• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    覆盖区矿产综合预测思路与方法

    成秋明

    成秋明, 2012. 覆盖区矿产综合预测思路与方法. 地球科学, 37(6): 1109-1125. doi: 10.3799/dqkx.2012.118
    引用本文: 成秋明, 2012. 覆盖区矿产综合预测思路与方法. 地球科学, 37(6): 1109-1125. doi: 10.3799/dqkx.2012.118
    CHENG Qiu-ming, 2012. Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas. Earth Science, 37(6): 1109-1125. doi: 10.3799/dqkx.2012.118
    Citation: CHENG Qiu-ming, 2012. Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas. Earth Science, 37(6): 1109-1125. doi: 10.3799/dqkx.2012.118

    覆盖区矿产综合预测思路与方法

    doi: 10.3799/dqkx.2012.118
    基金项目: 

    “覆盖区矿产综合预测”计划项目 1212011085468

    国土资源部公益性行业科研专项 201211022

    地质过程与矿产资源国家重点实验室科技部专项经费资助 MSFGPMR201203

    详细信息
      作者简介:

      成秋明(1960-),男,教授,博士生导师,“千人计划”国家特聘专家,曾获国家杰出青年基金、国际数学地球科学协会最高奖——克伦宾奖章,主要从事矿产勘查、数学地质、地理信息系统的教学和研究. E-mail: qiuming@cug.edu.cn

    • 中图分类号: P624.6

    Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas

    • 摘要: 围绕覆盖区矿产综合预测的基本思路和关键方法问题,讨论了非线性矿产预测理论和方法如何在覆盖区矿产综合预测中发挥作用,重点介绍了成矿奇异性理论与非线性矿产预测方法在覆盖区矿产预测“弱信息”提取、“复合叠加信息”分解、“缺失和不完整信息”融合等关键问题中的应用.结合正在实施的中国地质调查局“覆盖区矿产综合预测”计划项目,介绍了三方面的研究进展:(1)覆盖层中地球化学元素迁移机理与覆盖层对地表地球化学异常的屏蔽和衰减作用;(2)如何识别由于覆盖层影响而造成的“弱”且“复杂”的地球化学异常;(3)如何综合具有缺失或不完整的多元勘查信息以达到提高覆盖区矿产综合预测精度、降低预测不确定性的目的.以东天山戈壁沙漠覆盖区海相火山岩型铁矿、大兴安岭南部草原覆盖区铁多金属矿、武夷山层控矽卡岩型铁矿等矿床预测为例,介绍了综合预测方法的应用过程和应用效果.研究结果表明,奇异性理论和分析方法可以有效地用于提取水系沉积物地球化学和地球物理(重、磁)弱异常,合理分解复合叠加异常,在此基础上,采用地球化学和地球物理异常的数据融合技术,分别建立了推断铁镁质火山岩、中酸性侵入岩、矽卡岩和热液蚀变等成矿或控矿地质要素的综合信息模型,以及基于综合预测要素建立的覆盖区矿产预测后验概率证据权模型和模糊逻辑模型.应用结果显示,介绍的预测方法不仅可以在出露区圈定成矿远景区,而且在戈壁沙漠覆盖区及第三、第四系松散沉积物覆盖区等均可圈出具有重要资源潜力的远景区,这些远景区往往会被传统的预测方法所遗漏.

