• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化

    徐亚军 杜远生

    引用本文:
    Citation:

    从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化

      作者简介: 徐亚军(1978-), 男, 副教授, 博士, 主要从事构造地质学和大地构造沉积学方面的教学和科研工作, ORCID: http://orcid.org/0000-0002-2487-6272.
    • 基金项目:

      国家自然科学基金项目 41472086

      国家自然科学基金项目 41772106

      中央高校基本科研业务费专项资金 CUG2015039096

    • 中图分类号: P542

    From Periphery Collision to Intraplate Orogeny: Early Paleozoic Orogenesis in Southeastern Part of South China

    • 摘要: 华南的广西运动被认为是发生在早古生代的陆内造山作用,然而触发陆内变形的地球动力学机制仍然不清.广西运动形成了泥盆系与下伏岩石之间广泛的不整合面以及分布在局部地区的下古生界内部的多个不整合面.广西运动期间的构造热事件和古生物响应时间在460~380 Ma,时间上对应于奥陶系和泥盆系之间的多个不整合,而分布在华南南缘的寒武系和奥陶系之间的不整合面(郁南运动)仅与少量的530~480 Ma之间的变质事件相当,但是却同步于广泛分布在东冈瓦纳北缘的造山事件.华南南部寒武系-奥陶系不整合面上下的碎屑锆石年代学研究表明,早古生代华南与印度北缘相连,而三亚地块在寒武纪是澳大利亚西缘的一部分,直到奥陶纪才与华南拼合,同步于冈瓦纳最终的聚合.郁南运动之后,华夏板块处于冈瓦纳内部,来自冈瓦纳东缘造山作用的应力向大陆内部传播,在具有弱流变学性质的南华盆地聚集,导致盆地构造反转,触发了广西运动.早古生代的华南经历了从板缘碰撞(郁南运动)到陆内造山(广西运动)的演化过程.
    • 图 1  华南构造单元

      Figure 1.  Tectonic units of South China

      据中国地图, 中国地图出版社, 2013

      图 2  华南东南部下古生界-泥盆系接触关系

      Figure 2.  2Stratigraphic relationship of the Lower Paleozoic-Devonian strata in the southeastern part of South China

      1.郁南运动; 2.北流运动; 3.崇余运动; 4.都匀运动; 5.广西运动

      图 4  东冈瓦纳北缘和劳伦大陆边缘早古生代碎屑锆石年龄谱

      Figure 4.  4U-Pb age spectrum of detrital zircons from the Early Paleozoic strata in the northern margin of East Gondwana and Laurentia

      注:S为样品件数, n为锆石年龄数.图a据向磊和舒良树(2010); 图b据Zhou et al.(2015); 图c据Wang et al.(2010)Xu et al.(2012)Yu et al.(2015);图d据Wang et al.(2010)向磊和舒良树(2010)Yao et al.(2011)Xu et al.(2014a)Wang et al.(2014); 图e据Xu et al.(2013, 2014a)、Wang et al.(2014); 图f据Gehrels et al.(2006a, 2006b)、McQuarrie et al.(2008, 2013)、Myrow et al.(2009, 2010)、Hughes et al.(2011)Long et al.(2011); 图g据Cawood and Nemchin(2001)Cawood et al.(2003)Amato and Mack(2012)Hadlari et al.(2012); 图h据Xu et al.(2014b); 图i据Xu et al.(2014b); 图j据Li et al.(2008); 图k据Ksienzyk et al.(2012)

      图 5  早古生代冈瓦纳大陆重建

      Figure 5.  Reconstruction of Gondwana in the Early Paleozoic

      Boger et al.(2001)修改

      图 6  三种建议的广西运动模型

      Figure 6.  Three proposed models for the Kwangsian Orogeny

      a.板内俯冲模型, 据Faure et al.(2009); b.前陆盆地模型, 据Li et al.(2010); c.南海地块板内俯冲准对称反转模型, 据Shu et al.(2014)

      图 7  华南陆内广西运动热年代学与澳大利亚中部Alice Springs陆内造山作用热年代学对比

      Figure 7.  Comparison of tectonothermal events during the intraplate Kwangsian Orogeny in South China and the Alice Springs Orogeny in central Australia

      a.广西运动数据来源同图 3; b.Alice Springs造山带数据引自Allen and Stubbs(1982)Dunlap et al.(1991)Cartwright et al.(1999)Hand et al.(1999)Scrimgeour and Raith(2001)Maidment(2005)Buick et al.(2008)McLaren et al.(2009)Raimondo et al.(2012)Maidment et al.(2013)

      图 8  华南东南缘早古生代造山作用演化

      Figure 8.  The evolution of Early Paleozoic orogenesis in the southeastern part of South China

