REE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan
-
摘要: 湘西寒武纪早期黑色岩系中富含源于上层海水生物体的有机质, 其稀土元素(REE)特征不被碎屑物质干扰, 能有效地反映海洋上层水体的古环境特征.样品中作为有机质主体的干酪根的重稀土富集、Ce负异常、Y正异常和Eu无明显异常等特点与现代海水一致, 其特征可能反映古海洋上层水体的氧化还原信息.扬子地台各相区沉积剖面底部可能出现滞流(或硫化)环境, 随后沉积环境逐渐氧化.全岩样品中Ce的负异常可能由有机质提供, Ce/Ce*值由剖面底部的较低值向上逐渐升高可能意味着海洋上层水体含氧量的逐渐上升, 而海水含氧量逐渐升高或许是由寒武纪早期海洋底部硫化环境的减弱所导致.Abstract: Organic matter from Early Cambrian black rock series in western Hunan was derived from organisms in the euphotic zone. For not interfered by the detrital component, REE geochemistry of organic matter can demonstrate paleoenvironmental characteristics of the upper seawater. As the main part of organic matter, kerogen is fully consistent with the modern seawater—like REE pattern which shows a progressive enrichment towards the heavier REE, depletion of Ce, positive anomalies of Y and no obvious anomalies of Eu. The characteristics of kerogen may trace paleoredox condition of upper seawater. The euxinic environment may have arised in the lower part of sections in the Yangtze area, and the depositional condition may have shifted to gradual oxidization in the upper part of sections. The negative Ce anomalies of bulk rocks are most probably derived from organic matter input. Gradual increase of Ce/Ce* values indicates increasing oxygen content of upper seawater, and weakening of euxinic environment of bottom seawater may result in rising of oxygen content of upper seawater.
-
Key words:
- western Hunan /
- Early Cambrian /
- rare earth element (REE) /
- kerogen /
- black rock series /
- geochemistry
-
图 2 湘西寒武纪早期黑色岩系中有机质的REE的PAAS标准化配分曲线
图 2f中海水表面和100 m分别为北大西洋表层和100 m深度海水的REE/PAAS标准化配分曲线(106)(Elderfield and Greaves, 1982)
Fig. 2. PAAS shale-normalized REE distribution spectra of organic matter from the Early Cambrian black rock series, western Hunan
图 4 Ce在海洋中的变化特征及其在研究剖面的变化情况
a.海洋氧化层和次氧化层上部水体Ce/Ce*值、Mn和氧气含量随深度的变化情况,修改自Slack et al.(2007)和Ling et al.(2013).数据来源:Ce/Ce*值源于German et al.(1991),Mn微粒含量参考Lewis and Landing(1991),氧气浓度源于Luther et al.(1991)
Fig. 4. Variations of Ce/Ce* in the modern black sea and Longbizui and Lijiatuo section
表 1 湘西龙鼻嘴剖面样品分析结果(10-6)
Table 1. Analytical results for samples from the Longbizui sections, western Hunan (10-6)
样品号 岩性 厚度(m) La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu Ba ∑REE ∑LREE/∑HREE Ce/Ce* Eu/Eu* Y/Y* Ba/Nd LBZ563 磷质页岩 0.00 27.06 15.52 5.50 24.97 22.61 13.14 3.96 0.49 2.93 24.90 0.62 2.08 0.26 3.14 0.26 56 530.0 147.42 2.82 0.29 4.94 1.47 2 264.00 LBZ564 磷质页岩 0.30 3.16 3.33 0.73 3.34 0.83 0.27 0.57 0.07 0.41 3.00 0.09 0.29 0.03 0.66 0.03 110.0 16.80 2.27 0.51 1.84 1.24 32.95 LBZ566 硅质页岩 1.30 0.68 1.02 0.13 0.57 0.19 0.08 0.20 0.03 0.25 2.68 0.07 0.22 0.03 0.27 0.02 23.3 6.46 0.71 