• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    长江三角洲上新世以来磁性地层及天文调谐年代标尺

    谢建磊 张克信 马小林 赵宝成 张平

    谢建磊, 张克信, 马小林, 赵宝成, 张平, 2017. 长江三角洲上新世以来磁性地层及天文调谐年代标尺. 地球科学, 42(10): 1760-1773. doi: 10.3799/dqkx.2017.569
    引用本文: 谢建磊, 张克信, 马小林, 赵宝成, 张平, 2017. 长江三角洲上新世以来磁性地层及天文调谐年代标尺. 地球科学, 42(10): 1760-1773. doi: 10.3799/dqkx.2017.569
    Xie Jianlei, Zhang Kexin, Ma Xiaolin, Zhao Baocheng, Zhang Ping, 2017. Magnetostratigraphy and Astronomically Tuned Time Scale of Yangtze Delta since Pliocene. Earth Science, 42(10): 1760-1773. doi: 10.3799/dqkx.2017.569
    Citation: Xie Jianlei, Zhang Kexin, Ma Xiaolin, Zhao Baocheng, Zhang Ping, 2017. Magnetostratigraphy and Astronomically Tuned Time Scale of Yangtze Delta since Pliocene. Earth Science, 42(10): 1760-1773. doi: 10.3799/dqkx.2017.569

    长江三角洲上新世以来磁性地层及天文调谐年代标尺

    doi: 10.3799/dqkx.2017.569
    基金项目: 

    上海区域地质调查片区总结与服务产品开发 DD20160345-07

    长江三角洲海岸带综合地质调查与监测 GZH201200506

    详细信息
      作者简介:

      谢建磊(1981-),男,高级工程师,主要从事区域地质调查和研究工作

      通讯作者:

      张克信

    • 中图分类号: P534.6

    Magnetostratigraphy and Astronomically Tuned Time Scale of Yangtze Delta since Pliocene

    • 摘要: 长江三角洲地区的磁性地层认识存在很大不确定性.为建立一个可靠的年代标尺,为区内沉积环境和气候演化研究提供约束,在年代地层和磁性地层基础上,以频率磁化率为信号源、ETP为靶曲线,通过轨道调谐方法对区内LZK1孔开展了天文年代标尺研究,建立了年代序列框架.结果显示,M/B界线埋深约为143.0 m、Ga/M界线埋深约为219.0 m、Gi/Ga界线埋深约为296.6 m.受气候和沉积环境控制,沉积旋回特征清楚,沉积速率具有明显的阶段性.调谐后的频率磁化率显示了显著的125 ka、96 ka、41 ka、23 ka、22 ka、18 ka等轨道周期,并在轨道周期上与ETP曲线高度相关,相关性超过了95%检验标准.100 ka、41 ka和23 ka周期的带通滤波曲线与偏心率、斜率和岁差在振幅和相位上吻合较好,但局部时间段有差异,可能与低沉积速率、沉积速率突变或短时间尺度的地层缺失等因素有关.研究表明,在具有短暂沉积缺失的持续沉降区域,只要保证样品分辨率,可以通过轨道调谐方法建立可靠的年代框架.

       

    • 图  1  LZK1钻孔和对比钻孔位置

      Fig.  1.  Location map of borehole LZK1 and nearby boreholes

      图  2  LZK1孔柱状与沉积相划分

      Fig.  2.  Sedimentary column and facies of borehole LZK1 with OSL and AMS 14C ages

      图  3  LZK1孔代表性样品退磁曲线的正交矢量投影

      Fig.  3.  Orthogonal vector projection of typical samples of borehole LZK1

      图  4  LZK1孔柱状、质量(频率)磁化率和极性对比

      GPTS引自Gradstein et al.(2012);岩性剖面中岩性同图 2

      Fig.  4.  Lithologic column, curves of mass susceptibility and frequency dependent susceptibility of borehole LZK1, polarity with the correlation to the GPTS 2012

      图  5  LZK1孔初始年代模型、沉积速率及频谱分析、深海氧同位素对比

      黑色粗线为5点滑动平均曲线,0~5.3 Ma氧同位素数据引自Lisiecki and Raymo(2005);其他引自Zachos et al.(2001)