    • [1] Aitken, A.R.A., 2011.Did the Growth of Tibetan Topography Control the Locus and Evolution of Tien Shan Mountain Building? Geology, 39(5):459-462.https://doi.org/10.1130/g31712.1 doi: 10.1130/g31712.1
      [2] Aitken, A.R.A., Raimondo, T., Capitanio, F.A., 2013.The Intraplate Character of Supercontinent Tectonics.Gondwana Research, 24(3-4):807-814.https://doi.org/10.1016/j.gr.2013.03.005 doi: 10.1016/j.gr.2013.03.005
      [3] Allen, A.R., Stubbs, D., 1982.An 40Ar/39Ar Study of a Polymetamorphic Complex in the Arunta Block, Central Australia.Contributions to Mineralogy and Petrology, 79(3):319-332.https://doi.org/10.1007/bf00371524 doi: 10.1007/bf00371524
      [4] Amato, J.M., Mack, G.H., 2012.Detrital Zircon Geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico:Evidence for Contrasting Grenville-Age and Cambrian Sources on Opposite Sides of the Transcontinental Arch.Geological Society of America Bulletin, 124(11-12):1826-1840.https://doi.org/10.1130/b30657.1 doi: 10.1130/b30657.1
      [5] Boger, S.D., Wilson, C.J.L., Fanning, C.M., 2001.Early Paleozoic Tectonism within the East Antarctic Craton:The Final Suture between East and West Gondwana? Geology, 29(5):463-466.https://doi.org/10.1130/0091-7613(2001)029<0463:eptwte>2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0463:eptwte>2.0.co;2
      [6] Buick, I.S., Storkey, A., Williams, I.S., 2008.Timing Relationships between Pegmatite Emplacement, Metamorphism and Deformation during the Intra-Plate Alice Springs Orogeny, Central Australia.Journal of Metamorphic Geology, 26(9):915-936.https://doi.org/10.1111/j.1525-1314.2008.00794.x doi: 10.1111/j.1525-1314.2008.00794.x
      [7] Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region (BGMRGZAR), 1985.Regional Geology of the Guangxi Zhuang Autonomous Region.Geological Publishing House, Beijing (in Chinese).
      [8] Carter, A., Roques, D., Bristow, C., et al., 2001.Understanding Mesozoic Accretion in Southeast Asia:Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam, Geology, 29(3):211-214.https://doi.org/10.1130/0091-7613(2001)029<0211:umaisa>2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0211:umaisa>2.0.co;2
      [9] Cartwright, I., Buick, I.S., Foster, D.A., et al., 1999.Alice Springs Age Shear Zones from the Southeastern Reynolds Range, Central Australia.Australian Journal of Earth Sciences, 46(3):355-363.https://doi.org/10.1046/j.1440-0952.1999.00710.x doi: 10.1046/j.1440-0952.1999.00710.x
      [10] Catlos, E.J., Harrison, T.M., Manning, C.E., et al., 2002.Records of the Evolution of the Himalayan Orogen from in Situ Th-Pb Ion Microprobe Dating of Monazite:Eastern Nepal and Western Garhwal.Journal of Asian Earth Sciences, 20(5):459-479.https://doi.org/10.1016/s1367-9120(01)00039-6 doi: 10.1016/s1367-9120(01)00039-6
      [11] Cawood, P.A., 2005.Terra Australis Orogen:Rodinia Breakup and Development of the Pacific and Iapetus Margins of Gondwana during the Neoproterozoic and Paleozoic.Earth-Science Reviews, 69(3-4):249-279.https://doi.org/10.1016/j.earscirev.2004.09.001 doi: 10.1016/j.earscirev.2004.09.001
      [12] Cawood, P.A., Johnson, M.R.W., Nemchin, A.A., 2007.Early Palaeozoic Orogenesis along the Indian Margin of Gondwana:Tectonic Response to Gondwana Assembly.Earth and Planetary Science Letters, 255(1-2):70-84.https://doi.org/10.1016/j.epsl.2006.12.006 doi: 10.1016/j.epsl.2006.12.006
      [13] Cawood, P.A., Nemchin, A.A., 2000.Provenance Record of a Rift Basin:U/Pb Ages of Detrital Zircons from the Perth Basin, Western Australia.Sedimentary Geology, 134(3-4):209-234.https://doi.org/10.1016/s0037-0738(00)00044-0 doi: 10.1016/s0037-0738(00)00044-0
      [14] Cawood, P.A., Nemchin, A.A., 2001.Paleogeographic Development of the East Laurentian Margin:Constraints from U-Pb Dating of Detrital Zircons in the Newfoundland Appalachians.Geological Society of America Bulletin, 113(9):1234-1246.https://doi.org/10.1130/0016-7606(2001)113<1234:pdotel>2.0.co; 2 doi: 10.1130/0016-7606(2001)113<1234:pdotel>2.0.co;2
      [15] Cawood, P.A., Nemchin, A.A., Smith, M., et al., 2003.Source of the Dalradian Supergroup Constrained by U-Pb Dating of Detrital Zircon and Implications for the East Laurentian Margin.Journal of the Geological Society, 160(2):231-246.https://doi.org/10.1144/0016-764902-039 doi: 10.1144/0016-764902-039
      [16] Cawood, P.A., Wang, Y.J., Xu, Y.J., et al., 2013.Locating South China in Rodinia and Gondwana:A Fragment of Greater India Lithosphere? Geology, 41(8):903-906.https://doi.org/10.1130/g34395.1 doi: 10.1130/g34395.1
      [17] Charvet, J., Shu, L.S., Faure, M., et al., 2010.Structural Development of the Lower Paleozoic Belt of South China:Genesis of an Intracontinental Orogen.Journal of Asian Earth Sciences, 39(4):309-330.https://doi.org/10.1016/j.jseaes.2010.03.006 doi: 10.1016/j.jseaes.2010.03.006
      [18] Chatterjee, N., Mazumdar, A.C., Bhattacharya, A., et al., 2007.Mesoproterozoic Granulites of the Shillong-Meghalaya Plateau:Evidence of Westward Continuation of the Prydz Bay Pan-African Suture into Northeastern India.Precambrian Research, 152(1-2):1-26.https://doi.org/10.1016/j.precamres.2006.08.011 doi: 10.1016/j.precamres.2006.08.011
      [19] Chen, C.H., Liu, Y.H., Lee, C.Y., et al., 2012.Geochronology of Granulite, Charnockite and Gneiss in the Poly-Metamorphosed Gaozhou Complex (Yunkai Massif), South China:Emphasis on the In-Situ EMP Monazite Dating.Lithos, 144-145:109-129.https://doi.org/10.1016/j.lithos.2012.04.009 doi: 10.1016/j.lithos.2012.04.009
      [20] Chen, X., Fan, J.X., Chen, Q., et al., 2014.Toward a Stepwise Kwangsian Orogeny.Science China Earth Science, 44(5):842-850 (in Chinese). doi: 10.1007/s11430-013-4815-y
      [21] Chen, X., Zhang, Y.D., Fan, J.X., et al., 2010.Ordovician Graptolite-Bearing Strata in Southern Jiangxi with a Special Reference to the Kwangsian Orogeny.Science China Earth Science, 40(12):1621-1631(in Chinese). doi: 10.1007/s11430-010-4117-6
      [22] Chen, X., Zhang, Y.D., Fan, J.X., et al., 2012.Onset of the Kwangsian Orogeny as Evidenced by Biofacies and Lithofacies.Science China Earth Science, 42(11):1617-1626. doi: 10.1007/s11430-012-4490-4
      [23] Chen, X.Y., Tong, L.X., Zhang, C.L., et al., 2015, Retrograde Garnet Amphibolite from Eclogite of Zhejiang Longyou Area:New Evidence of the Caledonian Orogenic Event in the Cathaysia Block.Chinese Science Bulletin, 60(13):1207-1217(in Chinese with English abstract). doi: 10.1360/N972015-00094
      [24] Chen, Z.H., Li, C.Y., Xie, P.S., et al., 2008.Approaching the Age Problem for Some Metamorphosed Precambrian Basement Rocks and Phanerozoic Granitic Bodies in the Wuyishan Area:The Application of EMP Monazite Age Dating.Geological Journal of China Universities, 14(1):1-15(in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200801003.htm
      [25] Cheng, S.B., Fu, J.M., Chen, X.Q., et al., 2012.Zircon SHRIMP U-Pb Dating and Geochemical Characteristics of Haiyangshan Monzogranitic Batholith, Northeast Guangxi.Geology and Mineral Resources of South China, 28(2):132-140 (in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201202007.htm
      [26] Cocks, L.R.M., Torsvik, T.H., 2013.The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia.Earth-Science Reviews, 117:40-79.https://doi.org/10.1016/j.earscirev.2012.12.001 doi: 10.1016/j.earscirev.2012.12.001
      [27] Collins, A.S., 2003.Structure and Age of the Northern Leeuwin Complex, Western Australia:Constraints from Field Mapping and U-Pb Isotopic Analysis.Australian Journal of Earth Sciences, 50(4):585-599.https://doi.org/10.1046/j.1440-0952.2003.01014.x doi: 10.1046/j.1440-0952.2003.01014.x
      [28] Collins, W.J., 2002.Hot Orogens, Tectonic Switching, and Creation of Continental Crust.Geology, 30(6):535-538.https://doi.org/10.1130/0091-7613(2002)030<0535:hotsac>2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0535:hotsac>2.0.co;2
      [29] Cunningham, D., 2013.Mountain Building Processes in Intracontinental Oblique Deformation Belts:Lessons from the Gobi Corridor, Central Asia.Journal of Structural Geology, 46:255-282.https://doi.org/10.1016/j.jsg.2012.08.010 doi: 10.1016/j.jsg.2012.08.010
      [30] DeCelles, P.G., Gehrels, G.E., Quade, J., et al., 2000.Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal.Science, 288(5465):497-499.https://doi.org/10.1126/science.288.5465.497 doi: 10.1126/science.288.5465.497
      [31] Ding, S.J., Xu, C.H., Long, W.G., et al., 2002.Tectonic Attribute and Geochronology of Meta-Volcanic Rocks, Tunchang, Hainan Island.Acta Petrologica Sinica, 18(1):83-90(in Chinese with English abstract).http://www.oalib.com/paper/1471615
      [32] Dong, Y.P., Liu, X.M., Neubauer, F., et al., 2013.Timing of Paleozoic Amalgamation between the North China and South China Blocks:Evidence from Detrital Zircon U-Pb Ages.Tectonophysics, 586:173-191.https://doi.org/10.1016/j.tecto.2012.11.018 doi: 10.1016/j.tecto.2012.11.018
      [33] Du, Y.S., Xu, Y.J., 2012.A Preliminary Study on Caledonian Event in South China.Geological Science and Technology Information, 31(5):43-49 (in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205007.htm
      [34] Dunlap, W.J., Teyssier, C., McDougall, I., et al.1991.Ages of Deformation from K/Ar and 40Ar/39Ar Dating of White Micas.Geology, 19(12):1213-1216.https://doi.org/10.1130/0091-7613(1991)019<1213:aodfka>2.3.co; 2 doi: 10.1130/0091-7613(1991)019<1213:aodfka>2.3.co;2
      [35] Faure, M., Shu, L.S., Wang, B., et al., 2009.Intracontinental Subduction:A Possible Mechanism for the Early Palaeozoic Orogen of SE China.Terra Nova, 21(5):360-368.https://doi.org/10.1111/j.1365-3121.2009.00888.x doi: 10.1111/j.1365-3121.2009.00888.x
      [36] Feng, S.J., Zhao, K.D., Ling, H.F., et al., 2014.Geochronology, Elemental and Nd-Hf Isotopic Geochemistry of Devonian A-Type Granites in Central Jiangxi, South China:Constraints on Petrogenesis and Post-Collisional Extension of the Wuyi-Yunkai Orogeny.Lithos, 206-207:1-18.https://doi.org/10.1016/j.lithos.2014.07.007 doi: 10.1016/j.lithos.2014.07.007
      [37] Findlay, R.H., 1997.The Song Ma Anticlinorium, Northern Vietnam:The Structure of an Allochthonous Terrane Containing an Early Palaeozoic Island Arc Sequence.Journal of Asian Earth Sciences, 15(6):453-464.https://doi.org/10.1016/s0743-9547(97)00031-7 doi: 10.1016/s0743-9547(97)00031-7
      [38] Fitzsimons, I.C.W., 2000.Grenville-Age Basement Provinces in East Antarctica:Evidence for Three Separate Collisional Orogens.Geology, 28(10):879-882.https://doi.org/10.1130/0091-7613(2000)028<0879:gabpie>2.3.co; 2 doi: 10.1130/0091-7613(2000)028<0879:gabpie>2.3.co;2
      [39] Gehrels, G.E., DeCelles, P.G., Ojha, T.P., et al., 2006a.Geologic and U-Th-Pb Geochronologic Evidence for Early Paleozoic Tectonism in the Kathmandu Thrust Sheet, Central Nepal Himalaya.Geological Society of America Bulletin, 118(1-2):185-198.https://doi.org/10.1130/b25753.1 doi: 10.1130/b25753.1
      [40] Gehrels, G.E., DeCelles, P.G., Ojha, T.P., et al., 2006b.Geologic and U-Pb Geochronologic Evidence for Early Paleozoic Tectonism in the Dadeldhura Thrust Sheet, Far-West Nepal Himalaya.Journal of Asian Earth Sciences, 28(4-6):385-408.https://doi.org/10.1016/j.jseaes.2005.09.012 doi: 10.1016/j.jseaes.2005.09.012
      [41] Glorie, S., De Grave, J., Buslov, M.M., et al., 2011.Tectonic History of the Kyrgyz South Tien Shan (Atbashi-Inylchek) Suture Zone:The Role of Inherited Structures during Deformation-Propagation.Tectonics, 30(6):TC6016.https://doi.org/10.1029/2011tc002949 doi: 10.1029/2011tc002949
      [42] Guan, Y.L., Yuan, C., Sun, M., et al., 2014.I-Type Granitoids in the Eastern Yangtze Block:Implications for the Early Paleozoic Intracontinental Orogeny in South China.Lithos, 206-207:34-51.https://doi.org/10.1016/j.lithos.2014.07.016 doi: 10.1016/j.lithos.2014.07.016