0.79 1.87 1.63 40.66 LBZ568 黑色页岩 2.40 16.44 18.75 2.95 12.56 7.96 3.81 8.90 1.93 15.75 136.38 3.92 12.84 1.76 11.14 1.48 7 034.0 256.59 0.32 0.62 2.11 1.38 559.92 LBZ569 黑色页岩 2.65 14.96 19.23 3.02 12.32 4.01 1.68 3.41 0.70 5.95 53.29 1.54 5.55 0.88 6.88 0.95 2 012.0 134.37 0.70 0.66 2.14 1.40 163.32 LBZ570 黑色页岩 2.95 5.27 5.27 0.66 2.18 0.43 0.17 0.47 0.09 0.76 7.43 0.21 0.84 0.14 1.28 0.16 542.0 25.37 1.23 0.62 1.80 1.48 248.15 LBZ574 硅质页岩 3.70 0.48 0.68 0.11 0.55 0.14 0.05 0.26 0.05 0.40 4.77 0.11 0.34 0.04 0.24 0.03 1.0 8.26 0.32 0.67 1.03 1.83 1.81 LBZ577 磷质页岩 4.60 1.39 1.49 0.27 1.13 0.21 0.07 0.22 0.03 0.23 2.54 0.06 0.21 0.03 0.41 0.03 27.0 8.29 1.22 0.56 1.56 1.77 24.07 LBZ580 黑色页岩 5.55 140.62 130.91 26.34 112.13 17.38 4.65 26.17 4.25 32.12 757.93 7.97 25.79 3.41 20.82 2.86 2 176.0 1 313.00 0.49 0.49 0.98 3.77 19.41 LBZ581 黑色页岩 5.85 13.35 14.05 2.42 10.05 1.65 0.49 1.83 0.27 2.11 23.30 0.55 1.91 0.26 2.13 0.25 1 225.0 74.62 1.29 0.57 1.31 1.71 121.89 LBZ583 黑色页岩 6.80 21.16 32.35 5.72 25.56 4.27 0.91 5.39 0.93 6.78 151.61 1.68 5.41 0.75 4.51 0.68 102.0 267.70 0.51 0.68 0.88 3.57 4.01 LBZ584 黑色页岩 7.30 60.93 74.87 10.50 42.84 6.57 1.53 9.04 1.45 11.08 111.21 2.75 9.22 1.27 8.61 1.18 1 255.0 353.05 1.27 0.68 0.91 1.60 29.30 LBZ586 黑色页岩 7.70 52.61 65.94 8.16 29.46 5.32 1.74 7.26 1.17 8.71 79.51 2.11 7.03 1.00 7.16 0.97 2 053.0 278.16 1.42 0.72 1.28 1.48 69.69 LBZ588 黑色页岩 9.25 40.47 53.27 6.26 24.45 6.42 2.59 6.53 1.05 7.69 66.82 1.80 5.84 0.80 5.55 0.72 3 764.0 230.26 1.38 0.76 1.88 1.43 153.93 LBZ591 黑色页岩 11.45 79.27 101.51 14.71 55.31 6.77 1.38 5.24 0.54 3.28 26.01 0.78 3.02 0.48 4.29 0.60 1 608.0 303.19 5.85 0.68 1.09 1.30 29.07 LBZ598 黑色页岩 18.10 29.92 48.92 5.29 20.59 4.12 1.32 4.24 0.65 4.87 45.95 1.17 3.81 0.52 3.63 0.45 2 386.0 175.47 1.69 0.89 1.48 1.53 115.89 LBZ605 黑色页岩 25.60 19.86 22.82 2.15 7.46 2.61 1.30 1.07 0.12 0.82 8.96 0.20 0.74 0.10 1.03 0.12 2 745.0 69.36 4.27 0.75 3.46 1.75 367.90 LBZ612 黑色页岩 32.80 35.50 63.73 7.73 31.73 5.09 1.28 5.82 0.95 7.25 62.75 1.76 6.03 0.88 6.59 0.88 1 975.0 237.97 1.56 0.89 1.10 1.40 62.24 LBZ616 黑色页岩 36.60 87.44 136.57 16.32 61.75 18.80 8.64 8.18 0.98 6.11 55.05 1.44 4.79 0.68 4.37 0.68 2 138.0 411.79 4.01 0.83 3.11 1.48 34.63 LBZ621 黑色页岩 41.10 63.90 109.76 11.68 43.12 14.87 6.96 8.47 1.38 10.51 81.65 2.42 7.92 1.14 7.99 1.06 24 900.0 372.83 2.04 0.92 2.86 1.29 577.43 表 2 湘西李家沱剖面样品分析结果(10-6)
Table 2. Analytical results for samples from the Lijiatuo sections, western Hunan (10-6)