      Fig.  5.  Curves of initial time scale and sedimentary rate, spectrum analysis and χfd of borehole LZK1, comparison with marine oxygen isotope

      图  6  LZK1孔天文年代标尺和频率磁化率滤波与轨道参数对比、与ETP交叉频谱分析

      Fig.  6.  Astronomically tuned time scale, comparison between χfd band-pass filtering curves and the orbital parameters, and cross spectrum analysis with ETP, of borehole LZK1

      图  7  LZK1孔基于天文年代标尺的频率磁化率频谱分析及深度-时间对应曲线

      Fig.  7.  Spectrum analysis of χfd based on astronomically tuned time scale and the depth-time curve of borhole LZK1

      表  1  光释光测年结果

      Table  1.   OSL ages for sediments from LZK1 borehole

      野外
      编号
      埋深
      (m)
      U
      (10-6)
      Th
      (10-6)
      K
      (%)
      等效剂量
      (Gy)
      年剂量
      (Gy/ka)
      含水量
      (%)
      年龄
      (ka)
      gsg-1 13.6 1.80 9.80 1.80 4.94±0.37 3.02 27.26 1.6±0.1
      gsg-2 14.0 2.56 13.7 2.25 6.50±0.19 3.78 36.92 1.7±0.1
      gsg-5 41.6 2.30 12.7 2.26 41.04±0.71 3.71 29.98 11.1±0.5
      gsg-6 43.3 1.76 8.70 1.63 43.62±0.31 2.77 22.68 15.6±0.6
      gsg-7 57.0 1.54 7.25 1.77 82.56±1.17 2.74 20.39 30.1±1.3
      gsg-8 86.8 1.20 5.56 1.82 168.70±2.90 2.67 10.82 63.2±3.4
      gsg-9 87.5 2.91 15.5 2.68 435.76±15.62 4.56 27.35 95.5±5.1
      gsg-10 107.1 3.11 14.4 2.24 532.54±6.40 4.28 20.57 124.5±5.2
      下载: 导出CSV

