• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 26 Issue 5
    Sep.  2001
    Turn off MathJax
    Article Contents
    GONG Yuan-ming, XIAO De-yun, WANG Jun-jie, 2001. APPLICATION OF MULTISENSOR DATA FUSION TECHNIQUES IN AUTOMATIC VERTICAL DRILLING DETECTING SYSTEM. Earth Science, 26(5): 524-528.
    Citation: GONG Yuan-ming, XIAO De-yun, WANG Jun-jie, 2001. APPLICATION OF MULTISENSOR DATA FUSION TECHNIQUES IN AUTOMATIC VERTICAL DRILLING DETECTING SYSTEM. Earth Science, 26(5): 524-528.

    APPLICATION OF MULTISENSOR DATA FUSION TECHNIQUES IN AUTOMATIC VERTICAL DRILLING DETECTING SYSTEM

    • Received Date: 2000-07-10
    • Publish Date: 2001-09-25
    • Multi-sensor data fusion is a new technique developed in recent years, which is now widely applied to military and civilian areas. This paper discusses basic principles and processes of multi-sensor fusion and puts forward a detecting scheme of dip and azimuth angle of a drilling hole according to the characteristics and demand of the automatic vertical drilling detecting system. Meanwhile, it presents two data fusion methods: one being based on the arithmetic average and expandable estimate for the vertical drilling system and the other, based on the arithmetic average and estimate in batch for the vertical drilling system. These methods can improve the anti-jamming ability of automatic vertical drilling detecting system in order to assure the parameter reliability and veracity of collecting datum.

       

    • loading
    • [1]
      刘同明, 夏祖勋, 解洪成. 数据融合技术及应用[M]. 北京: 国防工业出版社, 1998.
      [2]
      何友, 王国宏, 陆大鑫. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000.
      [3]
      李圣怡, 吴学忠, 范大鹏. 多传感器融合理论及在智能制造系统中的应用[M]. 长沙: 国防科技大学出版社, 1998.
      [4]
      腾召胜, 罗隆福, 童调生. 智能检测系统与数据融合[M]. 北京: 机械工业出版社, 2000.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (3660) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return