      [43] Guo, L.Z., Shi, Y.S., Lu, H.F., et al., 1989.The Pre-Devonian Tectonic Patterns and Evolution of South China.Journal of Southeast Asian Earth Sciences, 3(1-4):87-93.https://doi.org/10.1016/0743-9547(89)90012-3 doi: 10.1016/0743-9547(89)90012-3
      [44] Guynn, J., Kapp, P., Gehrels, G.E., et al., 2012.U-Pb Geochronology of Basement Rocks in Central Tibet and Paleogeographic Implications.Journal of Asian Earth Sciences, 43(1):23-50.https://doi.org/10.1016/j.jseaes.2011.09.003 doi: 10.1016/j.jseaes.2011.09.003
      [45] Hadlari, T., Davis, W.J., Dewing, K., et al., 2012.Two Detrital Zircon Signatures for the Cambrian Passive Margin of Northern Laurentia Highlighted by New U-Pb Results from Northern Canada.Geological Society of America Bulletin, 124(7-8):1155-1168.https://doi.org/10.1130/b30530.1 doi: 10.1130/b30530.1
      [46] Hand, M., Mawby, J.O., Kinny, P.D., et al., 1999.U-Pb Ages from the Harts Range, Central Australia:Evidence for Early Ordovician Extension and Constraints on Carboniferous Metamorphism.Journal of the Geological Society, 156(4):715-730.https://doi.org/10.1144/gsjgs.156.4.0715 doi: 10.1144/gsjgs.156.4.0715
      [47] Hofmann, M., Linnemann, U., Rai, V., et al., 2011.The India and South China Cratons at the Margin of Rodinia-Synchronous Neoproterozoic Magmatism Revealed by LA-ICP-MS Zircon Analyses.Lithos, 123(1-4):176-187.https://doi.org/10.1016/j.lithos.2011.01.012 doi: 10.1016/j.lithos.2011.01.012
      [48] Hu, X.M., Garzanti, E., Moore, T., et al., 2015.Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma).Geology, 43(10):859-862.https://doi.org/10.1130/g36872.1 doi: 10.1130/g36872.1
      [49] Huang, J.Q., 1945.On Major Tectonic Forms of China.Geologycal Publishing House, Beijing (in Chinese).
      [50] Huang, X.L., Yu, Y., Li, J., et al., 2013.Geochronology and Petrogenesis of the Early Paleozoic I-Type Granite in the Taishan Area, South China:Middle-Lower Crustal Melting during Orogenic Collapse.Lithos, 177:268-284.https://doi.org/10.1016/j.lithos.2013.07.002 doi: 10.1016/j.lithos.2013.07.002
      [51] Hughes, N.C., Myrow, P.M., Mckenzie, N.R., et al., 2011.Cambrian Rocks and Faunas of the Wachi La, Black Mountains, Bhutan.Geological Magazine, 148(3):351-379.https://doi.org/10.1017/s0016756810000750 doi: 10.1017/s0016756810000750
      [52] Isozaki, Y., Aoki, K., Nakama, T., et al., 2010.New Insight into a Subduction-Related Orogen:A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands.Gondwana Research, 18(1):82-105.https://doi.org/10.1016/j.gr.2010.02.015 doi: 10.1016/j.gr.2010.02.015
      [53] Jahn, B.M., Zhou, X.H., Li, J.L., 1990.Formation and Tectonic Evolution of Southeastern China and Taiwan:Isotopic and Geochemical Constraints.Tectonophysics, 183(1-4):145-160.https://doi.org/10.1016/0040-1951(90)90413-3 doi: 10.1016/0040-1951(90)90413-3
      [54] Jiang, G.Q., Sohl, L.E., Christie-Blick, N., 2003.Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China):Paleogeographic Implications.Geology, 31(10):917-920.https://doi.org/10.1130/g19790.1 doi: 10.1130/g19790.1
      [55] Johnson, M.R.W., Oliver, G.J.H., Parrish, R.R., et al., 2001.Synthrusting Metamorphism, Cooling, and Erosion of the Himalayan Kathmandu Complex, Nepal.Tectonics, 20(3):394-415.https://doi.org/10.1029/2001tc900005 doi: 10.1029/2001tc900005
      [56] Jolivet, M., Dominguez, S., Charreau, J., et al.2010.Mesozoic and Cenozoic Tectonic History of the Central Chinese Tian Shan:Reactivated Tectonic Structures and Active Deformation.Tectonics, 29(6):TC6019.https://doi.org/10.1029/2010tc002712 doi: 10.1029/2010tc002712
      [57] Kim, S.W., Kwon, S., Santosh, M., et al., 2014.Detrital Zircon U-Pb Geochronology and Tectonic Implications of the Paleozoic Sequences in Western South Korea.Journal of Asian Earth Sciences, 95:217-227.https://doi.org/10.1016/j.jseaes.2014.05.022 doi: 10.1016/j.jseaes.2014.05.022
      [58] Ksienzyk, A.K., Jacobs, J., Boger, S.D., et al., 2012.U-Pb Ages of Metamorphic Monazite and Detrital Zircon from the Northampton Complex:Evidence of Two Orogenic Cycles in Western Australia.Precambrian Research, 198-199:37-50.https://doi.org/10.1016/j.precamres.2011.12.011 doi: 10.1016/j.precamres.2011.12.011
      [59] Kwon, Y.K., Chough, S.K., Choi, D.K., et al., 2006.Sequence Stratigraphy of the Taebaek Group (Cambrian-Ordovician), Mideast Korea.Sedimentary Geology, 192(1-2):19-55.https://doi.org/10.1016/j.sedgeo.2006.03.024 doi: 10.1016/j.sedgeo.2006.03.024
      [60] Lee, J., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895.https://doi.org/10.1029/1999tc001147 doi: 10.1029/1999tc001147
      [61] Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U-Pb Zircon Ages.Geology, 35(1):45-48.https://doi.org/10.1130/g22842a.1 doi: 10.1130/g22842a.1
      [62] Li, C., Wu, Y.W., Wang, M., et al., 2010.Significant Progress on Pan-African and Early Paleozoic Orogenic Events in Qinghai-Tibet Plateau-Discovery of Pan-African Orogenic Unconformity and Cambrian System in the Gangdise Area, Tibet, China.Geological Bulletin of China, 29(12):1733-1736 (in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201012002.htm
      [63] Li, H.B., Jia, D., Wu, L., et al., 2013.Detrital Zircon Provenance of the Lower Yangtze Foreland Basin Deposits:Constraints on the Evolution of the Early Palaeozoic Wuyi-Yunkai Orogenic Belt in South China.Geological Magazine, 150(6):959-974.https://doi.org/10.1017/s0016756812000969 doi: 10.1017/s0016756812000969
      [64] Li, L.M., Lin, S.F., Xing, G.F., et al., 2017.First Direct Evidence of Pan-African Orogeny Associated with Gondwana Assembly in the Cathaysia Block of Southern China.Scientific Reports, 7:1-9.https://doi.org/10.1038/s41598-017-00950-x doi: 10.1038/s41598-017-00950-x
      [65] Li, L.M., Sun, M., Wang, Y.J., et al., 2011.Geochronological and Geochemical Study of Palaeoproterozoic Gneissic Granites and Clinopyroxenite Xenoliths from NW Fujian, SE China:Implications for the Crustal Evolution of the Cathaysia Block.Journal of Asian Earth Sciences, 41(2):204-212.https://doi.org/10.1016/j.jseaes.2011.01.017 doi: 10.1016/j.jseaes.2011.01.017
      [66] Li, S.Z., Li, X.Y., Zhao, S.J., et al., 2016.Global Early Paleozoic Orogens (Ⅲ):Intracontinental Orogen in South China.Journal of Jilin University (Earth Science Edition), 46(4):1005-1025(in Chinese with English abstract).
      [67] Li, X.H., Li, Z.X., Li, W.X., 2014.Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China:A Synthesis.Gondwana Research, 25(3):1202-1215.https://doi.org/10.1016/j.gr.2014.01.003 doi: 10.1016/j.gr.2014.01.003
      [68] Li, Z.X., Li, X.H., Li, W.X., et al., 2008.Was Cathaysia Part of Proterozoic Laurentia? -New Data from Hainan Island, South China.Terra Nova, 20(2):154-164.https://doi.org/10.1111/j.1365-3121.2008.00802.x doi: 10.1111/j.1365-3121.2008.00802.x
      [69] Li, Z.X., Li, X.H., Wartho, J.A., et al.2010.Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China:New Age Constraints and Pressure-Temperature Conditions.Geological Society of America Bulletin, 122(5-6):772-793.https://doi.org/10.1130/b30021.1 doi: 10.1130/b30021.1
      [70] Li, Z.X., Li, X.H., Zhou, H.W., et al., 2002.Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia.Geology, 30(2):163-166.https://doi.org/10.1130/0091-7613(2002)030<0163:gccisc>2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0163:gccisc>2.0.co;2
      [71] Lin, Y.L., Yeh, M.W., Lee, T.Y., et al., 2013.First Evidence of the Cambrian Basement in Upper Peninsula of Thailand and Its Implication for Crustal and Tectonic Evolution of the Sibumasu Terrane.Gondwana Research, 24(3-4):1031-1037.https://doi.org/10.1016/j.gr.2013.05.014 doi: 10.1016/j.gr.2013.05.014
      [72] Liu, R., Zhou, H.W., Zhang, L., et al., 2010.Zircon U-Pb Ages and Hf Isotope Compositions of the Mayuan Migmatite Complex, NW Fujian Province, Southeast China:Constraints on the Timing and Nature of a Regional Tectonothermal Event Associated with the Caledonian Orogeny.Lithos, 119(3-4):163-180.https://doi.org/10.1016/j.lithos.2010.06.004 doi: 10.1016/j.lithos.2010.06.004
      [73] Liu, S., Hu, R.Z., Gao, S., et al., 2009.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Age and Origin of Early Palaeozoic I-Type Granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China.Journal of Asian Earth Sciences, 36(2-3):168-182.https://doi.org/10.1016/j.jseaes.2009.05.004 doi: 10.1016/j.jseaes.2009.05.004
      [74] Liu, Y., Siebel, W., Massonne, H., et al., 2007.Geochronological and Petrological Constraints for Tectonic Evolution of the Central Greater Himalayan Sequence in the Kharta Area, Southern Tibet.The Journal of Geology, 115(2):215-230.https://doi.org/10.1086/510806 doi: 10.1086/510806
      [75] Long, S., McQuarrie, N., Tobgay, T., et al., 2011.Tectonostratigraphy of the Lesser Himalaya of Bhutan:Implications for the Along-Strike Stratigraphic Continuity of the Northern Indian Margin.Geological Society of America Bulletin, 123(7-8):1406-1426.https://doi.org/10.1130/b30202.1 doi: 10.1130/b30202.1
      [76] Lu, G., Zhao, L., Zheng, T.Y., et al., 2014.Strong Intracontinental Lithospheric Deformation in South China:Implications from Seismic Observations and Geodynamic Modeling.Journal of Asian Earth Sciences, 86:106-116.https://doi.org/10.1016/j.jseaes.2013.08.020 doi: 10.1016/j.jseaes.2013.08.020
      [77] Lu, H.F., 1962.Discovery of Angular Unconformity in the Pre-Devonian Stratigraphy and Its Significance.Journal of Nanjing University (Geology Edition), (1):75-87(in Chinese with English abstract).
      [78] Ma, R.S., 2006.New Thought about the Tectonic Evolution of the South China:With Discussion on Several Problems of the Cathaysian Old Land.Geological Journal of China Universities, 12(4):448-456 (in Chinese with English abstract).https://www.researchgate.net/publication/284544644_New_thought_about_the_tectonic_evolution_of_South_China_with_discussion_on_several_problems_of_the_Cathaysian_old_land
      [79] Maidment, D.W., 2005.Paleozoic High-Grade Metamorphism within the Centralian Superbasin, Harts Range Region, Central Australia (Dissertation).Australian National University, Canberra.
      [80] Maidment, D.W., Hand, M., Williams, I.S., 2013.High Grade Metamorphism of Sedimentary Rocks during Palaeozoic Rift Basin Formation in Central Australia.Gondwana Research, 24(3-4):865-885.https://doi.org/10.1016/j.gr.2012.12.020 doi: 10.1016/j.gr.2012.12.020
      [81] McKenzie, N.R., Hughes, N.C., Myrow, P.M., et al., 2011.Correlation of Precambrian-Cambrian Sedimentary Successions across Northern India and the Utility of Isotopic Signatures of Himalayan Lithotectonic Zones.Earth and Planetary Science Letters, 312(3-4):471-483.https://doi.org/10.1016/j.epsl.2011.10.027 doi: 10.1016/j.epsl.2011.10.027
      [82] McLaren, S., Sandiford, M., Dunlap, W.J., et al., 2009.Distribution of Palaeozoic Reworking in the Western Arunta Region and Northwestern Amadeus Basin from 40Ar/39Ar Thermochronology:Implications for the Evolution of Intracratonic Basins.Basin Research, 21(3):315-334.https://doi.org/10.1111/j.1365-2117.2008.00385.x doi: 10.1111/j.1365-2117.2008.00385.x
      [83] McQuarrie, N., Long, S.P., Tobgay, T., et al., 2013.Documenting Basin Scale, Geometry and Provenance through Detrital Geochemical Data:Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan Strata of Bhutan.Gondwana Research, 23(4):1491-1510.https://doi.org/10.1016/j.gr.2012.09.002 doi: 10.1016/j.gr.2012.09.002
      [84] McQuarrie, N., Robinson, D., Long, S., et al., 2008.Preliminary Stratigraphic and Structural Architecture of Bhutan:Implications for the along Strike Architecture of the Himalayan System.Earth and Planetary Science Letters, 272(1-2):105-117.https://doi.org/10.1016/j.epsl.2008.04.030 doi: 10.1016/j.epsl.2008.04.030