      表  2  AMS 14C测年结果

      Table  2.   AMS 14C ages for sediments from LZK1 borehole

      野外
      编号
      埋深
      (m)
      直接测年年龄
      (a BP)
      惯用年龄
      (a BP)
      日历校正年龄
      2δ(a BP)
      13C/12C比值
      (%)
      AC-1 20.6 2 660±30 3 000±30 2 760~2 690 -4.4
      AC-2 21.2 2 710±30 3 110±30 2 910~2 760 -0.6
      AC-3 30.8 4 480±30 4 890±30 5 260~5 030 -0.3
      AC-5 32.8 5 890±30 6 290±30 6 760~6 630 -0.6
      下载: 导出CSV
    • [1] Ao, H., Dekkers, M.J., Qin, L., 2011.An Updated Astronomical Timescale for the Plio-Pleistocene Deposits from South China Sea and New Insights into Asian Monsoon Evolution.Quaternary Science Reviews, 30(13-14):1560-1575.doi:10.1016/ j.quascirev.2011.04.009
      [2] Brüggemann, W., 1992.A Minimal Cost Function Method for Optimizing the Age-Depth Relation of Deep-Sea Sediment Cores.Paleoceanography, 7(4):467-487.doi:10.1029/ 92PA01235
      [3] Chen, Z.Y., Chen, Z.L., Zhang, W.G., 1997.Quaternary Stratigraphy and Trace-Element Indices of the Yangtze Delta, Eastern China, with Special Reference to Marine Transgressions.Quaternary Research, 47(2):181-191.doi:10.1006/ qres.1996.1878
      [4] Chen, Z.Y., Stanley, D.J., 1995.Quaternary Subsidence and River Channel Migration in the Yangtze Delta Plain, Eastern China.Journal of Coastal Research, 11(3):927-945. http://journals.fcla.edu/jcr/article/download/79870/77135
      [5] Ding, Z.L., Yu, Z.W., Liu, D.S., 1991.Progress in Loess Research (Part 3):Time Scale.Quaternary Sciences, (4):336-348 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201007009.htm
      [6] Duan, Z.Q., Liu, Q.S., Shi, X.F., et al., 2016.Reconstruction of High-Resolution Magnetostratigraphy of the Changjiang (Yangtze) River Delta, China.Geophysical Journal International, 204(2):948-960.doi:10.1093/ gji/ ggv497
      [7] Gao, Z.Y., 2007.Correlation of Parasequence and Short-Term Base Level Cycles in River Facies:A Case of the Xujiahe Formation in Central Sichuan.Acta Geologica Sinica, 81(1):109-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200701012.htm
      [8] Gradstein, F.M., Ogg, J.G., Schmitz, M.D., et al., 2012.The Geologic Time Scale 2012.Elsevier, Amsterdam, 1-1176.
      [9] Han, Z.Y., Li, X.S., 2006.Orbitally Tuned Time Scale Based on Climate Proxy Indicator of Grain Size Distribution in Nihewan Basin.Earth Science, 31(6):773-779 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX200606004.htm
      [10] Ho, K.S., Chen, J.C., Lo, C.H., et al., 2003.40Ar-39Ar Dating and Geochemical Characteristics of Late Cenozoic Basaltic Rocks from the Zhejiang-Fujian Region, SE China:Eruption Ages, Magma Evolution and Petrogenesis.Chemical Geology, 197(1-4):287-318.doi:10.1016/ S0009-2541(02)00399-6
      [11] Huang, X.T., Zheng, H.B., Yang, S.Y., et al., 2008.Magnetostratigraphy and Its Applications of Core DY03 in the Yangtze River Delta.Marine Geology & Quaternary Geology, 28(6):87-93 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/1010492
      [12] Imbrie.J, Hays, J.D., Martinson, D.G., et al., 1984.The Orbital Theory of Pleistocene Climate:Support from a Revised Chronology of the Marine δ18O Record.In:Berger, A., Hays, J., Kukla, G., et al., eds., Milankovitch & Climate:Understanding the Response to Astronomical Forcing.D.Reidel Publishing Co., Norwell, 269-305.
      [13] Ji, Y.P., Xia, Z.K., 2007.Comparison and Primarily Interpretation of Magnetic Susceptibilities in Different Sediments.Acta Geoscientica Sinica, 28(6):541-549 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqxb200706005.htm
      [14] Laskar, J., Robutel, P., Joutel, F., et al., 2004.A Long-Term Numerical Solution for the Insolation Quantities of the Earth.Astronomy & Astrophysics, 428 (1):261-285.doi:10.1051/ 0004-6361:20041335