       

    • 图  1  钻孔岩心上段覆盖层中Zn元素含量密度分布趋势

      样品间隔约20 cm,数据采集采用便携式XRF仪(Niton XL3t950);横坐标为离开下伏蚀变岩石风化面的距离,纵坐标为元素含量点图表示测量数据;线条为最小二乘拟合;a.双对数坐标;b.原始坐标

      Fig.  1.  Plots showing the relations between concentration of Zn and depth from the surface of underlying weathered rocks

      图  2  水系沉积物Fe地球化学异常与覆盖层的空间关系

      a.内蒙大兴安岭沙麦-朝不愣地区;b.福建武夷山某地区;c.新疆东天山东段某地区.图中背景颜色代表水系沉积物地球化学元素含量,暖颜色表示高含量,冷颜色表示低含量;斜线多边形图案表示覆盖层分布范围;图 2a中覆盖层为第三系和第四系沉积物覆盖层;图 2b中的覆盖层为植被覆盖层;图 2c中的覆盖层为沙漠覆层盖;三角形符号表示铁和其他矿床(点)

      Fig.  2.  Distribution of Fe in stream sediment samples

      图  3  覆盖区矿产综合预测理论和方法体系流程

      Fig.  3.  Flowchart showing the processes of integrated prediction of mineral deposits in covered areas

      图  4  矿床成因模型

      a.哈密市雅满苏式铁矿床成因模式图(刘德权等,1996年);b.大兴安岭地区朝不楞矽卡岩型铁多金属矿床成矿模式示意图(从勘探剖面改编);c.福建武夷山马坑层控矽卡岩型铁矿的典型矿床成因模式图(赵一鸣等, 1983).图 4a中,1.流纹质晶屑凝灰岩;2.安山质沉凝灰岩;3.钾细碧玢岩;4.石榴石矽卡岩(含凝灰岩残留体);5.流纹质凝灰岩(钠长石化);6.灰岩;7.破火山口充填的次玄武玢岩;8.流纹质玻屑凝灰岩;9.铁矿体;10.火山喷发不整合面(线).图 4b中,1.第四系沙土;2.第三系红土;3.角岩;4.大理岩;5.矽卡岩;6.铁矿体;7.花岗岩.图 4c中,1.粉砂岩和细砂岩;2.泥质板岩;3.结晶灰岩和大理岩;4.编制石英砂(砾)岩、石英岩;5.变凝灰岩或灰质粉砂岩;6.片理化变质粉砂岩;7.磁铁矿体;8.矽卡岩;9.钾化;10.花岗质混合岩化;11.辉绿闪长岩;12.花岗岩类

      Fig.  4.  Mineral deposits models

      图  5  数据处理与中酸性岩体预测模型和方法流程

      a.地球物理数据处理模型和流程;b.地球化学数据处理模型和流程;c.中酸性岩体预测推断地球物理和地球化学综合模型

      Fig.  5.  Flowchart showing the processes of geophysical and geochemical data preprocessing and integrated prediction model for locating felsic igneous rocks associated with skarn mineral deposits

      图  6  预测和推断酸性岩浆岩分布

      a,c, d为地球物理和地球化学融合模型;b, d, e表示主成分得分.图中的格子图案表示地质图上所显示的已知中酸性岩体,这些已知的岩体出露范围可以作为对岩体预测模型结果的检验

      Fig.  6.  Prediction of felsic igneous rocks using integrated geophysical and geochemical models obtained by conjunction of weak anomaly extraction techniques and principal component analysis

      图  7  矿化蚀变带的综合预测模型与方法流程

      Fig.  7.  Flowchart showing the processes of integrated prediction of mineralization associated alteration zones

      图  8  组合元素地球化学异常的确定

      a.主成分载荷图;b.分形滤波S-A图式;c.主成分得分图;d.S-A方法分解得到的地球化学组合异常图.空心圆表示矿床分布

      Fig.  8.  Geochemical anomalies of combination of trace elements

      图  9  矿床预测综合模型和远景区圈定方法

      a.信息综合模型与后验概率计算模型;b.远景区圈定与资源定量预测模型

      Fig.  9.  Flowchart showing the processes of integrated model for prediction of mineral deposits

      图  10  东天山某区域铁矿预测后验概率结果

      a.后验概率图;b.预测矿床数概率模型

      Fig.  10.  Results of posterior probability for iron mineral deposits in Dongtianshan district

