• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 31 Issue 2
    Mar.  2006
    Turn off MathJax
    Article Contents
    HU Wen-xuan, ZHU Dong-ya, CHEN Qing-chun, WANG Xiu-peng, CAO Xue-wei, 2006. A New Method for Flow Unit Division and Its Application in Linnan Oilfield. Earth Science, 31(2): 191-200.
    Citation: HU Wen-xuan, ZHU Dong-ya, CHEN Qing-chun, WANG Xiu-peng, CAO Xue-wei, 2006. A New Method for Flow Unit Division and Its Application in Linnan Oilfield. Earth Science, 31(2): 191-200.

    A New Method for Flow Unit Division and Its Application in Linnan Oilfield

    • Received Date: 2005-06-29
    • Publish Date: 2006-03-25
    • A new method for flow unit division is proposed which combines sedimentology and the physical properties of a reservoir. The flow unit system is sub-divided into three hierarchies: flow unit, sub-flow unit and seepage zone. On the basis of elaborate sandbody correlation and according to the continuously distributed insulating layers, the reservoir is divided into several individual fluid-pressure systems, namely, flow units. A flow unit is divided into several sub-flow units according to the discontinuously distributed insulating layers. Finally, a sub-flow unit or flow unit is divided into several seepage zones according to the physical properties of the reservoir. A typical prolific block in Linnan oilfield, Xia 52, was selected for this study. According to the dividing method, Xia 52 was divided into 7 flow units, 7 sub-flow units and 63 seepage zones. Such fluid unit system, which includes both frame and local detail characteristics of the reservoir, provides detail geological information for reservoir development. Good effect has been achieved by applying such method in Linnan oilfield.

       

    • loading
    • Amaefule, J. O., Altunbay, M., Kersey, D. G., 1996. Enhanced reservoir description: Using core and log data to identify hydraulic(flow)units and predict permeability in uncored intervals/well. SPE26435, presented at the 68th annual conference and exhibition.
      Ebanks, W.J., 1987. Flow unit concept-Integrated approach to reservoir description for engineering project. AAPG Bulletin, 71(5): 551-552.
      Cai, Z., Zeng, F.F., 2000. Micro-facies models and distributions of residual oil in Linnan oilfield. Journal of University of Petroleum(Science Edition), 24(1): 44-47 (in Chinese with English abstract).
      Dou, Z. L., 2000. Fluid unit model of fluvial reservoir of Guantao Member in Gudong Oil-field and distribution of residual oil. Petroleum Exploration and Development, 27(6): 50-52(in Chinese with English abstract).
      Hamlin, H.S., Dutton, S.P., Seggie, D., et al., 1996. Depositional controls reservoir properties in a braid-delta sandstone, Tarrawazza oilfield, South Australia. AAPG Bulletin, 80(2): 139-156.
      Hearn, C.L., Ebanks, W.J., Tye, R.S., et al., 1984. Geological factors influencing reservoir performance of the Hartzog Draw field, Wyoming. Journal of Petroleum Technology, 36: 1335-1344.
      Jiao, Y.Q., Li, S.T., Li, Z., et al., 1995. Sediment system of sinuous river and lacustrine delta and inner structure analysis of typical sandbodies. Geologyical Publishing House, Beijing, 1-2(in Chinese).
      Peng, S.M., Yin, Z.J., Chang, X.J., et al., 2001. A new method for quantitive research of terrestrial reservoir flow unit. Petroleum Exploration and Development, 28 (5): 68-70(in Chinese with English abstract).
      Qiu, Y.N., Chen, Z.Q., 1996. Reservoir characteristics. Petroleum Industry Press, Beijing.
      Robert, G. L., Entzminger, D., Sakurai, S., 2001. Highresolution sequence stratigraphic approach to carbonate reservoir characterization for understanding flow units and petrophysical properties: Example from Permian North Cowden Field, West Texas. AAPG Annual Convention Abstract.
      Song, Z.Q., Gao, X.J., Tan, C.Q., et al., 2002. Study on fluid unit of conglomerate reservoir of the 8th zone in Kelamayi oilfield. Xinjiang Petroleum Geology, 23(2): 150-153(in Chinese with English abstract).
      Tan, C.W., Song, Z.Q., Wu, S.B., et al., 2002. Flow units of the block Bo-21 sandstone reservoir in the Gudao oilfield, Jiyang depression. Geological Review, 48(3): 330-334(in Chinese with English abstract).
      Wagoner, J.C., Mitchum, R.M., Campion, K.M., et al., 1999. Siliciclastic sequence stratigraphy in well logs, cores and outcrops: Concepts for high-resolution correlations of time and facies. AAPG Methods in Exploration Series, 7: 55.
      Wu, S.H., Wang, Z.L., 1999. A new methold of non-marine reservoir flow unit study. Acta Sedimentologica Sinica, 17(7): 252-257(in Chinese with English abstract).
      Zeng, D.Q., Li, Z.C., Song, G.Y., et al., 2002. Base level cycle and reservoir flow unit of Shasan upper part in Pucheng oilfield. Acta Petrolei Sinica, 23(3): 39-42 (in Chinese with English abstract).
      Zhu, D.Y., Hu, W.X., Cao, X.W., et al., 2004. Classification and distribution of insulating layers in Linnan oilfield. Earth Science-Journal of China University of Geosciences, 29(2): 211-218(in Chinese with English abstract).
      蔡忠, 曾发富, 2002. 临南油田沉积微相模式及剩余油分布. 石油大学学报(自然科学版), 24(1): 44-47.
      窦之林, 2000. 孤东油田馆陶组河流相储集层流动单元模型与剩余油分布规律研究. 石油勘探与开发, 27(6): 50 52.
      焦养泉, 李思田, 李祯, 等, 1995. 曲流河与湖泊三角洲沉积体系及典型骨架砂体内部构成分析. 北京: 中国地质大学出版社, 1-2.
      彭仕宓, 尹志军, 常学军, 等, 2001. 陆相储集层流动单元定量研究新方法. 石油勘探与开发, 28(5): 68-70.
      裘怿楠, 陈子琪, 1996. 油藏描述. 北京: 石油工业出版社.
      宋子齐, 高兴军, 谭成仟, 等, 2002. 克拉玛依油田八区克上组砾岩油藏流动单元研究. 新疆石油地质, 23(2): 150 153.
      谭成仵, 宋子齐, 吴少波, 等, 2002. 济阳坳陷孤岛油田渤21断块砂岩油藏流动单元研究. 地质论评, 48(3): 330-334.
      吴胜和, 王仲林, 1999. 陆相储层流动单元研究的新思路. 沉积学报, 17(2): 252-257.
      曾大乾, 李中超, 宋国英, 等, 2002. 濮城油田沙三上地层基准面旋回及储层流动单元. 石油学报, 23(3): 39-42.
      朱东亚, 胡文, 曹学伟, 等, 2004. 临南油田隔层类型划分及其分布规律研究. 地球科学——中国地质大学学报, 29(2): 211-218.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(4)

      Article views (3878) PDF downloads(6) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return