样品号 岩性 厚度(m) La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu Ba ∑REE ∑LREE/∑HREE Ce/Ce* Eu/Eu* Y/Y* Ba/Nd Ljt550 磷质页岩 0.00 19.16 16.00 4.70 24.97 4.74 0.93 4.04 0.59 4.50 45.05 1.16 4.63 0.62 8.91 0.63 38.0 140.63 1.01 0.39 1.00 1.57 1.53 Ljt551 硅质岩 0.60 46.44 31.25 9.12 43.97 7.60 1.43 8.07 1.22 8.93 91.62 2.24 7.80 1.06 9.97 1.03 49.0 271.75 1.06 0.35 0.85 1.63 1.12 Ljt553 黑色页岩 2.20 128.37 89.11 19.76 73.57 8.70 1.61 6.40 0.80 6.18 57.76 1.66 6.62 1.06 9.39 1.27 3 196.0 412.27 3.52 0.40 1.01 1.43 43.44 Ljt555 黑色页岩 4.20 82.18 85.44 12.06 38.91 8.63 3.87 5.12 0.76 5.65 53.10 1.43 5.86 0.89 10.86 1.01 21 330.0 315.76 2.73 0.61 2.70 1.48 548.14 Ljt557 黑色页岩 6.50 43.66 43.29 7.76 31.56 7.51 2.82 3.72 0.54 3.99 32.34 1.00 3.87 0.60 5.42 0.66 13 320.0 188.73 2.62 0.54 2.43 1.29 422.12 Ljt559 黑色页岩 8.90 71.38 85.73 13.54 53.93 11.38 3.99 7.94 1.40 11.29 96.99 2.89 10.79 1.66 14.33 1.70 16 100.0 388.95 1.61 0.63 1.97 1.35 298.56 Ljt560 黑色页岩 9.20 287.41 435.93 61.33 279.37 81.99 25.49 177.17 31.27 245.00 1 833.00 61.73 208.68 30.14 199.43 29.67 1 300.0 3 988.00 0.42 0.76 0.89 1.18 4.65 Ljt561 黑色页岩 9.50 143.27 434.11 27.56 100.30 24.74 10.95 11.13 1.64 11.98 93.41 2.94 10.87 1.73 13.05 1.90 46 900.0 889.58 4.98 1.59 2.96 1.25 467.62 Ljt563 黑色页岩 14.80 237.53 856.32 51.36 193.25 25.53 5.77 19.13 2.64 18.45 134.46 4.27 15.61 2.25 23.41 2.34 10 840.0 1 592.30 6.15 1.79 1.23 1.21 56.09 Ljt564 黑色页岩 16.30 172.37 242.63 32.90 116.28 28.90 12.47 16.90 2.77 20.40 187.14 5.09 17.63 2.76 18.41 2.88 27 830.0 879.54 2.21 0.74 2.61 1.46 239.33 Ljt566 黑色页岩 20.60 91.78 147.12 22.24 92.99 16.76 4.68 12.92 2.27 17.38 129.77 4.06 14.37 2.04 20.30 1.99 12 640.0 580.65 1.83 0.75 1.49 1.23 135.92 Ljt568 黑色页岩 25.00 29.91 37.46 5.23 22.70 10.88 4.61 10.44 2.11 16.17 123.13 3.81 13.37 1.85 19.09 1.76 14 990.0 302.52 0.58 0.68 2.03 1.25 660.45 Ljt570 黑色页岩 28.40 47.03 59.16 9.00 38.91 11.17 3.87 12.05 2.29 16.90 134.09 3.94 14.46 1.91 26.04 1.84 7 596.0 382.68 0.79 0.66 1.56 1.31 195.22 Ljt574 黑色页岩 35.40 58.88 46.02 9.57 35.27 4.05 0.82 4.17 0.57 4.04 51.30 1.10 4.09 0.64 4.41 0.70 473.0 225.64 2.18 0.44 0.93 1.92 13.40 Ljt578 黑色页岩 38.95 5.02 4.73 0.84 3.74 1.53 0.53 2.02 0.42 3.58 36.09 0.99 4.03 0.61 7.02 0.67 1 504.0 71.82 0.30 0.53 1.40 1.51 401.93 Ljt582 黑色页岩 51.95 4.98 6.72 0.87 3.69 0.94 0.29 1.86 0.36 2.79 29.11 0.69 2.43 0.33 3.72 0.30 9.0 59.09 0.42 0.74 0.95 1.67 2.45 Ljt586 黑色页岩 64.85 19.94 20.47 2.95 11.82 1.94 0.43 2.46 0.37 2.69 28.28 0.67 2.52 0.32 4.10 0.31 40.0 99.27 1.38 0.60 0.90 1.68 3.36 Ljt590 黑色页岩 78.95 98.89 134.32 26.15 129.06 24.32 3.29 11.97 1.15 7.83 80.64 1.95 7.79 1.03 14.11 1.09 439.0 543.59 3.26 0.61 0.88 1.64 3.40 Ljt593 黑色页岩 97.95 76.25 97.70 13.53 58.13 9.84 1.67 7.41 0.72 4.48 38.95 1.05 4.01 0.57 6.77 0.59 205.0 321.68 3.98 0.70 0.92 1.43 3.53 -
Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9 Bau, M., Koschinsky, A., Dulski, P., et al., 1996. Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawater. Geochimica et Cosmochimica Acta, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4 Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Fresenius Journal of Analytical Chemistry, 350(4-5): 194-203. doi: 10.1007/BF00322470 Elderfield, H., Greaves, M.J., 1982. The Rare Earth Elements in Seawater. Nature, 296: 214-219. doi: 10.1038/296214a0 Fu, J.M., Qin, K.Z., 1995. The Geochemistry of Kerogen. Guangdong Science and Technology Press, Guangzhou, 27-78 (in Chinese). German, C.R., Holliday, B.P., Elderfield, H., 1991. Redox Cycling of Rare-Earth Elements in the Suboxic Zone of the Black-Sea. Geochimica et Cosmochimica Acta, 55(12): 3553-3558. doi: 10.1016/0016-7037(91)90055-A Goldberg, T., Strauss, H., Guo, Q.J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 175-193. doi: 10.1016/j.palaeo.2007.03.015 Guo, Q.J., Shields, G.A., Liu, C.Q., et al., 2007a. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216. doi: 10.1016/j.palaeo.2007.03.016 Guo, Q.J., Strauss, H., Liu, C.Q., et al., 2007b. Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 140-157. doi: 10.1016/j.palaeo.2007.03.014 Jiang, S.Y., Chen, Y.Q., Ling, H.F., et al., 2006. Trace-and Rare-Earth Element Geochemistry and Pb-Pb Dating of Black Shales and Intercalated Ni-Mo-PGE-Au Sulfide Ores in Lower Cambrian Strata, Yangtze Platform, South China. Mineralium Deposita, 41(5): 453-467. doi: 10.1007/s00126-006-0066-6 Jiang, S.Y., Zhao, H.X., Chen, Y.Q., et al., 2007. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010 Knoll, A.H., Carroll, S.B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284: 2129-2137. doi: 10.1126/science.284.5423.2129 Lehmann, B., Nägler, T.F., Holland, H.D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 35(5): 403-406. doi: 10.1130/G23543A.1 Lewis, B.L., Landing, W.M., 1991. The Biogeochemistry of Manganese and Iron in the Black-Sea. Deep-Sea Research, 38(Supplement 2): S773-S803. doi: 10.1016/S0198-0149(10)80009-3 Ling, H.F., Chen, X., Li, D., et al., 2013. Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 225: 110-127. doi: 10.1016/j.precamres.2011.10.011 Luther, G.W., Church, T.M., Powell, D., 1991. Sulfur Speciation and Sulfide Oxidation in the Water Column of the Black-Sea. Deep-Sea Research, 38(Supplement 2): S1121-S1137. doi: 10.1016/S0198-0149(10)80027-5 Maloof, A.C., Ramezani, J., Bowring, S.A., et al., 2010. Constraints on Early Cambrian Carbon Cycling from the Duration of the Nemakit-Daldynian-Tommotian Boundary δ13C Shift, Morocco. Geology, 38(7): 623-626. doi: 10.1130/G30726.1 Marshall, C.R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Science, 34: 355-384. doi: 10.1146/annurev.earth.33.031504.103001 Mclennan, S.M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Reviews