      图  11  朝不愣矽卡岩型铁矿预测模型

      Fig.  11.  Flowchart showing the processes of integrated prediction of skarn iron mineral deposits

      图  12  综合异常圈定结果(输入变量为推断岩体外接触带,推断矽卡岩蚀变带,局部地球化学异常,采用信息综合模型为模糊逻辑“相交”运算方法)

      Fig.  12.  Integrated geo-anomalies obtained by combining inferred outer contacts of intrusions, skarn alternation zones and local geochemical anomalies by fuzzy logic model with intersect mode

    • Agterberg, F.P., 1989. Computer programs for mineral exploration. Science, 245(4913): 76-81. doi: 10.1126/science.245.4913.76
      Bonham-Carter, G.F., 1994. Geographic information system for geosciences: modelling with GIS. Pergamon Press, Oxford.
      Anand, R.R., Robertson, I.D.M., 2012. The role of mineralogy and geochemistry in forming anomalies on interfaces and in areas of deep basin cover: implications for exploration. Geochemistry: Exploration, Environment, Analysis, 12(1): 45-66. doi: 10.1144/1467-7873/10-RA-067
      Cameron, E.M., Hamilton, S.M., Leybourne, M.I., et al., 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019
      Cameron, E.M., Leybourne, M.I., Kelley, D.L., 2002. Exploring for deeply covered mineral deposits: formation of geochemical anomalies in northern Chile by earthquake-induced surface flooding of mineralized groundwaters. Geology, 30(11): 1007-1010. doi: 10.1130/0091-7613(2002)030<1007:EFDCMD>2.0.CO;2
      Cameron, E.M., Leybourne, M.I., Palacios, C., 2008. Economic geology models 1. geochemical exploration and metallogenic studies, northern Chile. Geoscience Canada, 35(3-4): 1-12. http://www.freepatentsonline.com/article/198169156.html
      Carrigan, C.R., Heinle, R.A., Hudson, G.B., 1996. Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature, 382: 528-531. doi: 10.1038/382528a0
      Chen, Y.L., 1999. Geochemistry of granitoids from the eastern Tianshan Mountains and northern Qinling Belt. Geological Publish House, Beijing (in Chinese).
      Chen, Y.C., Wang, D.H., 2010. Prediction classification of major mineral deposits types. Geological Publish House, Beijing (in Chinese).
      Cheng, Q.M., 1989. A method for estimation of resources from multiple populations. Journal of Changchun University of Earth Sciences, 19(5): 50-56(in Chinese with English abstract).
      Cheng, Q.M., Agterberg F.P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649
      Cheng, Q.M., 1999. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961. doi: 10.1016/S0098-3004(99)00060-6
      Cheng, Q.M., 2000. Geodata analysis system (GeoDAS) for mineral exploration: unpublished user's guide and exercise manual. Material for the training workshop on GeoDAS, Toronto, 204.
      Cheng, Q.M., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
      Cheng, Q.M., 2008a. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40(5): 503-532. doi: 10.1007/s11004-008-9172-6
      Cheng, Q.M., 2008b. A combined power-law and exponential model for streamflow recessions. Journal of Hydrology, 352(1-2): 157-167. doi: 10.1016/j.hydrol.2008.01.017
      Cheng, Q.M., 2008c. Singularity of mineralization and multi-fractal distribution of mineral deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 298-305(in Chinese with English abstract). http://www.researchgate.net/publication/289701679_Singularity_of_mineralization_and_multifractal_distribution_of_mineral_deposits
      Cheng, Q.M., 2011. Singularity modeling of geo-anomalies and recognition of anomalies caused by buried sources. Earth Science—Journal of China University of Geosciences, 36(2): 307-316 (in Chinese with English abstract).
