ANALYTICAL INTERPRETATION TO KRIGING ESTIMATION AND ALGEBRAIC DETERMINATION OF COVARIANCE FUNCTION'S PARAMETER
-
摘要: 首先引入利用旋转面作为基函数的函数逼近概念, 在此基础上经过复杂的矩阵推导证明泛克立格法可表示为传统的带权最小二乘多项式拟合与以旋转面作为基函数的函数逼近, 并在一定条件下(随机场高度连续无块金效应) 论证了协方差(即旋转面) 的参数可通过数学分析的方法确定, 给出了以高斯函数为例确定协方差函数的两个准则.Abstract: The analytical interpretation to Kriging estimation and the algebraic determination of a covariance function's parameter are presented. This paper first introduces the concept of function approximation using a rotating surface as a basic function. Then it is demonstrated that the universal Kriging may be expressed as the traditional weighted least square fitting and as the function approximation with a rotating surface as a basic function. It is also demonstrated that the parameter of a covariance function (i.e. a rotating surface) can be determined by the mathematical analysis on a certain condition (i.e. a highly continuous lump goldree effect in a random field). Finally, this paper presents two principles for the determination of a covariance function's parameter with the Gaussian function as an example: one is formulated through analysis of the linear combinations of the shifted Gaussian functions, and the other is derived from the equivalence between Bplines and Gaussian functions.
-
Key words:
- Kriging estimation /
- covariance function /
- geostatistics
-
表 1 不同阶次样条对应的Gauss函数参数
Table 1. Determining parameters of Gaussian functions by splines with different orders
-
[1] Cressie N. Statistics for spatial data[M]. New York: John Wiley & Sons, 1991. [2] Wackernagel H. Multivariate geo-statistics[M]. Heidelberg: Springer-Verlag, 1995. [3] Menz J. Anwendung der Geostatistik zur Gebirgs-und Lager-stattengeometrisierung[ M]. TU Bergakademie, Freiberg: Forschungbericht, 1996. [4] Martheon G. Splines and Kriging: their formal equivalence in down to earth statistics[A]. In: Merriarn D, ed. Solu- tions looking for geological patterns[ C]. Syracuse Univ Geology Contribution, 1981, 8: 77~97. [5] Dubrule O. Comparing splines and Kriging[ J]. Computer & Geosciences, 1984, 10(2): 327~328. [6] Unser M, Aldroubi A. Polynomial spline and wavelets: a signal processing perspective[ A]. In: Chui C K, ed. Wavelet: a tutorial in theory and applications[C]. Boston: Academic Press, 1992. 91~123.