      [15] Li, P.Y., Wang, Y.J., Liu, Z.X., 1999.Chronostratigraphy and Deposition Rate in the Okinawa Trough.Science in China (Series D), 29(1):50-55 (in Chinese).
      [16] Li, X.C., Sun, B.N., Xiao, L., et al., 2014.Strutum Characteristics of the Neogene Shengxian Formation in Zhejiang Province and Its Related Fossil Studies.Journal of Lanzhou University (Natural Sciences), 50(2):145-153 (in Chinese with English abstract).
      [17] Lisiecki, L.E., Raymo, M.E., 2005.A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records.Paleoceanography, PA1003.doi:10.1029/2004PA001071
      [18] Miao, Y.F., Fang, X.M., Song, C.H., et al., 2016.Late Cenozoic Fire Enhancement Response to Aridification in Mid-Latitude Asia:Evidence from Microcharcoal Records.Quaternary Science Reviews, 139:53-66.doi:10.1016/ j.quascirev.2016.02.030
      [19] Miao, Y.F., Zhang, P., Lu, S.M., et al., 2015.Late Quaternary Pollen Records from the Yangtze River Delta, East China, and Its Implications for the Asian Monsoon Evolution.Arabian Journal of Geosciences, 8(10):7845-7854.doi:10.1007/ s12517-015-1777-8
      [20] Nádor, A., Lantos, M., Tóth-Makk, Á., et al., 2003.Milankovitch-Scale Multi-Proxy Records from Fluvial Sediments of the Last 2.6 Ma, Pannonian Basin, Hungary.Quaternary Science Reviews, 22(20):2157-2175.doi:10.1016/ S0277-3791(03)00134-3
      [21] Püspöki, Z., Demeter, G., Tóth-Makk, Á., et al., 2013.Tectonically Controlled Quaternary Intracontinental Fluvial Sequence Development in the Nyírség-Pannonian Basin, Hungary.Sedimentary Geology, 283:34-56.doi:10.1016/ j.sedgeo.2012.11.003
      [22] Qiang, X.K., An, Z.S., Chang, H., 2003.Paleoclimatic Implication of Frequency-Dependent Magnetic Susceptibility of Red Clay Sequences in the Jiaxian Profile of Northern China.Marine Geology & Quaternary Geology, 23(3):91-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200303014.htm
      [23] Qiu, J.B., Li, X., 2007.Quaternary Stratigraphy and Sedimentary Environment of Shanghai Area.Shanghai Scientific & Technical Publishers, Shanghai (in Chinese).
      [24] Shi, X.F., Yao, Z.Q., Liu, Q.S., et al., 2016.Sedimentary Architecture of the Bohai Sea China over the Last 1 Ma and Implications for Sea-Level Changes.Earth & Planetary Science Letters, 451:10-21.doi:10.1016/ j.epsl.2016.07.002
      [25] Shu, Q., 2004.Study on the Changes of Palaeoenvironment and Palaeoclimate during the Past 3 Ma Recorded in Xinghua Core at Northern Jiangsu Basin (Dissertation).Nanjing Normal University, Nanjing (in Chinese with English abstract).
      [26] Singer, B.S., 2014.A Quaternary Geomagnetic Instability Time Scale.Quaternary Geochronology, 21:29-52.doi:10.1016/ j.quageo.2013.10.003
      [27] Tian, J., Wang, P.X., Cheng, X.R., et al., 2005.Astronomically Tuned Time Scale 12 Ma-18.3 Ma, ODP Site 1 148, Northern South China Sea.Earth Science, 30(5):513-518 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0012821X02009238
      [28] Tian, Q.C., 2012.Climate Variations Documented by Lake Sediments in the Hinterland of Tibetan Plateau since Mid-Pleistocene.Lanzhou University, Lanzhou (in Chinese with English abstract).
      [29] Wang, R.H., Guo, K.Y., Yu, Z.J., et al., 2005.Quaternary Magneto-Stratigraphy of the Yangtze Delta Area.Journal of Stratigraphy, 29(Suppl.):612-617 (in Chinese with English abstract).
      [30] Wang, Z.H., Zhang, D., Li, X., et al., 2008.Magnetic Properties and Relevant Minerals of Late Cenozoic Sediments in the Yangtze River Delta and Their Implications.Geology in China, 35(4):670-682 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200804012.htm
      [31] Wu, H.C., Zhang, S.H., Feng, Q.L., et al., 2011.Theoretical Basis, Research Advancement and Prospects of Cyclostratigraphy.Earth Science, 36(3):409-428 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201103001.htm