      [85] Meert, J.G., 2003.A Synopsis of Events Related to the Assembly of Eastern Gondwana.Tectonophysics, 362(1-4):1-40.https://doi.org/10.1016/s0040-1951(02)00629-7 doi: 10.1016/s0040-1951(02)00629-7
      [86] Metcalfe, I., 2013.Gondwana Dispersion and Asian Accretion:Tectonic and Palaeogeographic Evolution of Eastern Tethys.Journal of Asian Earth Sciences, 66:1-33.https://doi.org/10.1016/j.jseaes.2012.12.020 doi: 10.1016/j.jseaes.2012.12.020
      [87] Miller, C., Thöni, M., Frank, W., et al., 2001.The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India:Source, Tectonic Setting and Age of Emplacement.Geological Magazine, 138(3):237-251.https://doi.org/10.1017/s0016756801005283 doi: 10.1017/s0016756801005283
      [88] Mo, Z.S., Ye, B.D., Pan, W.Z., 1980.Granite Geology of Nanling.Geological Publishing House, Beijing (in Chinese).
      [89] Myrow, P.M., Hughes, N.C., Goodge, J.W., et al., 2010.Extraordinary Transport and Mixing of Sediment across Himalayan Central Gondwana during the Cambrian-Ordovician.Geological Society of America Bulletin, 122(9-10):1660-1670.https://doi.org/10.1130/b30123.1 doi: 10.1130/b30123.1
      [90] Myrow, P.M., Hughes, N.C., Searle, M.P., et al., 2009.Stratigraphic Correlation of Cambrian-Ordovician Deposits along the Himalaya:Implications for the Age and Nature of Rocks in the Mount Everest Region.Geological Society of America Bulletin, 121(3-4):323-332.https://doi.org/10.1130/b26384.1 doi: 10.1130/b26384.1
      [91] Nagy, E.A., Maluski, H., Lepvrier, C., et al., 2001.Geodynamic Significance of the Kontum Massif in Central Vietnam:Composite 40Ar/39Ar and U-Pb Ages from Paleozoic to Triassic.The Journal of Geology, 109(6):755-770.https://doi.org/10.1086/323193 doi: 10.1086/323193
      [92] Neil, E.A., Houseman, G.A., 1997.Geodynamics of the Tarim Basin and the Tian Shan in Central Asia.Tectonics, 16(4):571-584.https://doi.org/10.1029/97tc01413 doi: 10.1029/97tc01413
      [93] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016a.Early Paleozoic Subduction Cathaysia (i):New Evidence from NuoDong Ophiolite.Earth Science, 41(5):765-778 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.065 doi: 10.3799/dqkx.2016.065
      [94] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016b.Early Paleozoic Subduction Cathaysia (ii):New Evidence from Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.079 doi: 10.3799/dqkx.2016.079
      [95] Pi, D.H., Liu, C.Q., Shields-Zhou, G.A., et al., 2013.Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China:Constraints for Redox Environments and Origin of Metal Enrichments.Precambrian Research, 225:218-229.https://doi.org/10.1016/j.precamres.2011.07.004 doi: 10.1016/j.precamres.2011.07.004
      [96] Pullen, A., Kapp, P., Gehrels, G.E., et al., 2011.Metamorphic Rocks in Central Tibet:Lateral Variations and Implications for Crustal Structure.Geological Society of America Bulletin, 123(3-4):585-600.https://doi.org/10.1130/b30154.1 doi: 10.1130/b30154.1
      [97] Qin, X.F., Wang, Z.Q., Wang, T., et al., 2015.The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi:Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt.Acta Geoscientica Sinica, 36(3):283-292(in Chinese with English abstract).http://d.wanfangdata.com.cn/Periodical/dqxb201503003
      [98] Raimondo, T., Clark, C., Hand, M., et al., 2012.High-Resolution Geochemical Record of Fluid-Rock Interaction in a Mid-Crustal Shear Zone:A Comparative Study of Major Element and Oxygen Isotope Transport in Garnet.Journal of Metamorphic Geology, 30(3):255-280.https://doi.org/10.1111/j.1525-1314.2011.00966.x doi: 10.1111/j.1525-1314.2011.00966.x
      [99] Raimondo, T., Hand, M., Collins, W.J., 2014.Compressional Intracontinental Orogens:Ancient and Modern Perspectives.Earth-Science Reviews, 130:128-153.https://doi.org/10.1016/j.earscirev.2013.11.009 doi: 10.1016/j.earscirev.2013.11.009
      [100] Ramos, V.A., Cristallini, E.O., Pérez, D.J., 2002.The Pampean Flat-Slab of the Central Andes.Journal of South American Earth Sciences, 15(1):59-78.https://doi.org/10.1016/s0895-9811(02)00006-8 doi: 10.1016/s0895-9811(02)00006-8
      [101] Ren, J.S., 1990.On the Geotectonics of Southern China.Acta Geologica Sinica, 4:275-288(in Chinese with English abstract).https://www.researchgate.net/publication/230036344_On_the_Geotectonics_of_Southern_China
      [102] Roberts, E.A., Houseman, G.A., 2001.Geodynamics of Central Australia during the Intraplate Alice Springs Orogeny:Thin Viscous Sheet Models.Geological Society, London, Special Publications, 184(1):139-164.https://doi.org/10.1144/gsl.sp.2001.184.01.08 doi: 10.1144/gsl.sp.2001.184.01.08
      [103] Roger, F., Leloup, P.H., Jolivet, M., et al., 2000.Long and Complex Thermal History of the Song Chay Metamorphic Dome (Northern Vietnam) by Multi-System Geochronology.Tectonophysics, 321(4):449-466.https://doi.org/10.1016/s0040-1951(00)00085-8 doi: 10.1016/s0040-1951(00)00085-8
      [104] Rong, J.Y., Chen, X., Wang, Y., et al., 2011.Northward Expansion of Central Guizhou Oldland through the Ordovician and Silurian Transition:Evidence and Implications.Science China Earth Science, 40(10):1407-1415 (in Chinese).
      [105] Rong, J.Y., Wang, Y., Zhan, R.B., et al., 2012.On the Tongzi Uplift:Evidence of Northward Expansion of Qianzhong Oldland during Aeronian, Llandovery, Silurian.Journal of Stratigraphy, 36(4):679-691(in Chinese with English abstract).
      [106] Rong, J.Y., Zhan, R.B., Xu, H.G., et al., 2010.Expansion of the Cathaysian Oldland through the Ordovician-Silurian Transition:Emerging Evidence and Possible Dynamics.Science China Earth Science, 40(1):1-17 (in Chinese). doi: 10.1007/s11430-010-0005-3.pdf
      [107] Scrimgeour, I., Raith, J.G., 2001.High-Grade Reworking of Proterozoic Granulites during Ordovician Intraplate Transpression, Eastern Arunta Inlier, Central Australia.Geological Society, London, Special Publications, 184(1):261-287.https://doi.org/10.1144/gsl.sp.2001.184.01.13 doi: 10.1144/gsl.sp.2001.184.01.13
      [108] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053(in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201207004.htm
      [109] Shu, L.S., Jahn, B.M., Charvet, J., et al., 2014.Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China):Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations.American Journal of Science, 314(1):154-186.https://doi.org/10.2475/01.2014.05 doi: 10.2475/01.2014.05
      [110] Shu, L.S., Lu, H.F., Jia, D., et al., 1999.Study of the 40Ar/39Ar Isotopic Age for the Early Paleozoic Tectonothermal Event in the Wuyishan Region, South China.Journal of Naijing University(Natural Sciences), 35(6):668-674 (in Chinese with English abstract). doi: 10.1086/590922
      [111] Shu, L.S., Yu, J.H., Jia, D., et al., 2008.Early Paleozoic Orogenic Belt in the Eastern Segment of South China.Geological Bulletin of China, 27(10):1581-1593(in Chinese with English abstract).https://www.researchgate.net/publication/279910574_Early_Paleozoic_orogenic_belt_in_the_eastern_segment_of_South_China
      [112] Song, S.G., Ji, J.Q., Wei, C.J., et al., 2007.Early Paleozoic Granite in Nujiang River of Northwest Yunnan in Southwestern China and Its Tectonic Implications.Chinese Science Bulletin, 52(17):2402-2406.https://doi.org/10.1007/s11434-007-0301-2 doi: 10.1007/s11434-007-0301-2
      [113] Sun, Y.C., 1963.On the Occurrence of Xystridura Fauna from Middle Cambrian of Hainan Island and Its Significance.Science in China Series A, (5):123-125.http://en.cnki.com.cn/Article_en/CJFDTOTAL-JAXG196305011.htm
      [114] Ting, V.K., 1929.The Orogenic Movement in China.Bulletin of the Geological Society of China, 8(1), 151-170.https://doi.org/10.1111/j.1755-6724.1929.mp8002007.x doi: 10.1111/j.1755-6724.1929.mp8002007.x
      [115] Walker, J.D., Geissman, J.W., Bowring, S.A., et al., 2013.The Geological Society of America Geologic Time Scale.Geological Society of America Bulletin, 125(3-4):259-272.https://doi.org/10.1130/b30712.1 doi: 10.1130/b30712.1
      [116] Wan, Y.S., Liu, D.Y., Wilde, S.A., et al., 2010.Evolution of the Yunkai Terrane, South China:Evidence from SHRIMP Zircon U-Pb Dating, Geochemistry and Nd Isotope.Journal of Asian Earth Sciences, 37(2):140-153.https://doi.org/10.1016/j.jseaes.2009.08.002 doi: 10.1016/j.jseaes.2009.08.002
      [117] Wan, Y.S., Liu, D.Y., Xu, M.H., et al., 2007.SHRIMP U-Pb Zircon Geochronology and Geochemistry of Metavolcanic and Metasedimentary Rocks in Northwestern Fujian, Cathaysia Block, China:Tectonic Implications and the Need to Redefine Lithostratigraphic Units.Gondwana Research, 12(1-2):166-183.https://doi.org/10.1016/j.gr.2006.10.016 doi: 10.1016/j.gr.2006.10.016
      [118] Wang, J., Li, Z.X., 2003.History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-Up.Precambrian Research, 122(1-4):141-158.https://doi.org/10.1016/s0301-9268(02)00209-7 doi: 10.1016/s0301-9268(02)00209-7
      [119] Wang, J.Q., Shu, L.S., Santosh, M., et al., 2015.The Pre-Mesozoic Crustal Evolution of the Cathaysia Block, South China:Insights from Geological Investigation, Zircon U-Pb Geochronology, Hf Isotope and REE Geochemistry from the Wugongshan Complex.Gondwana Research, 28(1):225-245.https://doi.org/10.1016/j.gr.2014.03.008 doi: 10.1016/j.gr.2014.03.008
      [120] Wang, L., Long, W.G., Zhou, D., 2013.Zircon LA-ICP-MS U-Pb Age of Caledonian Granites from Precambrian Basement in Yunkai Area and Its Geological Implications.Geology in China, 40(4):1016-1029 (in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201304004.htm
      [121] Wang, Y.J., Fan, W.M., Zhao, G.C., et al., 2007.Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block.Gondwana Research, 12(4):404-416.https://doi.org/10.1016/j.gr.2006.10.003 doi: 10.1016/j.gr.2006.10.003
      [122] Wang, Y.L., Wang, D.H., Zhang, C.Q., et al., 2011.LA-ICP-MS Zircon U-Pb Dating of the Qinjia Granite in Guangxi Province and Its Geologic Significance.Acta Geologica Sinica, 85(4):475 -481(in Chinese with English abstract).http://d.wanfangdata.com.cn/Periodical_dizhixb201104003.aspx
      [123] Wang, Y.J., Wu, C.M., Zhang, A.M., et al., 2012a.Kwangsian and Indosinian Reworking of the Eastern South China Block:Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites.Lithos, 150:227-242.https://doi.org/10.1016/j.lithos.2012.04.022 doi: 10.1016/j.lithos.2012.04.022
      [124] Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012b.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262.https://doi.org/10.1016/j.lithos.2012.07.011 doi: 10.1016/j.lithos.2012.07.011
      [125] Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013a.Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia.Precambrian Research, 231:343-371.https://doi.org/10.1016/j.precamres.2013.03.020 doi: 10.1016/j.precamres.2013.03.020
      [126] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2013b.Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block:Geochronological and Geochemical Evidence.Lithos, 160-161:37-54.https://doi.org/10.1016/j.lithos.2012.11.004 doi: 10.1016/j.lithos.2012.11.004
      [127] Wang, D., Zheng, J.P., Ma, Q., et al., 2013c.Early Paleozoic Crustal Anatexis in the Intraplate Wuyi-Yunkai Orogen, South China.Lithos, 175-176:124-145.https://doi.org/10.1016/j.lithos.2013.04.024 doi: 10.1016/j.lithos.2013.04.024
      [128] Wang, Y.J., Xing, X.W., Cawood, P.A., et al., 2013d.Petrogenesis of Early Paleozoic Peraluminous Granite in the Sibumasu Block of SW Yunnan and Diachronous Accretionary Orogenesis along the Northern Margin of Gondwana.Lithos, 182-183:67-85.https://doi.org/10.1016/j.lithos.2013.09.010 doi: 10.1016/j.lithos.2013.09.010
      [129] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2011.Kwangsian Crustal Anatexis within the Eastern South China Block:Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains.Lithos, 127(1-2):239-260.https://doi.org/10.1016/j.lithos.2011.07.027 doi: 10.1016/j.lithos.2011.07.027
