Generation of Secondary Porosity by Meteoric Water during Time of Subaerial Exposure: An Example from Yanchang Formation Sandstone of Triassic of Ordos Basin
-
摘要: 鄂尔多斯盆地三叠系延长组砂岩储层分布于印支期不整合面之下, 次生孔隙是最主要的石油储集空间.在大量薄片研究及资料统计的基础上, 从岩石物性、长石溶蚀形成的次生孔隙、高岭石和长石含量纵向变化等证据出发, 认为延长组砂岩储层次生孔隙的形成机制与印支期暴露时间间隔中大气水的溶解作用有关, 而不是埋藏成岩过程中有机酸溶解作用的结果, 同时人们也应对鄂尔多斯盆地延长组碎屑岩储层质量预测模式作必要更改.Abstract: Secondary porosity is the most important reservoir space in the sandstone. The authors present an example of leaching by meteoric water in the Yanchang Formation sandstone of Triassic of Ordos basin. The interpretation is based on the information of detailed research of thin sections and a lot of statistical data. Yanchang Formation sandstone lies beneath the unconformity at the base of the Jurassic section. Subsequent detailed petrographic study has confirmed that the potassium depletion has brought about potassium feldspar dissolution, resulting in precipitation of kaolinite and creation of secondary porosity. The evidence strongly suggests the subaerial exposure of the Yanchang Formation sandstone in Early Jurassic and consequent freshwater leaching of the Yanchang Formation sandstone and generation of the secondary porosity. So secondary porosity of Yanchang Formation sandstone is not formed by the dissolution of organic acid during the time of burying diagenesis. The prediction model of reservoir quality should be modified by means of the new mechanisms of generation of secondary porosity.
-
Key words:
- Ordos basin /
- Yanchang Formation of Triassic /
- clastic reservoir /
- secondary porosity /
- meteoric water
-
图 1 鄂尔多斯盆地三叠系延长组砂岩碎屑成分三角投点(2 989个砂岩薄片鉴定结果)[13]
Fig. 1. Plot of w (Q), w (F), w (R) for 2 989 sandstone samples from analysis results of thin sections in Yanchang Formation of Triassic, Ordos basin
表 1 鄂尔多斯盆地三叠系延长组地层的划分
Table 1. Stratigraphic classification of Triassic, Ordos basin
-
[1] Surdam R C, Boese S W, Crossey L J. T he chemistry of secondary porosity[J]. AAPG Memoir, 1984, 37 : 127 -149. [2] Surdam R C, Crossey L J, Hagen E S, et al. Org anic-inorganic and sandstone diagenesis[J]. A APG Bulletin, 1989, 73 : 1-23. [3] Hayes M J, Boles J R. Volumetric relations betw een dissolved plagioclase and kaolinite in sandstones : implications for aluminum mass transfer in the San Joaquin basin, California[J]. Special Publication Society of Eco nomic Paleontologists and M ineralogists, 1992, 47 : 111-123. [4] Surdam R C, Crossey L J. Integ rated diagenetic modeling: a process-oriented appro ach for clastic systems[J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 141 -170. doi: 10.1146/annurev.ea.15.050187.001041 [5] 黄思静, 杨俊杰, 张文正, 等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报, 1995, 13(1) : 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB501.001.htmHUANG S J, YAN G J J, Z HAN G W Z, et al. Experimental study o f feldspar dissolution by acetic acid at different burial temperatures[J]. A cta Sedimentologica Sinica, 1995, 13(1) : 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB501.001.htm [6] Bjφrlykke K, Nedkvitne T, Ramm M, et al. Diagene tic processes in the Brent G roup (Middle Jurassic) reservoirs of the No rth Sea: an overview[J]. Geological Society Special Publications, 1992, 61: 263-287. doi: 10.1144/GSL.SP.1992.061.01.15 [7] Ehrenberg S N. K aolinized, po tassium-leached zo nes at the contacts of the Garn Formation, Haltenbanken, midNorwegian co ntinental shelf[J]. M arine and Petroleum Geology, 1991, 8: 250 -269. doi: 10.1016/0264-8172(91)90080-K [8] M ac Gowan D B, Surdam R C. Difunctional carboxylic acid anions in oilfield waters[J]. O rganic Geochemistry, 1988, 12 : 245-259. doi: 10.1016/0146-6380(88)90262-8 [9] Emery D, Myers K J, Young R. Ancient subaerial exposure and freshwater leaching in sandstones[J]. Geology (Boulder), 1990, 18 : 1178-1181. doi: 10.1130/0091-7613(1990)018<1178:ASEAFL>2.3.CO;2 [10] Ramm M. Porosity-depth trends in reservoir sandstones theoretical models related to Jurassic sandstones offshore Norway[J]. Marine and Petroleum Geology, 1992, 9: 553 -567. doi: 10.1016/0264-8172(92)90066-N [11] Bloch S, Franks S G. Preservation of shallow plagioclase dissolution porosity during burial implications for porosity prediction and aluminum mass balance[J]. AAPG Bulletin, 1993, 77 : 1488 -1501. [12] 长庆油田石油地质志编写组. 中国石油地质志——长庆油田[M]. 北京: 石油工业出版社, 1992.1 -22.Editorial Committee of Petroleum Geology of Changqing Oilfield. Petroleum geology of China: Changqing oilfield [M]. Beijing: Petroleum Industry Press, 1992.1-22. [13] 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980. 125-127.LIU B J. Sedimentary petrology[M]. Beijing : Geological Publishing House, 1980.125-127. [14] 黄思静, 侯中建. 地下孔隙度和渗透率在时间和空间上的变化及影响因素[J]. 沉积学报, 2001, 19(2) : 224-232. doi: 10.3969/j.issn.1000-0550.2001.02.011HUANG S J, HOU Z J. Spatio-temporal variation of subsurface porosity and permeability and its influential fa ctors[J]. Acta Sedimentologica Sinica, 2001, 19(2) : 224-232. doi: 10.3969/j.issn.1000-0550.2001.02.011 [15] Kupecz J A, Gluyas J, Bloch S. Reservoir quality prediction in sandstones and carbonates: an overview[J]. AAPG Memoir, 1997, 69: vii-xxiv.