in Mineralogy, 21(1): 169-200. http://www.researchgate.net/publication/313503357_Rare_earth_elements_in_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes Mossman, D.J., Goodarzi, F., Gentzis, T., 1993. Characterization of Insoluble Organic Matter from the Lower Proterozoic Huronian Supergroup, Elliot Lake, Ontario. Precambrian Research, 61(3-4): 279-293. doi: 10.1016/0301-9268(93)90117-K Pi, D.H., Liu, C.Q., Shields-Zhou, G.A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218-229. doi: 10.1016/j.precamres.2011.07.004 Pi, D.H., Liu, C.Q., Deng, H.L., et al., 2008. REE Geochemistry of Organic Matter from Black Shales of the Niutitang Formation, Zunyi, Guizhou Province. Acta Mineralogica Sinica, 28(3): 303-310 (in Chinese with English abstract). http://www.researchgate.net/publication/303539023_REE_geochemistry_of_organic_matter_from_black_shales_of_the_Niutitang_formation_Zunyi_Guizhou_Province Richard, A.K., 1998. Did an Ancient Deep Freeze Nearly Doom Life?Science, 281(5381): 1259-1261. doi: 10.1126/science.281.5381.1259 Schröder, S., Grotzinger, J.P., 2007. Evidence for Anoxia at Ediacaran-Cambrian Boundary: The Record of Redox Sensitive Trace Elements and Rare Earth Elements in Oman. Journal of the Geological Society, London, 164(6): 175-187. doi: 10.1144/0016-76492005-022 Shields, G., Stille, P., 2001. Diagenetic Constrains on the Use of Cerium Anomalies as Palaeoseawater Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4 Slack, J.F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255(1-2): 243-256. doi: 10.1016/j.epsl.2006.12.018 Wang, J.G., Chen, D.Z., Yan, D.T., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306: 129-138. doi: 10.1016/j.chemgeo.2012.03.005 Wang, Z.G., Yu, X.Y., Zhao, Z.H., et al., 1989. Rare Earth Element Geochemistry. Science Press, Beijing (in Chinese). Wille, M., Nägler, T.F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453(7196): 767-769. doi: 10.1038/nature07072 Wu, C.D., Chen, Q.Y., Lei, J.J., 1999a. The Genesis Factors and Organic Petrology of Black Shale Series from the Upper Sinian to the Lower Cambrian, Southwest of China. Acta Petrologica Sinica, 15(3): 453-462 (in Chinese with English abstract). Wu, C.D., Yang, C.Y., Chen, Q.Y., 1999b. The Origin and Geochemical Characteristics of Upper Sinain-Lower Cambrian Black Shales in Western Hunan. Acta Petrologica et Mineralogica, 18(1): 26-39 (in Chinese with English abstract). http://www.researchgate.net/publication/284571512_The_origin_and_geochemical_characteristics_of_Upper_Sinain-Lower_Cambrian_black_shales_in_western_Hunan Xiao, S.H., Hu, J., Yuan, X.L., et al., 2005. Articulated Sponges from the Early Cambrian Hetang Formation in