      [32] Wu, H.C., Zhang, S.H., Jiang, G.Q., et al., 2013.Astrochronology of the Early Turonian-Early Campanian Terrestrial Succession in the Songliao Basin, Northeastern China and Its Implication for Long-Period Behavior of the Solar System.Palaeogeography, Palaeoclimatology, Palaeoecology, 385:55-70.doi:10.1016/ j.palaeo.2012.09.004
      [33] Wu, S.Y., Liu, J., 2015.Characteristics of Milankovitch Cycle in Eocene Formation, Eastern Depression of the North Yellow Sea Basin.Earth Science, 40(11):1933-1944 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511016.htm
      [34] Xing, L.S., Xu, S.J., Zhang, J.X., 1986.Division of Quaternary Magnetostratigraphy in the Yangtse Delta Area.Bulletin of the Institute of Geomechanics CAGS, (8):89-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ2005S1029.htm
      [35] Xu, F.J., Li, A.C., Li, T.G., et al., 2011.The Paleoenvironmental Significance of Magnetic Susceptibility of Sediments on the East China Sea Inner Shelf since the Last Deglaciation.Acta Oceanologica Sinica, 33(1):91-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC201101012.htm
      [36] Yang, S.Y., Li, C.X., Yokoyama, K., 2006.Elemental Compositions and Monazite Age Patterns of Core Sediments in the Changjiang Delta:Implications for Sediment Provenance and Development History of the Changjiang River.Earth & Planetary Science Letters, 245(3-4):762-776.doi:10.1016/ j.epsl.2006.03.042
      [37] Yao, Z.Q., Shi, X.F., Liu, Q.S., et al., 2014.Paleomagnetic and Astronomical Dating of Sediment Core BH08 from the Bohai Sea, China:Implications for Glacial-Interglacial Sedimentation.Palaeogeography, Palaeoclimatology, Palaeoecology, 393:90-101.doi:10.1016/ j.palaeo.2013.11.012
      [38] Yu, Y.T., 2006.Mid-Pleistocene Climatic Transition (MPT) as Evidenced by a Sediment Record from Lake Gas Hure, Northwestern Qaidam Basin.Lanzhou University, Lanzhou (in Chinese with English abstract).
      [39] Yu, Z.J., Zhang, Y.P., Wang, R.H., et al., 2004.The Division and Age of the Neogene Strata in the Yangtze Delta Area.Journal of Stratigraphy, 28(3):257-264 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200403010.htm
      [40] Yuan, L.W., Chen, Y., Liu, Z.C., 2003.Restudy on the Orbital Tuning Time Scale of Deep Core in Qaidam Basin.Jounal of Nanjing Normal University (Natural Science), 26(2):87-93 (in Chinese with English abstract).
      [41] Zachos, J., Pagani, M., Sloan, L., et al., 2001.Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.Science, 292(5517):686-693.doi:10.11266/ science.1059412
      [42] Zhang, M.H., 2009.Sedimentary Infilling and Environmental Changes of the Northern Jiangsu Basin since Latest Miocene Recorded in Xinghua Cores.Nanjing Normal University, Nanjing (in Chinese with English abstract).
      [43] Zhang, P., Li, X.Q., Pan, M.B., et al., 2013.Magnetostratigraphy of Borehole SZ04 in the Yangtze River Delta and Its Implications.Acta Sedimentologica Sinica, 31(6):1041-1049 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201306011.htm
      [44] Zhang, P., Miao, Y.F., Zhang, Z.Y., et al., 2013.Late Cenozoic Sporopollen Records in the Yangtze River Delta, East China and Implications for East Asian Summer Monsoon Evolution.Palaeogeography, Palaeoclimatology, Palaeoecology, 388:153-165.doi:10.1016/ j.palaeo.2013.08.014
      [45] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016.Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain.Earth Science, 41(7):1225-1230 (in Chinese with English abstract).
      [46] Zhang, Z.K., Wu, R.J., Wang, S.M., 1998.Implication of Magnetic Frequency Dependent Susceptibility on Environmental Variation from Lacustrine Sediment in Daihai Lake.Geographical Research, 17(3) :297-302 (in Chinese with English abstract).