      [130] Wang, Y.J., Zhang, F.F., Fan, W.M., et al., 2010.Tectonic Setting of the South China Block in the Early Paleozoic:Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology.Tectonics, 29(6):TC6020.https://doi.org/10.1029/2010tc002750 doi: 10.1029/2010tc002750
      [131] Wu, L., Jia, D., Li, H.B., et al., 2010.Provenance of Detrital Zircons from the Late Neoproterozoic to Ordovician Sandstones of South China:Implications for Its Continental Affinity.Geological Magazine, 147(6):974-980.https://doi.org/10.1017/s0016756810000725 doi: 10.1017/s0016756810000725
      [132] Wu, Y.B., Hanchar, J.M., Gao, S., et al., 2009.Age and Nature of Eclogites in the Huwan Shear Zone, and the Multi-Stage Evolution of the Qinling-Dabie-Sulu Orogen, Central China.Earth and Planetary Science Letters, 277(3-4):345-354.https://doi.org/10.1016/j.epsl.2008.10.031 doi: 10.1016/j.epsl.2008.10.031
      [133] Xia, Y., Xu, X.S., Zou, H.B., et al., 2014.Early Paleozoic Crust-Mantle Interaction and Lithosphere Delamination in South China Block:Evidence from Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of Granites.Lithos, 184-187:416-435.https://doi.org/10.1016/j.lithos.2013.11.014 doi: 10.1016/j.lithos.2013.11.014
      [134] Xiang, L., Shu, L.S., 2010.Pre-Devonian Tectonic Evolution of the Eastern South China Block:Geochronological Evidence from Detrital Zircons.Science China Earth Science, 40(10):1377-1388(in Chinese).http://www.cnki.com.cn/Article/CJFDTotal-JDXG201010005.htm
      [135] Xu, D.R., Chen, G.H., Xia, B., et al., 2006.The Caledonian Adakite-Like Granodiorites in Banshanpu Area, Eastern Hunan Province, South China:Petrogenesis and Geological Significance.Geological Journal of China Universities, 12(4):507-521(in Chinese with English abstract).http://repository.ust.hk/ir/Record/1783.1-79692
      [136] Xu, D.R., Xia, B., Li, P.C., et al., 2007.Protolith Natures and U-Pb Sensitive High Mass-Resolution Ion Microprobe(SHRIMP) Zircon Ages of the Metabasites in Hainan Island, South China:Implications for Geodynamic Evolution since the Late Precambrian.Island Arc, 16(4):575-597.https://doi.org/10.1111/j.1440-1738.2007.00584.x doi: 10.1111/j.1440-1738.2007.00584.x
      [137] Xu, D.R., Xia, B., Bakun-Czubarow, N., et al., 2008.Geochemistry and Sr-Nd Isotope Systematics of Metabasites in the Tunchang Area, Hainan Island, South China:Implications for Petrogenesis and Tectonic Setting.Mineralogy and Petrology, 92(3-4):361-391.https://doi.org/10.1007/s00710-007-0198-0 doi: 10.1007/s00710-007-0198-0
      [138] Xu, X.B., Zhang, Y.Q., Shu, L.S., et al., 2009.Zircon LA-ICPMS U-Pb Dating of the Weipu Granitic Pluton in Southwest Fujian and the Changpu Migmatite in South Jiangxi:Constrains to the Timing of Caledonian Movement in Wuyi Mountains.Geological Review, 55(2):277-285(in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200902017.htm
      [139] Xu, X.B., Zhang, Y.Q., Shu, L.S., et al., 2011.LA-ICP-MS U-Pb and 40Ar/39Ar Geochronology of the Sheared Metamorphic Rocks in the Wuyishan:Constraints on the Timing of Early Paleozoic and Early Mesozoic Tectono-Thermal Events in SE China.Tectonophysics, 501(1-4):71-86.https://doi.org/10.1016/j.tecto.2011.01.014 doi: 10.1016/j.tecto.2011.01.014
      [140] Xu, Y.J., Du, Y.S., Cawood, P.A., et al., 2012.Detrital Zircon Provenance of Upper Ordovician and Silurian Strata in the Northeastern Yangtze Block:Response to Orogenesis in South China.Sedimentary Geology, 267-268:63-72.https://doi.org/10.1016/j.sedgeo.2012.05.009 doi: 10.1016/j.sedgeo.2012.05.009
      [141] Xu, Y.J., Cawood, P.A., Du, Y.S., et al., 2013.Linking South China to Northern Australia and India on the Margin of Gondwana:Constraints from Detrital Zircon U-Pb and Hf Isotopes in Cambrian Strata.Tectonics, 32(6):1547-1558.https://doi.org/10.1002/tect.20099 doi: 10.1002/tect.20099
      [142] Xu, Y.J., Cawood, P.A., Du, Y.S., et al., 2014a.Early Paleozoic Orogenesis along Gondwana's Northern Margin Constrained by Provenance Data from South China.Tectonophysics, 636:40-51.https://doi.org/10.1016/j.tecto.2014.08.022 doi: 10.1016/j.tecto.2014.08.022
      [143] Xu, Y.J., Cawood, P.A., Du, Y.S., et al., 2014b.Terminal Suturing of Gondwana along the Southern Margin of South China Craton:Evidence from Detrital Zircon U-Pb Ages and Hf Isotopes in Cambrian and Ordovician Strata, Hainan Island.Tectonics, 33(12):2490-2504.https://doi.org/10.1002/2014tc003748 doi: 10.1002/2014tc003748
      [144] Xu, Y.J., Cawood, P.A., Du, Y.S., 2016.Intraplate Orogenesis in Response to Gondwana Assembly:Kwangsian Orogeny, South China.American Journal of Science, 316(4):329-362.https://doi.org/10.2475/04.2016.02 doi: 10.2475/04.2016.02
      [145] Yang, D.S., Li, X.H., Li, W.X., et al., 2010.U-Pb and 40Ar-39Ar Geochronology of the Baiyunshan Gneiss(Central Guangdong, South China):Constraints on the Timing of Early Palaeozoic and Mesozoic Tectonothermal Events in the Wuyun(Wuyi-Yunkai) Orogen.Geological Magazine, 147(4):481-496.https://doi.org/10.1017/s0016756809990811 doi: 10.1017/s0016756809990811
      [146] Yang, Y.Q., Liu, M., 2002.Cenozoic Deformation of the Tarim Plate and the Implications for Mountain Building in the Tibetan Plateau and the Tian Shan.Tectonics, 21(6):9-1-9-17.https://doi.org/10.1029/2001tc001300 doi: 10.1029/2001tc001300
      [147] Yang, Z., Wang, R.C., Zhang, W.L., et al., 2014.Skarn-Type Tungsten Mineralization Associated with the Caledonian(Silurian) Niutangjie Granite, Northern Guangxi, China.Science China Earth Science, 44(7):1357-1373(in Chinese). doi: 10.1007/s11430-014-4838-z
      [148] Yao, J.L., Shu, L.S., Santosh, M., 2011.Detrital Zircon U-Pb Geochronology, Hf-Isotopes and Geochemistry—New Clues for the Precambrian Crustal Evolution of Cathaysia Block, South China.Gondwana Research, 20(2-3):553-567.https://doi.org/10.1016/j.gr.2011.01.005 doi: 10.1016/j.gr.2011.01.005
      [149] Yao, W.H., Li, Z.X., Li, W.X., et al., 2012.Post-Kinematic Lithospheric Delamination of the Wuyi-Yunkai Orogen in South China:Evidence from ca.435 Ma High-Mg Basalts.Lithos, 154:115-129.https://doi.org/10.1016/j.lithos.2012.06.033 doi: 10.1016/j.lithos.2012.06.033
      [150] Yao, W.H., Li, Z.X., Li, W.X., et al., 2014.From Rodinia to Gondwanaland:A Tale of Detrital Zircon Provenance Analyses from the Southern Nanhua Basin, South China.American Journal of Science, 314(1), 278-313.https://doi.org/10.2475/01.2014.08 doi: 10.2475/01.2014.08
      [151] Yao, W.H., Li, Z.X., 2016.Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China.Tectonophysics, 674:31-51.https://doi.org/10.1016/j.tecto.2016.02.012 doi: 10.1016/j.tecto.2016.02.012
      [152] Yi, L.W., Ma, C.Q., Wang, L.X., et al., 2014.Discovery of Late Ordovician Subvlocanizc Rocks in South China:Existence of Subduction-Related Dacite from Early Paleozoic? Earth Science, 39(6):637-653(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2014.061 doi: 10.3799/dqkx.2014.061
      [153] Yin, A., Nie, S., Craig, P., et al., 1998.Late Cenozoic Tectonic Evolution of the Southern Chinese Tian Shan.Tectonics, 17(1):1-27.https://doi.org/10.1029/97tc03140 doi: 10.1029/97tc03140
      [154] Yin, A., Dubey, C.S., Webb, A.A.G., et al., 2010a.Geologic Correlation of the Himalayan Orogen and Indian Craton:Part 1.Structural Geology, U-Pb Zircon Geochronology, and Tectonic Evolution of the Shillong Plateau and its Neighboring Regions in NE India.Geological Society of America Bulletin, 122(3-4):336-359.https://doi.org/10.1130/b26460.1 doi: 10.1130/b26460.1
      [155] Yin, A., Dubey, C.S., Kelty, T.K., et al., 2010b.Geologic Correlation of the Himalayan Orogen and Indian Craton:Part 2.Structural Geology, Geochronology, and Tectonic Evolution of the Eastern Himalaya.Geological Society of America Bulletin, 122(3-4):360-395.https://doi.org/10.1130/b26461.1 doi: 10.1130/b26461.1
      [156] Yu, J.H., Lou, F.S., Wang, L.J., et al., 2014.The Geological Significance of a Paleozoic Mafic Granulite Found in the Yiyang Area of Northeastern Jiangxi Province.Chinese Science Bulletin, 59(35):3508-3516(in Chinese). doi: 10.1360/N972014-00395
      [157] Yu, J.H., O'Reilly, S.Y., Wang, L.J., et al., 2008.Where was South China in the Rodinia Supercontinent? Precambrian Research, 164(1-2):1-15.https://doi.org/10.1016/j.precamres.2008.03.002 doi: 10.1016/j.precamres.2008.03.002
      [158] Yu, J.H., Wang, L.J., Wei, Z.Y., et al., 2007.Phanerozoic Metamorphic Episodes and Characteristics of Cathaysia Block.Geological Journal of China Universities, 13(3):474-483(in Chinese with English abstract).https://www.researchgate.net/publication/284490542_Phanerozoic_metamorphic_episodes_and_characteristics_of_Cathaysia_Block
      [159] Yu, J.H., Zhou, X.M., O'Reilly, Y.S., et al., 2005.Formation History and Protolith Characteristics of Granulite Facies Metamorphic Rock in Central Cathaysia Deduced from U-Pb and Lu-Hf Isotopic Studies of Single Zircon Grains.Chinese Science Bulletin, 50(16):1758-1767(in Chinese). doi: 10.1007/BF03322805
      [160] Yu, K.F., Wang, S.D., 1995.Duyun Movement in South Guizhou Province and Its Paleostructure, and Their Significance in Petroleum Geology.Guizhou Geology, 12(3):225-232(in Chinese with English abstract). doi: 10.1007/s11430-008-6028-3
      [161] Yu, W.C., Du, Y.S., Cawood, P.A., et al., 2015.Detrital Zircon Evidence for the Reactivation of an Early Paleozoic Syn-Orogenic Basin along the North Gondwana Margin in South China.Gondwana Research, 28(2):769-780.https://doi.org/10.1016/j.gr.2014.07.014 doi: 10.1016/j.gr.2014.07.014
      [162] Zeng, W., Zhang, L., Zhou, H.W., et al., 2008.Caledonian Reworking of Paleoproterozoic Basement in the Cathaysia Block:Constraints from Zircon U-Pb Dating, Hf Isotopes and Trace Elements.Chinese Science Bulletin, 53(3):335-344(in Chinese). doi: 10.1007/s11434-007-0507-3
      [163] Zhang, A.M., Wang, Y.J., Fan, W.M., et al., 2010.LA-ICPMS Zircon U-Pb Geochronology and Hf Isotopic Compositions of Caledonian Granites from the Qingliu Area, Southwest Fujian.Geotectonica et Metallogenia, 34(3):408-418(in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201003016.htm
      [164] Zhang, A.M., Wang, Y.J., Fan, W.M., et al., 2011.LA-ICPMS Zircon U-Pb Geochronology and Hf Isotopic Composition of the Taoxi Migmatite(Wuping):Constrains on the Formation Age of the Taoxi Complex and the Yu'nanian Event.Geotectonica et Metallogenia, 35(1):64-72(in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201101007.htm
      [165] Zhang, C.L., Santosh, M., Zhu, Q.B., et al., 2015.The Gondwana Connection of South China:Evidence from Monazite and Zircon Geochronology in the Cathaysia Block.Gondwana Research, 28(3):1137-1151.https://doi.org/10.1016/j.gr.2014.09.007 doi: 10.1016/j.gr.2014.09.007
      [166] Zhang, C.L., Zhu, Q.B., Chen, X.Y., et al., 2016.Ordovician Arc-Related Mafic Intrusions in South China:Implications for Plate Subduction along the Southeastern Margin of South China in the Early Paleozoic.The Journal of Geology, 124(6):743-767.https://doi.org/10.1086/688640 doi: 10.1086/688640
      [167] Zhang, F.F., Wang, Y.J., Fan, W.M., et al., 2010.LA-ICPMS Zircon U-Pb Geochronology of Late Early Paleozoic Granites in Eastern Hunan and Western Jiangxi Provinces, South China.Geochimica, 39(5):414-426(in Chinese with English abstract).https://www.researchgate.net/publication/284885098_LA-ICPMS_zircon_U-Pb_geochronology_of_late_Early_Paleozoic_granites_in_eastern_Hunan_and_western_Jiangxi_provinces_South_China
      [168] Zhang, F.F., Wang, Y.J., Zhang, A.M., et al., 2012a.Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic(Kwangsian) Massive Granites in the Eastern South China Block.Lithos, 150:188-208.https://doi.org/10.1016/j.lithos.2012.03.011 doi: 10.1016/j.lithos.2012.03.011
      [169] Zhang, Z.M., Dong, X., Santosh, M., et al., 2012b.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137.https://doi.org/10.1016/j.gr.2011.02.002 doi: 10.1016/j.gr.2011.02.002