Southern Anhui, South China: Their Age and Implications for Early Evolution of Sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2): 89-117. doi: 10.1016/j.palaeo.2002.02.001 Xu, L.G., Lehmann, B., Mao, J.W., 2013. Seawater Contribution to Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China: Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry. Ore Geology Reviews, 52: 66-84. doi: 10.1016/j.oregeorev.2012.06.003 Yang, A.H., Zhu, M.Y., Zhang, J.M., et al., 2003. Early Cambrian Eodiscoid Trilobites of the Yangtze Platform and Their Stratigraphic Implications. Progress in Nature Science, 13(11): 861-866. doi: 10.1080/10020070312331344560 Yang, J., Yi, F.C., Qian, Z.Z., 2005. Characters of Lower Cambrian Black Shale Series' Kerogen and Their Carbon Isotope Implications in Northern Guizhou Province. Journal of Mineralogy and Petrology, 25(1): 99-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200501018.htm Yang, J.H., Jiang, S.Y., Ling, H.F., et al., 2004. Paleoceangraphic Significance of Redox-Sensitive Metals of Black Shales in the Basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14(2): 152-157. doi: 10.1080/10020070412331343291 Yang, X.L., Zhu, M.Y., Zhao, Y.L., et al., 2008. REE Geochemical Characteristics of the Ediacaran-Lower Cambrian Black Rock Series in Eastern Guizhou. Geological Review, 54(1): 3-15 (in Chinese with English abstract). http://www.researchgate.net/publication/303539443_REE_geochemical_characteristics_of_the_Ediacaran-Lower_Cambrian_black_rock_series_in_Eastern_Guizhou Zhou, C.M., Jiang, S.Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4): 279-286. doi: 10.1016/j.palaeo.2008.10.024 Zhu, M.Y., Strauss, H., Shields, G.A., 2007. From Snowball Earth to the Cambrian Bioradiation: Calibration of Ediacaran-Cambrian Earth History in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 1-6. doi: 10.1016/j.palaco.2007.03.026 Zhu, M.Y., Zhang, J.M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710 傅家谟, 秦匡宗, 1995. 干酪根地球化学. 广州: 广东科技出版社, 27-78. 皮道会, 刘丛强, 邓海琳, 等, 2008. 贵州遵义牛蹄塘组黑色岩系有机质的稀土元素地球化学研究. 矿物学报, 28(3): 303-310. doi: 10.3321/j.issn:1000-4734.2008.03.014 王中刚, 于学元, 赵振华, 等, 1989. 稀土元素地球化学. 北京: 科学出版社. 吴朝东, 陈其英, 雷家锦, 1999a. 湘西震旦-寒武纪黑色岩系的有机岩石学特征及其形成条件. 岩石学报, 15(1): 453-461. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903013.htm 吴朝东, 杨承运, 陈其英, 1999b. 湘西黑色岩系地球化学特征和成因意义. 岩石矿物学杂志, 18(1): 26-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW901.004.htm 杨剑, 易发成, 钱壮志, 2005. 黔北黑色岩系干酪根特征与碳同位素指示意义. 矿物岩石, 25(1): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200501018.htm 杨兴莲, 朱茂炎, 赵元龙, 等, 2008. 黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征. 地质论评, 54(1): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801002.htm