      [47] Zou, L., Zhang, Z.Z., Han, Y., 2015.Magnetostratigraphy of Core DZS2 off the Yangtze River Estuary.Marine Geology & Quaternary Geology, 35(2):43-52 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0277379116301627
      [48] 丁仲礼, 余志伟, 刘东生, 1991.中国黄土研究新进展(三)时间标尺.第四纪研究, 11(4): 336-348. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199104004.htm
      [49] 高志勇, 2007.河流相沉积中准层序与短期基准面旋回对比研究——以四川中部须家河组为例.地质学报, 81(1): 109-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701012.htm
      [50] 韩志勇, 李徐生, 2006.泥河湾盆地基于粒度气候指标的轨道调谐时间标尺.地球科学, 31(6): 773-779. http://www.earth-science.net/WebPage/Article.aspx?id=1639
      [51] 黄湘通, 郑洪波, 杨守业, 等, 2008.长江三角洲DY03孔磁性地层研究及其意义.海洋地质与第四纪地质, 28(6): 87-93. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200806015.htm
      [52] 吉云平, 夏正楷, 2007.不同类型沉积物磁化率的比较研究和初步解释.地球学报, 28(6): 541-549. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200706005.htm
      [53] 李培英, 王永吉, 刘振夏, 1999.冲绳海槽年代地层与沉积速率.中国科学(D辑), 29(1): 50-55. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199901007.htm
      [54] 李相传, 孙柏年, 肖良, 等, 2014.浙江新近纪嵊县组地层特征及其化石研究进展.兰州大学学报(自然科学版), 50(2): 145-153. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201402001.htm
      [55] 强小科, 安芷生, 常宏, 2003.佳县红粘土堆积序列频率磁化率的古气候意义.海洋地质与第四纪地质, 23(3): 91-96. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200303014.htm
      [56] 邱金波, 李晓, 2007.上海市第四纪地层与沉积环境.上海:上海科学技术出版社.
      [57] 舒强, 2004. 苏北盆地兴化钻孔近3 Ma环境变化记录研究(博士学位论文). 南京: 南京师范大学.
      [58] 田军, 汪品先, 成鑫荣, 等, 2005.南海ODP1148站中中新世(12~18.3 Ma)天文调谐的年代标尺.地球科学, 30(5): 13-518. http://www.earth-science.net/WebPage/Article.aspx?id=1377
      [59] 田庆春, 2012. 青藏高原腹地湖泊沉积物记录的中更新世以来的气候变化(博士学位论文). 兰州: 兰州大学.
      [60] 王润华, 郭坤一, 于振江, 等, 2005.长江三角洲地区第四纪磁性地层学研究.地层学杂志, 29(增刊): 612-617. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ2005S1028.htm
      [61] 王张华, 张丹, 李晓, 等, 2008.长江三角洲晚新生代沉积物磁性特征和磁性矿物及其指示意义.中国地质, 35(4): 670-682. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200804012.htm
      [62] 吴怀春, 张世红, 冯庆来, 等, 2011.旋回地层学理论基础、研究进展和展望.地球科学, 36(3): 409-428. http://www.earth-science.net/WebPage/Article.aspx?id=2107
      [63] 吴淑玉, 刘俊, 2015.北黄海东部坳陷始新统米兰科维奇旋回特征.地球科学, 40(11): 1933-1944. http://www.earth-science.net/WebPage/Article.aspx?id=3200
      [64] 邢历生, 徐树金, 张景鑫, 1986.长江三角洲地区第四纪磁性地层划分.地质力学研究所所刊, (8): 89-95. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX198600006.htm
      [65] 徐方建, 李安春, 李铁刚, 等, 2011.末次冰消期以来东海内陆架沉积物磁化率的环境意义.海洋学报, 33(1): 91-97. doi: 10.11978/j.issn.1009-5470.2011.01.091
      [66] 袁林旺, 陈晔, 刘泽纯, 2003.柴达木盆地深钻孔轨道调谐时间标尺的再研究.南京师大学报(自然科学版), 26(2): 87-93. http://www.cnki.com.cn/Article/CJFDTOTAL-NJSF200302019.htm
      [67] 于永涛, 2006. 柴达木盆地西北缘尕斯库勒湖钻孔记录的中更新世气候转型(博士学位论文). 兰州: 兰州大学.
      [68] 于振江, 张于平, 王润华, 等, 2004.长江三角洲(江南)地区新近纪地层划分及时代讨论.地层学杂志, 28(3): 257-264. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200403010.htm
      [69] 张茂恒, 2009. 中新世末期以来苏北盆地沉积环境演化的兴化钻孔记录(博士学位论文). 南京: 南京师范大学.
      [70] 张平, 李向前, 潘明宝, 等, 2013.长江三角洲SZ04孔磁性地层研究及其意义.沉积学报, 31(6): 1041-1049. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306011.htm
      [71] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7): 1225-1230. doi: 10.11764/j.issn.1672-1926.2016.07.1225
      [72] 张振克, 吴瑞金, 王苏民, 1998.岱海湖泊沉积物频率磁化率对历史时期环境变化的反映.地理研究, 17(3): 297-302. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ803.010.htm
      [73] 邹亮, 张志忠, 韩月, 2015.长江口外海区DZS2孔第四纪磁性地层.海洋地质与第四纪地质, 35(2): 43-52. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201502007.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  5637
    • HTML全文浏览量:  1764
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-02-20
    • 刊出日期:  2017-10-18

    目录

      /

      返回文章
      返回