QUANTITATIVE STUDIES ON DEVELOPMENT OF TROPICAL SOILS: A CASE STUDY IN NORTHERN HAINAN ISLAND
-
摘要: 海南岛北部不同时期喷发的玄武岩上发育的土壤构成一个成土年代系列, 由此可以定量地探讨发育过程中土壤性质随风化成土年龄增加的变化规律.研究表明土体厚度、B层厚度、RR指数、w(REE)、w(Ba)/w(Nb)、w(Fed)/w(Fet)、w(Fed)、w(Feo)/w(Fed)、土壤硅铝率、土壤硅铁铝率、频率磁化率等土壤性质与风化成土年龄具有确定的相应关系.根据土壤发生学原则, 得出土壤性质与风化成土年龄两者间的统计方程.对于成土环境相同或相近地区可从这些方程由土壤性质推断相对风化成土年龄和发育程度, 也可由风化成土年龄估计土壤特性, 研究成土速率Abstract: Based on the study of a chronosequence of soils, developed from basalts erupted in different geological times, in the northern Hainan island, the variation of soil properties with soil age increasing in its development has been discussed quantitatively. The results show that such soil properties as solum and B horizon thickness, redness rating (RR), w(REE), w(Ba)/w(Nb), w(Fed)/w(Fet), w(Fed), w(Feo)/w(Fed), silica alumina molecular ratio and silica sesquioxide ratio of soils, frequency dependent susceptibility, etc. are definitely correlative to the soil ages. The statistical equations between soil properties and ages have been determined according to pedological principles. When found in the same or similar soil forming environment and regions, relative soil age and soil development degree could be inferred by soil properties which could also be evaluated by soil ages to research rate of soil formation depending on those equations.
-
Key words:
- basalt /
- soil development /
- soil age /
- quantitative study
-
表 1 玄武岩上发育土壤的基本特性
Table 1. Basic properties of soils developed from basalt
表 2 土壤中各种化学形态铁的质量分数及其比例关系
Table 2. Iron mass fractions and their ratios of various forms in soils
表 3 土壤特性与风化成土年龄的函数统计方程
Table 3. Functional equations of soil properties and ages
-
[1] Jenny H. The soil resources[M]. New York: Springer-Verlag, 1980. 52-203. [2] Stevens P R, Walker T W. The chronosequence concept and soil formation[J]. Q Rev Boil, 1970, 45: 333-350. doi: 10.1086/406646 [3] Walker T W. The factor-time in soil formation[J]. New Zealand Soil News, 1966, 6: 153-167. [4] Rabenhorst M C. The chrono-continuum: an approach to modeling pedogenesis in marsh soils along transgressive coastlines[J]. Soil Sci, 1997, 162: 2-9. doi: 10.1097/00010694-199701000-00002 [5] Bockheim J G. Solution and use of chronofunctions in studying soil development[J]. Geoderma, 1980, 24: 71-85. doi: 10.1016/0016-7061(80)90035-X [6] Schaetzl R J, Barrett L R, Winkler L. Choosing models for soil chronofunctions and fitting them to data[J]. Euro J Soil Sci, 1994, 45: 219-232. doi: 10.1111/j.1365-2389.1994.tb00503.x [7] Pillans B. Soil development at snail' s pace: evidence from a 6 Ma soil chronosequence on basalt in north Queensland, Australia[J]. Geoderma, 1997, 80: 117-128. doi: 10.1016/S0016-7061(97)00068-2 [8] Bockheim J G. Soil development ratesin the Transantarctic Mountains[J]. Geoderma, 1990, 47: 59-77. doi: 10.1016/0016-7061(90)90047-D [9] 史学正, 龚子同, 李庆逵. 不同时期形成的铁质富铝土特性及其在发生学上的意义[J]. 土壤学报, 1987, 24(2): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198702009.htm [10] 赵其国. 我国红壤现代成土过程和发育年龄的初步研究[J]. 第四纪研究, 1992, (4): 341-351. doi: 10.3321/j.issn:1001-7410.1992.04.006 [11] 陈俊仁, 黄成彦, 林茂福, 等. 广东田洋火山湖第四纪地质[M]. 北京: 地质出版社, 1990. 53-60. [12] 史学正, 龚子同. 从雷州半岛埋藏古土壤性质论华南第四纪古气候环境的演变[J]. 土壤学报, 1995, 32(增刊Ⅱ): 184-194. [13] 王开发, 张玉兰, 蒋辉. 我国华南沿海第四纪植被带迁移和古气候变化[J]. 科学通报, 1991, 36(6): 447-450. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199106014.htm [14] 黄镇国, 张伟强, 陈俊鸿, 等. 中国南方红色风化壳[M]. 北京: 海洋出版社, 1996. 38-304. [15] 黄镇国, 张伟强, 陈俊鸿. 中国红土与自然地带变迁[J]. 