      Cheng, Q.M., 2012a. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007
      Cheng, Q.M., 2012b. Multiplicative cascade processes and information integration for predictive mapping. Nonlinear Processes in Geophysics, 19: 57-68. doi: 10.5194/npg-19-57-2012
      Cheng, Q.M., 2012c. Vertical distribution of elements in regoliths over mineral deposits and implicationon mapping geochemical weak anomalies caused by buried sources in covered areas. Geochemistry: Environment, Exploration and Analysis(in press).
      Cheng, Q.M., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. eds., Proceedings of the fifth annual conference of the international association for mathematical geology. Natural Resources Research, 9(1): 43-52. doi: 10.1023/A:1010109829861
      Cheng, Q.M., Liu, J.T., Zhang, S.Y., et al., 2009. Application of GIS-Model builder technology for national mineral resource assessment. Earth Science—Journal of China University of Geosciences, 34(2): 338-346 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.036
      Cohen, D.R., Kelley, D.L., Anand, R., 2010. Major advances in exploration geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3-16. doi: 10.1144/1467-7873/09-215
      Deng, S.T., Guo, Z.J., Zhang, Z.C., 2006. Metallogenic age and significance of contact metasomatic type iron deposits in the eastern Tianshan. Geology and Prospecting, 42(6): 17-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzykt200606004
      Dunn, C.E., 2007. Biogeochemistry in mineral exploration: handbook of exploration and environmental geochemistry 9, Elsevier, Amsterdam. Geochemistry: Exploration, Environment, Analysis, 10: 17-26. http://www.sciencedirect.com/science/article/pii/S1874273407090018
      Einaudi, M.T., Burt, D.M., 1982. Introduction—terminology, classification and composition of skarn deposits. Economic Geology, 77(4): 745-754. doi: 10.2113/gsecongeo.77.4.745
      Goldberg, I.S., 1998. Vertical migration of elements from mineral deposits. Journal of Geochemical Exploration, 61(1-3): 191-202. doi: 10.106/S0375-6742(97)00045-9
      Govett, G.J.S., 1973. Differential secondary dispersion in transported soils and post-mineralization rocks: an electrochemical interpretation. In: Jones, M.J., ed., Geochemical exploration. Institution of Mining and Metallurgy, London, 81-91.
      Govett, G.J.S., 1976. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely shaped surface soil samples. Journal of Geochemical Exploration, 6(1-2): 359-382. doi: 10.1016/0376-6742(76)90024-8
      Jin, Y., Liu, Y.T., Xie, Y.L., 2005. Relationship between magmatism and polymetal mineralization in Dongwuqi area, Inner Mongolia. Geology and Mineral Resources of South China, (1): 8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200501001.htm
      Liu, D.Q., Tang, Y.L., Zhou, R.H., 1996. Metallogenic series types of ore deposits in Xinjiang. Geological Publishing House, Beijing (in Chinese).
      Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. Characteristics of regional mineralization in Daxinanling, Inner Mongolia, China. Earth Science Frontiers, 11(1): 270-277(in Chinese with English abstract).
      Ma, R.S., Shu, L.S., Sun, J.Q., 1997. The tectonic deformation, evolution and metallization in the eastern Tianshan Belt, northwest China. Geological Publish House, Beijing, 202 (in Chinese).
      Mann, A.W., 2010. Strong versus weak digestions: ligand-based soil extraction geochemistry. Geochemistry: Exploration, Environment, Analysis, 10(1): 17-26. doi: 10.1144/1467-7873/09-216