      [170] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013.Tectonics of South China Continent and Its Implications.Science China Earth Science, 43(10):1553-1582(in Chinese). doi: 10.1007/s11430-013-4679-1
      [171] Zhang, W.L., Wang, R.C., Lei, Z.H., et al., 2011.Zircon U-Pb Dating Confirms Existence of a Caledonian Scheelite-Bearing Aplitic Vein in the Penggongmiao Granite Batholith, South Hunan.Chinese Science Bulletin, 56(18):1448-1454(in Chinese). doi: 10.1007/s11434-011-4526-8
      [172] Zhang, Y., Shu, L.S., Chen, X.Y., 2011.Geochemistry, Geochronology, and Petro-Genesis of the Early Paleozoic Granitic Plutons in the Central-Southern Jiangxi Province.Science China Earth Science, 41(8):1061-1079(in Chinese). doi: 10.1007/s11430-011-4249-3
      [173] Zhang, Y.M., Zhang, R.J., Hu, N., et al., 1999.High Grade Metamorphic Complexes in Middle Hainan Island:Ages of the Pb-Pb Single Zircons and Their Geological Significance.Acta Geoscientia Sinica, 20(3):284-288(in Chinese with English abstract).
      [174] Zhang, Z.J., Xu, T., Zhao, B., et al., 2013.Systematic Variations in Seismic Velocity and Reflection in the Crust of Cathaysia:New Constraints on Intraplate Orogeny in the South China Continent.Gondwana Research, 24(3-4):902-917.https://doi.org/10.1016/j.gr.2012.05.018 doi: 10.1016/j.gr.2012.05.018
      [175] Zhao, G., Cawood, P.A., 1999.Tectonothermal Evolution of the Mayuan Assemblage in the Cathaysia Block; Implications for Neoproterozoic Collision-Related Assembly of the South China Craton.American Journal of Science, 299(4):309-339.https://doi.org/10.2475/ajs.299.4.309 doi: 10.2475/ajs.299.4.309
      [176] Zhao, K.D., Jiang, S.Y., Sun, T., et al., 2013.Zircon U-Pb Dating, Trace Element and Sr-Nd-Hf Isotope Geochemistry of Paleozoic Granites in the Miao'ershan-Yuechengling Batholith, South China:Implication for Petrogenesis and Tectonic-Magmatic Evolution.Journal of Asian Earth Sciences, 74:244-264.https://doi.org/10.1016/j.jseaes.2012.12.026 doi: 10.1016/j.jseaes.2012.12.026
      [177] Zhao, Z.B., Bons, P.D., Wang, G.H., et al., 2014.Origin and Pre-Cenozoic Evolution of the South Qiangtang Basement, Central Tibet.Tectonophysics, 623:52-66.https://doi.org/10.1016/j.tecto.2014.03.016 doi: 10.1016/j.tecto.2014.03.016
      [178] Zhong, Y.F., Ma, C.Q., Zhang, C., et al., 2013.Zircon U-Pb Age, Hf Isotopic Compositions and Geochemistry of the Silurian Fengdingshan I-Type Granite Pluton and Taoyuan Mafic-Felsic Complex at the Southeastern Margin of the Yangtze Block.Journal of Asian Earth Sciences, 74:11-24.https://doi.org/10.1016/j.jseaes.2013.05.025 doi: 10.1016/j.jseaes.2013.05.025
      [179] Zhong, Y.F., Ma, C.Q., Liu, L., et al., 2014.Ordovician Appinites in the Wugongshan Domain of the Cathaysia Block, South China:Geochronological and Geochemical Evidence for Intrusion into a Local Extensional Zone within an Intracontinental Regime.Lithos, 198-199:202-216.https://doi.org/10.1016/j.lithos.2014.04.002 doi: 10.1016/j.lithos.2014.04.002
      [180] Zhou, M.F., Yan, D.P., Kennedy, A.K., et al., 2002.SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China.Earth and Planetary Science Letters, 196(1-2):51-67.https://doi.org/10.1016/s0012-821x(01)00595-7 doi: 10.1016/s0012-821x(01)00595-7
      [181] Zhou, Y., Liang, X.Q., Liang, X.R., et al., 2015.U-Pb Geochronology and Hf-Isotopes on Detrital Zircons of Lower Paleozoic Strata from Hainan Island:New Clues for the Early Crustal Evolution of Southeastern South China.Gondwana Research, 27(4):1586-1598.https://doi.org/10.1016/j.gr.2014.01.015 doi: 10.1016/j.gr.2014.01.015
      [182] 陈旭, 樊隽轩, 陈清, 等, 2014.论广西运动的阶段性.中国科学:地球科学, 44(5):842-850.
      [183] 陈旭, 张元动, 樊隽轩, 等, 2010.赣南奥陶纪笔石地层序列与广西运动.中国科学:地球科学, 40(12):1621-1631.https://www.wenkuxiazai.com/doc/539c98f6f61fb7360b4c655a.html
      [184] 陈旭, 张元动, 樊隽轩, 等, 2012.广西运动的进程:来自生物相和岩相带的证据.中国科学:地球科学, 42(11):1617-1626(in Chinese).https://www.wenkuxiazai.com/doc/fd58bb0feff9aef8941e067d.html
      [185] 陈相艳, 仝来喜, 张传林, 等, 2015.浙江龙游石榴角闪岩(退变榴辉岩):华夏加里东期碰撞造山事件的新证据.科学通报, 60(13):1207-1217.http://mall.cnki.net/magazine/Article/KXTB201513008.htm
      [186] 陈正宏, 李寄嵎, 谢佩珊, 等, 2008.利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄.高校地质学报, 14(1):1-15.http://www.cqvip.com/Main/Detail.aspx?id=26904924
      [187] 程顺波, 付建明, 陈希清, 等, 2012.桂东北海洋山岩体锆石SHRIMP U-Pb定年和地球化学研究.华南地质与矿产, 28(2):132-140.http://d.old.wanfangdata.com.cn/Periodical/hndzykc201202006
      [188] 丁式江, 许长海, 龙文国, 等, 2002.海南屯昌变火山岩构造属性及其年代学研究.岩石学报, 18(1):83-90.http://www.oalib.com/paper/1471615
      [189] 杜远生, 徐亚军, 2012.华南加里东运动初探.地质科技情报, 31(5):43-49.http://www.cqvip.com/QK/93477A/201205/43592573.html
      [190] 广西壮族自治区地质矿产局, 1985.广西壮族自治区区域地质志.北京:地质出版社.
      [191] 黄汲清, 1945.中国主要地质构造单元.北京:地质出版社.
      [192] 李才, 吴彦旺, 王明, 等, 2010.青藏高原泛非-早古生代造山事件研究重大进展—冈底斯地区寒武系和泛非造山不整合的发现.地质通报, 29(12):1733-1736. doi: 10.3969/j.issn.1671-2552.2010.12.001
      [193] 李三忠, 李玺瑶, 赵淑娟, 等, 2016.全球早古生代造山带(Ⅲ):华南陆内造山.吉林大学学报(地球科学版), 46(4):1005-1025.http://www.doc88.com/p-2896922924858.html
      [194] 卢华复, 1962.赣南崇余山区前泥盆纪地层中角度不整合的发现及其意义.南京大学学报(地质学版), (l):75-87.http://www.doc88.com/p-1793432528732.html
      [195] 马瑞士, 2006.华南构造演化新思考兼论"华夏古陆"说中的几个问题.高校地质学报, 12(4):448-456.http://www.cnki.com.cn/Article/CJFD2006-GXDX200604005.htm
      [196] 莫柱孙, 叶伯丹, 潘维组, 1980.南岭花岗岩地质学.北京:地质出版社.
      [197] 彭松柏, 刘松峰, 林木森, 等, 2016a.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据.地球科学, 41(5):765-778.https://doi.org/10.3799/dqkx.2016.065http://www.earth-science.net/WebPage/Article.aspx?id=3295
      [198] 彭松柏, 刘松峰, 林木森, 等, 2016b.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6):931-947.https://doi.org/10.3799/dqkx.2016.079 doi: 10.3799/dqkx.2016.065
      [199] 覃小锋, 王宗起, 王涛, 等, 2015.桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约.地球学报, 36(3):283-292. doi: 10.3975/cagsb.2015.03.03
      [200] 任纪舜, 1990.论中国南部的大地构造.地质学报, 4:275-288.https://www.wenkuxiazai.com/doc/b29b380faeaad1f347933f2c.html
      [201] 戎嘉余, 陈旭, 王怿, 等, 2011.奥陶-志留纪之交黔中古陆的变迁:证据与启示.中国科学:地球科学, 40(10):1407-1415.http://www.cnki.com.cn/Article/CJFDTotal-JDXK201110003.htm
      [202] 戎嘉余, 王怿, 詹仁斌, 等, 2012.论桐梓上升志留纪埃隆晚期黔中古陆北扩的证据.地层学杂志, 36(4):679-691.http://www.cqvip.com/QK/92920X/201204/43928657.html
      [203] 戎嘉余, 詹仁斌, 许红根, 等, 2010.华夏古陆于奥陶-志留纪之交的扩展证据和机制探索.中国科学:地球科学, 40(1):1-17.http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201001001.htm
      [204] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053.http://www.doc88.com/p-907234015097.html
      [205] 舒良树, 卢华复, 贾东, 等, 1999.华南武夷山早古生代构造事件的40Ar/39Ar同位素年龄研究.南京大学学报(自然科学版), 35(6):668-674.http://www.doc88.com/p-4857668852651.html
      [206] 舒良树, 于津海, 贾东, 等, 2008.华南东段早古生代造山带研究.地质通报, 27(10):1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001
      [207] 王磊, 龙文国, 周岱, 2013.云开地区加里东期花岗岩锆石U-Pb年龄及其地质意义.中国地质, 40(4):1016-1029.http://d.wanfangdata.com.cn/Periodical_zgdizhi201304003.aspx
      [208] 王永磊, 王登红, 张长青, 等, 2011.广西钦甲花岗岩体单颗粒锆石LA-ICP-MS U-Pb定年及其地质意义.地质学报, 85(4):475-481.http://d.wanfangdata.com.cn/Periodical_dizhixb201104003.aspx
      [209] 向磊, 舒良树, 2010.华南东段前泥盆纪构造演化:来自碎屑锆石的证据.中国科学:地球科学, 40(10):1377-1388.
      [210] 许德如, 陈广浩, 夏斌, 等, 2006.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义.高校地质学报, 12(4):507-521.http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200604012
      [211] 徐先兵, 张岳桥, 舒良树, 等, 2009.闽西南玮埔岩体和赣南菖蒲混合岩锆石LA-ICP-MS U-Pb年代学:对武夷山加里东运动时代的制约.地质论评, 55(2):277-285.http://www.oalib.com/paper/4892630
      [212] 杨振, 王汝成, 张文兰, 等, 2014.桂北牛塘界加里东期花岗岩及其矽卡岩型钨矿成矿作用研究.中国科学:地球科学, 44(7):1357-1373. doi: 10.3969/j.issn.1674-9057.2015.04.007
      [213] 易立文, 马昌前, 王连训, 等, 2014.华南晚奥陶世次火山岩的发现:早古生代与俯冲有关的英安岩?地球科学, 39(6):637-653.https://doi.org/10.3799/dqkx.2014.061 doi: 10.3799/dqkx.2014.061
      [214] 余开富, 王守德, 1995.贵州南部的都匀运动及其古构造特征和石油地质意义.贵州地质, 12(3):225-232.
      [215] 于津海, 周新民, O'Reilly, Y.S., 等, 2005.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究.科学通报, 50(16):1758-1767. doi: 10.3321/j.issn:0023-074X.2005.16.015
      [216] 于津海, 王丽娟, 魏震洋, 等, 2007.华夏地块显生宙的变质作用期次和特征.高校地质学报, 13(3):474-483.http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200703016
      [217] 于津海, 楼法生, 王丽娟, 等, 2014.赣东北弋阳早古生代麻粒岩的发现及其地质意义.科学通报, 59(35):3508-3516.http://www.cnki.com.cn/Article/CJFDTotal-KXTB201435010.htm
      [218] 曾雯, 张利, 周汉文, 等, 2008.华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约.科学通报, 53(3):335-344.
      [219] 张爱梅, 王岳军, 范蔚茗, 等, 2010.闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究.大地构造与成矿学, 34(3):408-418.http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201003013
      [220] 张爱梅, 王岳军, 范蔚茗, 等, 2011.福建武平地区桃溪群混合岩U-Pb定年及其Hf同位素组成:对桃溪群时代及郁南运动的约束.大地构造与成矿学, 35(1):64-72.https://core.ac.uk/display/71719717
      [221] 张菲菲, 王岳军, 范蔚铭, 等, 2010.湘东-赣西地区早古生代晚期花岗岩体的LA-ICPMS锆石U-Pb定年研究.地球化学, 39(5):414-426.http://d.wanfangdata.com.cn/Periodical_dqhx201005002.aspx
      [222] 张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学:地球科学, 43(10):1553-1582.http://www.irgrid.ac.cn/handle/1471x/873131?mode=full
      [223] 张文兰, 王汝成, 雷泽恒, 等, 2011.湘南彭公庙加里东期含白钨矿细晶岩脉的发现.科学通报, 56(18):1448-1454.
      [224] 张苑, 舒良树, 陈祥云, 2011.华南早古生代花岗岩的地球化学、年代学及其成因研究—以赣中南为例.中国科学:地球科学, 41(8):1061-1079.http://www.oalib.com/paper/4153065
      [225] 张业明, 张仁杰, 胡宁, 等, 1999.琼中高级变质杂岩中单颗粒锆石Pb-Pb年龄及其地质意义.地球学报, 20(3):284-288.
    • [1] 宋继叶,  秦明宽,  蔡煜琦,  郭强,  何中波,  刘章月,  曹煦,  陈志国.  准东构造隆升对砂岩型铀成矿作用的制约:磷灰石裂变径迹证据[J] . 地球科学, 2019, 44(11): 3910-3925. doi: 10.3799/dqkx.2018.331
      [2] 张进江,  黄天立.  大陆伸展构造综述[J] . 地球科学, 2019, 44(5): 1705-1715. doi: 10.3799/dqkx.2019.009
      [3] 徐锡伟,  白鸾曦,  魏雷鸣,  陈桂华,  于贵华.  华北克拉通破坏区最新构造运动起始时间讨论[J] . 地球科学, 2019, 44(5): 1647-1660. doi: 10.3799/dqkx.2019.978
      [4] 许文良,  孙晨阳,  唐杰,  栾金鹏,  王枫.  兴蒙造山带的基底属性与构造演化过程[J] . 地球科学, 2019, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036
      [5] 李东旭,  谭以安.  铜官山S状背斜构造综合解析[J] . 地球科学, 2019, 44(5): 1511-1525. doi: 10.3799/dqkx.2019.974
      [6] 张国伟,  郭安林.  关于大陆构造研究的一些思考与讨论[J] . 地球科学, 2019, 44(5): 1464-1475. doi: 10.3799/dqkx.2019.971
      [7] 包汉勇,  张柏桥,  曾联波,  刘超,  李凯,  罗兵,  梁榜,  刘皓天,  龙幼康.  华南地区海相页岩气差异富集构造模式[J] . 地球科学, 2019, 44(3): 993-1000. doi: 10.3799/dqkx.2018.943
      [8] 江小均,  任纪舜,  周鼎武,  赵磊,  刘仁燕,  孙会一.  东秦岭加里东期沉积-构造演化过程[J] . 地球科学, 2019, 44(1): 88-108. doi: 10.3799/dqkx.2018.281
      [9] 王志宏,  杨文强,  周岱,  牛志军,  何垚砚,  宋芳.  云开地块东缘寒武系-泥盆系不整合界面上下的碎屑锆石U-Pb年代学记录及对物源转换的响应[J] . 地球科学, 2018, 43(11): 4193-4203. doi: 10.3799/dqkx.2018.242
      [10] 李付成,  孙珍,  张江阳.  大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟[J] . 地球科学, 2018, 43(10): 3762-3777. doi: 10.3799/dqkx.2018.581
      [11] 晁洪太,  王志才,  王雷,  孙岩.  发震断裂带内黏土矿物的纳微米变形[J] . 地球科学, 2018, 43(5): 1746-1754. doi: 10.3799/dqkx.2018.426
      [12] 蔡周荣,  向俊洋,  黄强太,  李建峰,  卢丽娟.  红河断裂韧性剪切带内纳米颗粒的形态及其构造意义[J] . 地球科学, 2018, 43(5): 1524-1531. doi: 10.3799/dqkx.2018.411
      [13] 梁钊,  周瑶琪.  山东省灵山岛下白垩统浊积岩中与滑塌作用相关的软沉积物变形构造[J] . 地球科学, 2017, 42(10): 1715-1724. doi: 10.3799/dqkx.2017.544
      [14] 周琦,  杜远生,  袁良军,  张遂,  余文超,  杨胜堂,  刘雨.  黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J] . 地球科学, 2016, 41(2): 177-188. doi: 10.3799/dqkx.2016.014
      [15] 薛武强,  颜佳新,  朱宗敏,  马志鑫, .  华南中-晚二叠世之交碳酸盐岩磁学特征及环境意义[J] . 地球科学, 2015, 24(7): 1226-1236. doi: 10.3799/dqkx.2015.102
      [16] 刘喜停,  颜佳新,  马志鑫,  薛武强.  华南栖霞组灰岩-泥岩岩韵律层的成因[J] . 地球科学, 2014, 23(2): 155-164. doi: 10.3799/dqkx.2014.015
      [17] 沈建伟,  杨红强.  造和地层背景对华南-澳大利亚和日本晚泥盆世和密西西比纪生物礁发育的影响[J] . 地球科学, 2012, 21(3): -.
      [18] 木合塔尔·扎日,  吴兆宁,  吴昌志,  帕拉提·阿布都卡迪尔.  东天山板块缝合区(带)的构造演化与多金属矿床成矿的关系[J] . 地球科学, 2010, 19(2): -. doi: 10.3799/dqkx.2010.024
      [19] 谭俊,  魏俊浩,  李水如,  王忠铭,  付乐兵,  张可清.  广西昆仑关A型花岗岩地球化学特征及构造意义[J] . 地球科学, 2008, 17(6): -.
      [20] 谭俊,  魏俊浩,  李水如,  王忠铭,  付乐兵,  张可清.  广西昆仑关A型花岗岩地球化学特征及构造意义(附表)[J] . 地球科学, 2008, 17(6): -.
    • 加载中
    图(8)
    计量
    • 文章访问数:  714
    • HTML全文浏览量:  203
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-25
    • 刊出日期:  2018-02-01