地理学报, 1999, 54(3): 193-205. doi: 10.3321/j.issn:0375-5444.1999.03.001 [16] Walker P H. Contribution to the understanding of soil and landscape relationships[J]. Austral J Soil Res, 1989, 27: 589-605. doi: 10.1071/SR9890589 [17] Bain D C, Mellor A, Robertson-Rintoul M S E, et al. Variation in weathering process and rates with time in a chronosequence of soils from Glen Feshie, Scotland[J]. Geoderma, 1993, 57: 275-293. doi: 10.1016/0016-7061(93)90010-I [18] Lichter J. Rates of weathering and chemical depletion in soils across a chronosequence of Lake Michigan sand dunes [J]. Geoderma, 1998, 85: 255-282. doi: 10.1016/S0016-7061(98)00026-3 [19] Marcelino V, Mussche G, Stoops G. Surface morphology of quartz grains from tropical soils and its significance for assessing soil weathering[J]. Euro J Soil Sci, 1999, 50: 1-8. doi: 10.1046/j.1365-2389.1999.00216.x [20] 葛同明, 陈文寄, 徐行, 等. 雷琼地区第四纪地磁极性年代表——火山岩钾-氩年龄及古地磁学证据[J]. 地球物理学报, 1989, 32(5): 550-558. doi: 10.3321/j.issn:0001-5733.1989.05.007 [21] 冯锦江, 胡碧茹. 琼北第四纪玄武岩化学风化速率的初步研究[J]. 地质科学, 1992, (增刊): 295-301. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX1992S1028.htm [22] 冯国荣. 华南沿海新生代玄武岩基本特征及其构造环境的关系[J]. 华南沿海新生代地质——中山大学学报论丛(自然科学版), 1992, 27: 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDL199201009.htm [23] 龚子同. 中国土壤系统分类——理论·方法·实践[M]. 北京: 科学出版社, 1999. 241-778. [24] Torrent J, Schwertmann U, Schulze D J. Iron oxides mineralogy of some soils of two river terrace sequences in Spain[J]. Geoderma, 1980, 23: 191-208. doi: 10.1016/0016-7061(80)90002-6 [25] Torrent J, Schwertmann U, Fechter H, et al. Quantitative relationships between soil color and hematite content [J]. Soil Sci, 1983, 136: 354-358. doi: 10.1097/00010694-198312000-00004 [26] Torrent J. Iron oxides in Mediterranean soils: properties and influence on soil behavior[A]. In: WCSS, ed. Transactions of the 15th WCSS[C]. Acapulco: [s. n. ], 1994. 1-14. [27] Birkeland P W. Pedology, weathering, and geomorphological research[M]. New York: Oxford University Press Inc, 1974. 81-181. [28] Price R C, Gray C M, Wilson R E, et al. The effect of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australian[J]. Chem Geol, 1991, 93: 245-265. doi: 10.1016/0009-2541(91)90117-A [29] Eggleton R A, Foudoulis C, Varkevisser D. Weathering of basalt: change in rock chemistry and mineralogy[J]. Clays Clay Miner, 1987, 35: 161-169. doi: 10.1346/CCMN.1987.0350301 [30] 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 1997. 1-54. [31] Condie K C, Dengate J, Cullers R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochim Cosmochim Acta, 1995, 59: 279-294. doi: 10.1016/0016-7037(94)00280-Y [32] Birkeland P W, Burke R M, Benedict J B. Pedogenic gradients for iron and aluminum accumulation and phosphorus depletion in Arctic and Alpine soils as a function of time and climate[J]. Quat Res, 1989, 32: 193-204. doi: 10.1016/0033-5894(89)90075-6 [33] Malucelli F, Terrible F, Colombo C. Mineralogy, micromorphology and chemical analysis of andosols on the Island of Saa Miguel(Azores)[J]. Geoderma, 1999, 88: 73-98. doi: 10.1016/S0016-7061(98)00081-0 [34] Schwertmann U. The effect of pedogenic environments on iron oxide minerals[J]. Adv Soil Sci, 1985, 1: 171-200. [35] Mullins C E. Magnetic susceptibility of the soil and its significance in soil science — a review[J]. J Soil Sci, 1977, 28: 223-246. doi: 10.1111/j.1365-2389.1977.tb02232.x [36] 刘秀铭, 刘东生, Heller F. 中国黄土磁颗粒分析及其古气候意义[J]. 中国科学(B), 1991, 21: 639644. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199106012.htm [37] 吴瑞金. 湖泊沉积物的磁化率、频率磁化率及其古气候意义[J]. 湖泊科学, 1993, 5(2): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX199302003.htm