      Mann, A.W., Birrel, R.D., Fedikow, M.A.F., et al., 2005. Vertical ionic migration: mechanisms, soil anomalies, and sampling depth for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5(3): 201-210. doi: 10.1144/1467-7873/03-045
      McCammon, R.B., Botbol, J.M., Sinding-Larsen, R., et al., 1983. Characteristic analysis-1981: final program and a possible discovery. Mathematical Geology, 15(1): 59-83. doi: 10.1007/BF01030076
      Moon, C.J., 1999. Towards a quantitative model of downstream dilution of point source. Journal of Geochemical Exploration, 65(2): 111-132. doi: 10.106/S0375-6742(98)00065-X
      Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007. Re-Os isotopic age dating of molybdenite separates from the Chaobulengskarn iron-polymetallic deposit, Dong Ujimqin Banner, Inner Mongolia. ACTA Geoscientifica Sinica, 28(4): 315-323(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200704000.htm
      Nie, X.L., Hou, W.R., 2010. The discovery of the Diyanqinamu large-size Mo-Ag deposit, Inner Mongolia, and its geological significance. ACTA Geoscientica Sinica, 31(3): 469-472(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003026.htm
      Saaty, T.L., 1980. The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill Book Co., New York.
      Shao, J.D., Tao, J.X., Li, S.W., et al., 2009. The new progress in ore prospecting within Daxing'anling mineralization belt, China. Geological Bulletin of China, 28(7): 955-962(in Chinese with English abstract). http://www.researchgate.net/publication/296710610_The_new_progress_in_ore_prospecting_within_Daxing'_anling_mineralization_belt
      Singer, D.A., 1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Natural Resources Research, 2(2), 69-81. doi: 10.1007/BF02272804
      Smee, B.W., 1998. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration, 61(1-3): 149-172. doi: 10.1016/S0375-6472(98)00007-7
      Smee, B.W., 1983. Laboratory and field evidence in support of the electrochemically-enhanced migration of ions through glaciolacustrine sediment. Journal of Geochemical Exploration, 19(1-3): 277-304. doi: 10.1016/0375-6742(83)90022-5
      Wang, C.Y., Ma, R.S., 1994. Study on the regional metamorphism and the tectonic settings in the eastern Tianshanorogenic belt. Journal of Nanjing University (Natural Science Edition), 30(3): 494-503(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ403.017.htm
      Wang, D.H., Li, C.J., Chen, Z.H., et al., 2006. Metallogenic characteristics and direction in mineral search in the East Tianshan, Xinjiang, China. Geological Bulletin of China, 25(8): 910-915(in Chinese with English abstract). http://www.researchgate.net/publication/279675833_Metallogenic_characteristics_and_direction_in_mineral_search_in_the_East_Tianshan_Xinjiang_China
      Wang, X.Q., Zhang, B.M., Liu, X.M., 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101-112. http://www.researchgate.net/publication/283363571_Nanogeochemistry_deep-penetrating_geochemical_exploration_through_cover
      Wang, X.Q., Wen, X.Q., Rong, Y., 2007. Vertical variations and dispersion of elements in arid desert regolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163-171. doi: 10.1144/1467-7873/07-131
      Xu, L.Q., Chen, Z.Y., Chen, Z.H., et al., 2010. SHRIMP dating of medium-coarse-granite in Chaobuleng iron deposit, Dong Ujimqin, Inner Mongolia. Mineral Deposits, 29(2): 317-322(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201002014.htm