    从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化

      作者简介: 徐亚军(1978-), 男, 副教授, 博士, 主要从事构造地质学和大地构造沉积学方面的教学和科研工作
    • 1. 中国地质大学地质过程与矿产资源国家重点实验室, 湖北武汉 430074
    • 2. 中国地质大学生物地质与环境地质国家重点实验室, 湖北武汉 430074
    • 3. 中国地质大学地球科学学院, 湖北武汉 430074
    基金项目:  国家自然科学基金项目 41472086国家自然科学基金项目 41772106中央高校基本科研业务费专项资金 CUG2015039096

    摘要: 华南的广西运动被认为是发生在早古生代的陆内造山作用,然而触发陆内变形的地球动力学机制仍然不清.广西运动形成了泥盆系与下伏岩石之间广泛的不整合面以及分布在局部地区的下古生界内部的多个不整合面.广西运动期间的构造热事件和古生物响应时间在460~380 Ma,时间上对应于奥陶系和泥盆系之间的多个不整合,而分布在华南南缘的寒武系和奥陶系之间的不整合面(郁南运动)仅与少量的530~480 Ma之间的变质事件相当,但是却同步于广泛分布在东冈瓦纳北缘的造山事件.华南南部寒武系-奥陶系不整合面上下的碎屑锆石年代学研究表明,早古生代华南与印度北缘相连,而三亚地块在寒武纪是澳大利亚西缘的一部分,直到奥陶纪才与华南拼合,同步于冈瓦纳最终的聚合.郁南运动之后,华夏板块处于冈瓦纳内部,来自冈瓦纳东缘造山作用的应力向大陆内部传播,在具有弱流变学性质的南华盆地聚集,导致盆地构造反转,触发了广西运动.早古生代的华南经历了从板缘碰撞(郁南运动)到陆内造山(广西运动)的演化过程.

    English Abstract

      • 板块构造体制下的陆内造山作用尽管发生在远离板块边缘的板内地区, 但是其发生和发展都与板块边缘的造山活动具有密切的关系(Neil and Houseman, 1997; Roberts and Houseman, 2001; Raimondo et al., 2014).比如中亚地区的新生代板内变形远程响应(far-field response)于印度板块和欧亚板块的碰撞(Yin et al., 1998; Yang and Liu, 2002; Cunningham, 2013), 而南美安第斯中段晚新生代陆内变形则受控于太平洋Nazca板块向东的平板俯冲(flat-slab subduction)(Ramos et al., 2002).这些陆内变形因为发生时间晚, 没有经历后期板块的裂解, 所以能够容易地从空间上与板块边缘的活动建立联系.但是对于更古老的陆内造山作用, 由于受到后期板块裂解、漂移、旋转、再聚合等一系列改造, 陆内造山作用和与其相对应的板块边缘造山活动之间的空间关系已经不复存在, 因而增加了建立陆内造山作用驱动机制的难度.

        华南东南部在早古生代经历了强烈的挤压造山作用, 形成了一个巨型的褶皱带.这个构造事件最初由Ting(1929)命名为“广西运动”, 随后不同学者又相继将其称为华南加里东褶皱带(黄汲清, 1945; 任纪舜, 1990)、华南早古生代造山带(Faure et al., 2009)或者武夷-云开造山带(Li et al., 2010)等.鉴于“广西运动”的命名时间最早, 并且近来陈旭等(2010, 2012, 2014)详细研究了广西运动在华南内部发生和发展的古生物学和岩相学响应过程, 因此本文采用“广西运动”一名进行下面的讨论.广西运动的性质是洋盆关闭之后的碰撞造山作用还是陆内造山作用存在较大的争议.一部分学者认为武夷山西缘和云开西缘出露的450~430 Ma中-基性岩具有蛇绿岩-岛弧岩浆岩的性质(覃小锋等, 2015; 彭松柏等, 2016a, 2016b; Zhang et al., 2016), 因此华南加里东期造山作用具有洋壳俯冲-碰撞的造山体制(Guo et al., 1989; Jahn et al., 1990; 马瑞士, 2006; 易立文等, 2014; 陈相艳等, 2015; Zhang et al., 2015, 2016), 消减带位于扬子和华夏板块之间(许德如等, 2006; 彭松柏等, 2016a, 2016b)或者沿着现今华南东南缘以东(Zhang et al., 2015, 2016).而另一部分学者认为华南加里东造山带内没有早古生代蛇绿岩带、岛弧火山岩以及HP变质岩, 早古生代花岗岩主要是强过铝质属性, 很少有新生幔源物质参与(Wang et al., 2011, 2012a).因此造山作用属于陆内造山体制(舒良树等, 2008; Li et al., 2010; 舒良树, 2012; Shu et al., 2014), 450~430 Ma的中-基性岩是由造山带伸展垮塌形成(Yao et al., 2012; Wang et al., 2013b; Zhong et al., 2014).上述争议的焦点主要集中在岩石学成因认识上的差异.而从古生物学和地层学以及沉积学来看,从华夏板块到扬子板块之间存在连续的古生态变化(陈旭等, 2010, 2012, 2014)和沉积物转运(Wang et al., 2010;Xu et al., 2012;Yu et al., 2015), 南华系-奥陶系沉积相呈指状交互沉积(李三忠等, 2016), 这些证据支持广西运动属于陆内造山体制(陈旭等, 2012, 2014; 张国伟等, 2013).但是对于陆内造山体制来讲, 面临的新问题是触发这次陆内变形的机制是什么.由于华南在晚古生代-新生代又经历了裂离、漂移、再拼贴等一系列后期的构造改造(Cawood et al., 2013; Metcalfe, 2013), 致使早古生代陆内造山作用和与其相关的板块边缘构造活动之间已然分离, 所以重新恢复两者之间的成因联系是建立、健全华南广西运动陆内变形机制的必要条件.而要建立这种联系, 则需要从“定时”和“定位”两个方面恢复广西运动发生之前华南在全球板块格局中所处的位置.(1)定时:根据板缘活动与陆内变形在发生时间上的先后顺序(Aitken et al., 2013; Raimondo et al., 2014), 限制板缘活动发生的时间; (2)定位:确定广西运动期间华南大陆所处的板块构造位置, 讨论板缘构造活动的性质.本文即是从陆内造山的角度出发, 在详细分析华南广西运动变形时间的基础上, 结合下古生界内部不整合面发育以及不整合面上下地层物源差异, 首先确定与板块边缘构造活动相关的不整合面, 其次根据不整合面上下沉积物记录定位华南的板块构造位置, 最后综合讨论广西运动作为陆内造山作用的可能成因以及华南早古生代造山作用的演化过程.

      • 华南是由扬子板块和华夏板块在新元古代沿着江绍缝合带碰撞形成(Li et al., 2002; Zhou et al., 2002; Cawood et al., 2013; Wang et al., 2013a).在新元古代晚期, 随着Rodinia超大陆的裂解, 华南经历了陆内裂谷阶段的演化, 在板块的中、东部和西缘分别形成了南华陆内裂谷和康滇陆内裂谷(图 1), 与裂谷作用相关的火成岩和沉积岩充填在盆地内部(Wang and Li, 2003).

        图  1  华南构造单元

        Figure 1.  Tectonic units of South China

        早古生代沉积岩整合覆盖在华南前寒武系之上(Wang et al., 2010; Xu et al., 2013).从华夏区到扬子区, 岩石组合呈现有规律的变化.在华夏区寒武系-奥陶系主要以碎屑岩为主, 志留系大部分缺失, 仅在云开以西的钦州-防城港一带及其以南的海南岛分布, 岩性主要是一套砂泥岩组合.在华夏区的寒武系-奥陶系中发育大量浅水沉积构造, 岩相分析表明寒武纪-奥陶纪时期的华南处于滨浅海沉积环境(舒良树等, 2008; Wang et al., 2010; 舒良树, 2012; Xu et al., 2012;Shu et al., 2014).在扬子区和华夏区的结合部位, 寒武系底部主要以半深海-深海相的黑色岩石为主(Pi et al., 2013), 向上过渡为碳酸盐岩, 奥陶系-志留系转变为浅海相的碎屑岩夹碳酸盐岩的岩石组合(Wang et al., 2010; Shu et al., 2014).而在扬子区寒武系-奥陶系主要是台地相的碳酸盐岩, 奥陶系上部有少量的硅质岩、硅质泥岩和凝灰岩, 志留系滨浅海相的砂泥岩整合覆盖在早期的岩石之上.整个华南东南部下古生界中保留的古流向资料(如波痕、槽模等)显示了碎屑沉积物由SE向NW方向搬运(Wang et al., 2010; Shu et al., 2014).

