁃Gold Porphyry Deposits, South Gobi, Mongolia. Geodynamics and Metallogeny of Mongolia With A Special Emphasis on Copper and Gold Deposits. SEG⁃IAGOD Field Trip, 14-16.
      Lamb, M. A., Badarch, G., 1997. Paleozoic Sedimentary Basins and Volcanic⁃Arc Systems of Southern Mongolia: New Stratigraphic and Sedimentologic Constraints. International Geology Review, 39(6): 542-576. https://doi.org/10.1080/00206819709465288
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U⁃Pb Isotope and Trace Element Analyses by LA⁃ICP⁃MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434⁃010⁃3052⁃4
      Mao, J. W., Luo, M. C., Xie, G. Q. et al., 2014. Basic Characteristics and New Advances in Research and Exploration on Porphyry Copper Deposits. Acta Geologica Sinica, 88(12): 2153-2175(in Chinese with English abstract).
      Mao, J. W., Zhang, Z. H., Wang Yt. et al., 2012. The Main Types, Characteristics and Prospecting Exploration of Ore Deposits Abroad. Geological Publishing House, Beijing, 189-244(in Chinese).
      Nasdala, L., Hofmeiste, R W., Norberg, N., et al., 2008. Zircon M257⁃A Homogeneous Natural Reference Material for the Ion Microprobe U⁃Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247-265. https://doi.org/10.1111/j.1751⁃908X.2008.00914.x
      Nie, F. J., Jiang, S. H., Bai, D. M., et al., 2010. Types and Temporal Spatial Distribution of Metallic Deposits in Southern Mongolia and Its Neighboring Areas. Acta Geoscientica Sinica, 31(3): 267-288(in Chinese with English abstract).
      Perello, J., Cox, D., Garamjav, D., et al., 2001. Oyu Tolgoi, Mongolia: Siluro⁃Devonian Porphyry Cu⁃Au⁃(Mo) and High⁃Sulfidation Cu Mineralization with a Cretaceous Chalcocite Blanket. Economic Geology, 96(6): 1407- 1428. https://doi.org/10.2113/gsecongeo.96.6.1407
      Rippington, S., Cunningham, D., England, R., 2008. Structure and Petrology of the Altan Uul Ophiolite: New Evidence for a Late Carboniferous Suture in the Gobi Altai, Southern Mongolia. Journal of the Geological Society, 165(3): 711-723. https://doi.org/10.1144/0016⁃76492007⁃091
      Safonova, I., Kotlyarov, A., Krivonogov, S., et al., 2017. Intra⁃Oceanic Arcs of the Paleo⁃Asian Ocean. Gondwana Research, 50(2): 167-194. https://doi.org/10.1016/j.gr.2017.04.005
      Seltmann, R., Porter, T. M. 2005. The Porphyry Cu⁃Au/Mo Deposits of Central Eurasia: 1. Tectonic, Geologic and Metallogenic Setting and Significantdeposits. In: Porter, T. M., ed., Super Porphyry Copper and Gold Deposits: A Global Perspective. PGC, Adelaide, 467-512.
      Sengör, A. M. C., Natal′in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi. org/10.1038/364299a0 doi: 10.1038/364299a0
      Sengör, A. M. C., Natal'In, B. A., 1996. Turkic⁃Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      Shen, P., Pan, H. D., Seitmuratova, E., 2015. Characteristics of the Porphyry Cu Deposits in the Central Asia Metallogenic Domain. Acta Petrologica Sinica, 31(2): 315-332(in Chinese with English abstract).
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Sinclair, W. D., Goodfellow, W. D., 2007. Porphyry Deposits. Geological Association of Canada, Mineral Deposits Division, 5: 223-243.
      Wainwright, A. J., Tosdal, R. M., Wooden, J. L., et al., 2011. U⁃Pb (Zircon) and Geochemical Constraints on the Age, Origin, and Evolution of Paleozoic Arc Magmas in the Oyu Tolgoi porphyry Cu⁃Au District, Southern Mongolia. Gondwana Research, 19(3): 764-787. https://doi.org/10.1016/j.gr.2010.11.012
      Wang, L., Zhang, S. T., Fang, Y., et al., 2021. Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China. Journal of Earth Science, 32(2): 370-389. https://doi.org/10.1007/s12583⁃021⁃1427⁃x
      Wang, T., Huang H., Song P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344. (in Chinese with English Abstract).