      Ye, R., Zhang, B.M., Yao, W.S., 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120-129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203014.htm
      Zhang, B.M., Chi, Q.H., Zhang, Y.S., 2012. Three-dimensional geochemical distribution patterns in regolith over a concealed gold deposits in arid desert terrains. Earth Science Frontiers, 19(3): 130-137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203015.htm
      Zhao, J., Wang, W.L., Dong, L.H., et al., 2012. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. Journal of Geochemical Exploration, 122: 81-89. doi: 10.1016/j.gexplo.2012.08.006
      Zhao, P.D., 2007. Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14(5): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200705002.htm
      Zhao, Y.M., Tan, H.J., Xu, Z.L., et al., 1983. The calcic-skarn iron ore deposits of Makeng type in Southwestern Fujian. Journal of Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (Special Issue 1): 1-141. http://www.researchgate.net/publication/291303483_The_calcic-skarn_iron_ore_deposit_of_making_type_in_southwestern_Fujian
      陈岳龙, 1999. 东天山、北秦岭花岗岩类地球化学. 北京: 地质出版社.
      陈毓川, 王登红, 2010. 重要矿产预测类型划分方案. 北京: 地质出版社.
      成秋明, 1989. 多母体资源总量模拟方法. 长春地质学院学报, 19(5): 50-56.
      成秋明, 2008c. 成矿过程奇异性与矿床多重分形分布. 矿物岩石地球化学通报, 27(3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200803014.htm
      成秋明, 2011. 地质异常的奇异性度量与隐伏源致矿异常识别. 地球科学, 36 (2): 307-316. doi: 10.3799/dqkx.2011.032
      成秋明, 刘江涛, 张生元, 等, 2009. GIS中的空间建模器技术及其在全国矿产资源潜力预测中的应用. 地球科学, 34(2): 338-346. doi: 10.3321/j.issn:1000-2383.2009.02.017
      邓松涛, 郭召杰, 张志诚, 2006. 东天山接触交代型铁矿成矿时代的确定及其意义. 地质与勘探, 42(6): 17-20. doi: 10.3969/j.issn.0495-5331.2006.06.004
      金岩, 刘玉堂, 谢玉玲, 2005. 内蒙古东乌旗地区岩浆活动与多金属成矿的关系. 华南地质与矿产, (1): 8-12. doi: 10.3969/j.issn.1007-3701.2005.01.002
      刘德权, 唐延龄, 周汝洪. 1996. 中国新疆矿床成矿系列. 北京: 地质出版社.
      刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401036.htm
      马瑞士, 舒良树, 孙家齐, 1997. 东天山构造演化与成矿. 北京: 地质出版社, 1-201.
      聂凤军, 张万益, 杜安道, 等, 2007. 内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 地球学报, 28(4): 315-323. doi: 10.3321/j.issn:1006-3021.2007.04.001
      聂秀兰, 侯万荣. 2010. 内蒙古迪彦钦阿木大型钼-银矿床的发现及地质意义. 地球学报, 31(3): 469-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003026.htm
      邵积东, 陶继雄, 李四娃, 等, 2009. 大兴安岭成矿带找矿工作新进展. 地质通报, 28(7): 955-962. doi: 10.3969/j.issn.1671-2552.2009.07.015
      王赐银, 马瑞士, 1994. 东天山造山带区域变质作用及其构造环境研究. 南京大学学报(自然科学版), 30(3): 494-503. doi: 10.3321/j.issn:0469-5097.1994.03.001
      王登红, 李纯杰, 陈郑辉, 等, 2006. 东天山成矿规律与找矿方向的初步研究. 地质通报, 25(8): 910-915. doi: 10.3969/j.issn.1671-2552.2006.08.002
      王学求, 张必敏, 刘学敏, 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203012.htm
      许立权, 陈志勇, 陈郑辉, 等, 2010. 内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩SHRIMP年令及其意义. 矿床地质, 29(2): 317-322. doi: 10.3969/j.issn.0258-7106.2010.02.013
      叶荣, 张必敏, 姚文生, 等, 2012. 隐伏矿床上方纳米铜颗粒存在形式与成因. 地学前缘, 19(3): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203014.htm
      张必敏, 迟清华, 张永勤, 2012. 干旱荒漠覆盖区隐伏金矿上方覆盖层三维地球化学分布模式. 地学前缘, 19(3): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203015.htm
      赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001
      赵一鸣, 毕承思, 谭惠静, 等, 1983. 闽西南地区马坑式钙矽卡岩型铁矿床. 中国地质科学院矿床地质研究所所刊. (专辑1): 1-141. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300007002.htm
    • 加载中
    图(12)
    计量
    • 文章访问数:  695
    • HTML全文浏览量:  1088
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-10-22
    • 网络出版日期:  2021-11-09
    • 刊出日期:  2012-06-15

    目录

      /

      返回文章
      返回