      Watanabe, Y., Stein, H. J., 2000. Re⁃Os Ages for the Erdenet and Tsagaan Suvarga Porphyry Cu⁃Mo Deposits, Mongolia, and Tectonic Implications. Economic Geology, 95(7): 1537-1542. https://doi.org/10.2113/gsecongeo.95.7.1537
      Wilson, M., 1989. Review of Igneous Petrogenesis: Aglobal Tectonic Approach. Terra Nova, 1(2): 218-222. https://doi.org/10.1111/j.1365⁃3121.1989.tb00357.x
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi. org/10.1144/0016⁃76492006⁃022 doi: 10.1144/0016⁃76492006⁃022
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu ⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
      Xia, B., Chen, G. W., Wang, H., 2002. Analysis of Tectonic Settings of Global Super Large Porphyry Copper Deposits. Science in China (Series D), (S1): 87-95(in Chinese with English abstract).
      Yakubchuk, A., 2005. Geodynamic Evolution of Accreted Terranes of Mongolia Against the Background of the Altaid and Transbaikal⁃Mongolian Collages. In: Seltmann, R., Gerel, O., Kirwin, D. J., eds., Geodynamics and Metallogeny of Mongolia With A Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 13-24.
      Yakubchuk, A., Seltmann, R., Shatov, V., et al., 2001. The Altaids: Tectonic Evolution and Metallogeny. SEG Discovery, (46): 1-14. https://doi.org/10.5382/SEGnews.2001⁃46.fea
      Yarmolyuk, V. V., Kovalenko, V. I., Sal'Nikova, E. B., et al., 2008. Geochronology of Igneous Rocks and Formation of the Late Paleozoic South Mongolian Active Margin of the Siberian Continent. Stratigraphy and Geological Correlation, 16(2): 162-181. https://doi.org/10.1134/S0869593808020056
      Zhu, M. S., Anaad, C., Baatar M., et al., 2015. SHRIMP Zircon U⁃Pb Dating of Tsagaan Suvarga and Shuteen Porphyry Copper Deposits: Constraints on Metallogenic Time and Tectonic Setting of Porphyry⁃Type Mineralization in South Gob, Mongolia. Geological Bulletin of China, 34(4): 675-685(in Chinese with English abstract).
      曹胜楠, 王博, 2021. 中亚造山带伊犁北缘早古生代海相斑脱岩地质意义. 地球科学, 46(8): 2804-2818. doi: 10.3799/dqkx.2020.279
      程杨, 肖庆辉, 李廷栋, 等, 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景. 地球科学, 44(10): 3454-3468. doi: 10.3799/dqkx.2019.085
      侯可军, 李延河, 田有荣, 2009. LA⁃MC⁃ICP⁃MS锆石微区原位U⁃Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      侯可军, 李延河, 邹天人, 等, 2007. LA⁃MC⁃ICP⁃MS锆石Hf同位素的分析方法及地质应用. 岩石学报, (10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      侯万荣, 聂凤军, 江思宏, 等, 2010. 蒙古国查干苏布尔加大型铜-钼矿床地质特征及成因. 地球学报, 31(3): 307-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003006.htm
      侯增谦. 2004. 斑岩Cu⁃Mo⁃Au矿床: 新认识与新进展. 地学前缘, (1): 131-144. doi: 10.3321/j.issn:1005-2321.2004.01.010
      江思宏, 韩世炯, 陈郑辉, 等, 2019. 蒙古国铜矿床成矿规律. 地质科技情报, 38(5): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905001.htm
      毛景文, 罗茂澄, 谢桂青, 等, 2014. 斑岩铜矿床的基本特征和研究勘查新进展. 地质学报, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm
      毛景文, 张作衡, 王义天, 等, 2012. 国外主要矿床类型, 特点及找矿勘查. 地质出版社, 北京, 197-207. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201903037.htm
      聂凤军, 江思宏, 白大明, 等, 2010. 蒙古国南部及邻区金属矿床类型及其时空分布特征. 地球学报, 31(3): 267-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003004.htm
      申萍, 潘鸿迪, Seitmuratova, E., 2015. 中亚成矿域斑岩铜矿床基本特征. 岩石学报, 31(2): 315-332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201502003.htm
      王涛, 黄河, 宋鹏, 等, 2020. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
      吴福元, 李献华, 郑永飞, 等, 2007. Lu⁃Hf同位素体系及其岩石学应用. 岩石学报, (2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      夏斌, 陈根文, 王核, 2002. 全球超大型斑岩铜矿床形成的构造背景分析. 中国科学(D辑: 地球科学), (S1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2002S1009.htm
      朱明帅, Anaad Chimedtseren, Baatar Munkhtsengel, 等, 2015. 蒙古国查干苏布尔加和苏廷铜矿容矿斑岩体SHRIMP锆石U⁃Pb年龄——对南戈壁斑岩型铜矿成矿时代及成矿背景的约束. 地质通报, 34(4): 675-685. doi: 10.3969/j.issn.1671-2552.2015.04.008
    • dqkxzx-47-8-2824-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (1416) PDF downloads(98) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return