        早古生代造山作用主要集中在扬子区的安化-罗城断裂和华夏区的政和-大浦断裂之间(Wang et al., 2010)(图 1), 在NE和SW方向上可能分别延伸进入朝鲜半岛(Kwon et al., 2006; Kim et al., 2014)和印支板块(任纪舜, 1990; Carter et al., 2001)内部.区内早古生代地层的内部接触关系在时空上呈现不对称性和不等时性.在华南南部云开地区和海南岛, 寒武系和奥陶系之间呈平行不整合接触关系, 该不整合面被称为郁南运动(莫柱孙等, 1980), 向北进入华南腹地, 接触关系转变为整合接触.奥陶系和志留系之间的接触关系主要见于造山带东南缘的云开地区以及西北缘的雪峰山地区, 主要表现为角度不整合, 这个不整合面在云开地区被称为北流运动(莫柱孙等, 1980), 在贵州地区又被称为都匀运动(余开富和王守德, 1995).但是在两者之间的地区志留系缺失, 泥盆系直接角度不整合覆盖在奥陶系之上、甚至在广西大明山-西大明山一带泥盆系直接覆盖在寒武系之上.在江西等华南腹地奥陶系与泥盆系之间的角度不整合被称为崇余运动(卢华复, 1962).从时空关系来看, 下古生界内部的不整合面由SE(S)向NW(N)呈现出由老到新的不对称变化(图 2), 反映了早古生代造山作用由SE(S)向NW(N)方向的发展(陈旭等, 2014).伴随着这些不整合面的形成, 大量的早古生代花岗岩侵入到早期地层之中.泥盆系底部的砂砾岩不整合覆盖在整个华南的下古生界之上, 但是在钦州-防城港一带泥盆系和志留系之间则表现为整合接触关系(广西壮族自治区地质矿产局, 1985).

        图  2  华南东南部下古生界-泥盆系接触关系

        Figure 2.  2Stratigraphic relationship of the Lower Paleozoic-Devonian strata in the southeastern part of South China

      • 广西运动的驱动机制先后有不同的认识, 或者是华南和华北碰撞的远程响应(Wang et al., 2007); 或者是华南与劳伦大陆拼合的响应(Wu et al., 2010; Li et al., 2013); 亦或是华南与冈瓦纳大陆相互作用的远程响应(Wang et al., 2010, 2011; 李三忠等, 2016); 再或是在华南以南、现今的南海和东海一带可能曾经存在一个与华南相连的南海地块, 该地块向华夏之下的板内俯冲作用导致了广西运动(Shu et al., 2014).已有的研究表明广西运动由南向北发展(陈旭等, 2012, 2014; 杜远生和徐亚军, 2012), 触发陆内变形的事件应发生在华南南部, 显然不支持发生在华南北缘的碰撞(Wang et al., 2010).另外, 在华南新元古代-早古生代的碎屑岩中, 包含了大量900~550 Ma的碎屑物质(Wang et al., 2010; 向磊和舒良树等, 2010; Yao et al., 2011, 2014; Xu et al., 2012, 2013, 2014a; Li et al., 2014; Wang et al., 2015; Yu et al., 2015)(图 4a~4e), 这些碎屑物质在劳伦大陆边缘同期沉积物中缺失(图 4g), 所以也不支持华南与劳伦大陆相连, 而是一致于华南与冈瓦纳大陆(图 4f)之间的相互作用.

        图  4  东冈瓦纳北缘和劳伦大陆边缘早古生代碎屑锆石年龄谱

        Figure 4.  4U-Pb age spectrum of detrital zircons from the Early Paleozoic strata in the northern margin of East Gondwana and Laurentia

        奥陶系底部的不整合面广泛分布于东冈瓦纳北缘的地体之上, 如喜马拉雅(DeCelles et al., 2000; Gehrels et al., 2006a, 2006b; Cawood et al., 2007)、拉萨(李才等, 2010)、羌塘(Zhao et al., 2014)、Sibumasu(Wang et al., 2013d)等, 同时伴随着强烈的岩浆侵入和变质作用, 年龄集中在520~470 Ma(图 3).对于该期事件的研究主要集中在喜马拉雅地区, 构造机制最初被认为是高喜马拉雅地体向印度北部边缘的增生(DeCelles et al., 2000)或者是泛非期造山作用后的伸展(Miller et al., 2001), 但是从低喜马拉雅地体到高喜马拉雅地体之间新元古代到早古生代连续的沉积以及挤压变形(Gehrels et al., 2006a, 2006b; Myrow et al., 2010; Mckenzie et al., 2011)分别与这两种模型不符.Cawood et al.(2007)则认为是冈瓦纳聚合后, 原特提斯洋洋壳向冈瓦纳北缘下部消减导致安第斯型造山作用, 并可能伴随着外部东亚小陆块群向冈瓦纳北缘的增生(Cawood et al., 2007; Wang et al., 2012b; Wang et al., 2013d).

        从郁南运动发生的时间来看, 其与广西运动应具有某种联系, 但是限于华南南部有限的岩石记录, 前人对于该期构造活动的研究较少.然而, 同期的沉积物中却保存了珍贵的信息.华南南部从新元古代-寒武纪的地层及其保存的碎屑锆石年代学特征与印度北部相似(Jiang et al., 2003; Yu et al., 2008; Wang et al., 2010, 2015; 向磊和舒良树, 2010; Hofmann et al., 2011; Yao et al., 2011, 2014; Xu et al., 2013, 2014a)(图 4a~4f), 表明从新元古代-早古生代华南与印度大陆是相连的.在云开地区, 平行不整合覆盖在寒武系之上的奥陶系底部罗洪组砾岩的碎屑锆石年代学和Hf同位素调查表明, 砾岩中包含有来自喜马拉雅前寒武纪基底的砾石, 砾石长轴达25 cm(Xu et al., 2014a).这些资料一方面表明, 从新元古代晚期到早古生代华南与印度北缘是相连的且距离较近, 两者之间并没有洋盆存在, 因此安第斯型造山作用模型并不适用于寒武纪-奥陶纪之交、发生在冈瓦纳北缘的造山运动(Xu et al., 2014a); 另一方面, 寒武系-奥陶系之间不整合面以及相关热事件的分布范围指示此次造山事件可能形成了一个喜马拉雅尺度的山链(图 1a), 而该不整合面的性质从喜马拉雅地区的角度不整合到华南南部的平行不整合、再向北转变为整合接触, 说明华南板块可能位于同造山盆地的远端, 处在洋-陆转换带上(Xu et al., 2014a).海南岛南端三亚地区的寒武纪石英砂岩的碎屑锆石年龄谱和Hf同位素组成完全不同于保存在华南大陆同期地层中的碎屑锆石特征, 而与澳大利亚西缘的中元古代Northampton杂岩一致(Xu et al., 2014b)(图 4e, 4i, 4k); 并且Northampton杂岩同样也被奥陶系不整合覆盖(Cawood and Nemchin, 2000), 表明寒武纪三亚地体并不属于华南板块, 其很可能与澳大利亚大陆西缘相连.三亚寒武系中保存的三叶虫也支持这一结论(Sun et al., 1963).

        在海南岛中部屯昌一带保存有寒武纪-奥陶纪的弧火山岩(丁式江等, 2002; Xu et al., 2007, 2008), 代表了分隔华南和澳大利亚之间洋盆的一部分.这个洋盆沿着华南东南缘以东, 穿过日本(Isozaki et al., 2010)和越南北部(Findlay, 1997), 构成了一条横贯在华南和澳大利亚之间的汇聚大陆边缘(Cock and Torsvik, 2013).三亚地区的上奥陶统中保存了来自华南南部琼中地体基底以及屯昌岛弧的碎屑(Xu et al., 2014b)(图 4h~4j), 说明在晚奥陶世之前三亚地体已经拼贴到了华南南缘.从冈瓦纳北缘的板块格局来看, 如果华南和印度北部相连、三亚地体和澳大利亚大陆相连, 那么广泛分布在冈瓦纳北缘的寒武纪-奥陶纪之交的造山运动可能代表了冈瓦纳聚合期间澳大利亚和印度板块之间的Kuunga碰撞造山事件(Fitzsimons, 2000; Boger et al., 2001; Meert, 2003); 碰撞带从南极洲Prydz湾向北穿过喜马拉雅东北缘(Chatterjee et al., 2007;Yin et al., 2010a,2010b)和澳大利亚西缘(Collins, 2003), 延伸到华南南缘(图 5); 郁南运动则是这期碰撞造山事件在华南的表现.在南极洲和澳大利亚, 造山作用相关的岩浆和变质作用年龄集中在550~490 Ma(Fitzsimons, 2000; Boger et al., 2001; Collin, 2003; Meert, 2003), 而在印度北部和华南南部则集中在520~470 Ma(Cawood et al., 2007; Gehrels et al., 2006a, 2006b; 于津海等, 2007; 张爱梅等, 2011); 热事件年龄由南向北变年轻(图 3)说明这个碰撞具有由南向北“斜向碰撞、不规则边缘碰撞”的特点.而华南位于碰撞带的末端, 影响微弱, 所以在华南没有发生广泛的岩浆和变质作用.

        图  5  早古生代冈瓦纳大陆重建

        Figure 5.  Reconstruction of Gondwana in the Early Paleozoic

      • 广西运动的动力学模型先后有不同的观点, 如华夏沿着江绍断裂的板内俯冲模型(Faure, 2009)(图 6a)、前陆盆地模型(Li et al., 2010)(图 6b)、以及南海地块向华夏东南部的板内俯冲而形成的南华裂谷盆地准对称反转模型(Charvet et al., 2010; Shu et al., 2014)(图 6c).

        图  6  三种建议的广西运动模型

        Figure 6.  Three proposed models for the Kwangsian Orogeny

        早古生代角闪岩相-麻粒岩相的变质作用主要集中在远离江绍断裂的武夷山和云开两个穹窿区(图 1b).沿着江绍断裂的早古生代岩石的变质级别通常为绿片岩相, 变质级别的空间变化并不支持沿着江绍断裂发生板内俯冲的模型.前陆盆地模型显示板内变形是由于华南板块和印度北缘在艾迪卡拉纪-奥陶纪早期碰撞, 而远程应力一直持续到志留纪(Yao and Li, 2016), 导致华南陆内变形、华夏向NW仰冲到扬子东南缘(Li et al., 2010).然而华南晚前寒武纪-早古生代地层与印度北缘相似(Jiang et al., 2003), 并且沉积物的物源与印度北缘也具有亲缘性(Yu et al., 2008; Cawood et al., 2013; Xu et al., 2013, 2014a, 2014b), 这些证据表明晚前寒武纪-早古生代华南和印度之间不存在洋盆.况且目前印度北缘报道的岩浆岩年龄老于470 Ma(图 3), 说明造山作用在中奥陶世之后就已经基本停止, 因此不可能在志留纪再向华南板块施加远程应力.

        整个华南早古生代地层大致以武夷-云开穹窿一线为轴呈近对称型式分布(图 2).地层的碎屑锆石年代学示踪表明, 南华盆地基底(包括武夷山基底、新元古代早期江南造山带岩石以及新元古代晚期裂谷火山岩)以及广西期同造山的花岗岩在志留纪快速上隆、剥露, 向造山带两侧提供沉积物(Xu et al., 2012;Yu et al., 2015)(图 4b, 4c).如此的地层模型和双向沉积物转运方式表明广西运动的造山过程最可能导致南华盆地在晚奥陶世-志留纪沿武夷山-云开一线呈准对称型式隆升, 支持其呈准对称正花状构造样式上隆的模型(Charvet et al., 2010; Shu et al., 2014).

        尽管准对称上隆模型强调南海地块的存在以及向华夏板块之下的俯冲, 但是驱动南海地块俯冲的动力仍然不明确.陆内造山的驱动力通常源自板块边缘的碰撞力或者消减以及随之产生的山脊地形力向内陆的侧向传递(Roberts and Houseman, 2001; Aitken, 2011; Raimondo et al., 2014), 并且陆内变形的时间通常晚于板缘构造事件, 比如新生代中亚地区的陆内变形稍晚于印度板块和欧亚大陆之间的碰撞以及青藏高原的隆升(Jolivet et al., 2010; Glorie et al., 2011; Hu et al., 2015).

        华南陆内的广西运动启动之前, 印度板块和澳大利亚板块在寒武纪-奥陶纪之交碰撞, 使冈瓦纳大陆最终聚合(Fitzsimons, 2000; Boger et al., 2001; Meert, 2003; Xu et al., 2014b), 这个事件是华南南部郁南运动的成因, 早于广西运动启动的时间(~460 Ma).然而目前东冈瓦纳北缘报道的构造热事件年龄显示(图 3), 这次碰撞事件在广西运动启动之前就已终止, 并没有与广西运动同步发展, 因此碰撞产生的应力对广西运动的形成和发展的影响有限.但是这个事件结束了华南南缘作为板块边缘的演化历史, 使华夏板块处于扬子板块和澳大利亚板块之间的陆内构造背景(图 5).

        陆内造山作用的发展主要受板块边缘构造活动的控制, 目前被普遍接受的动力学模型包括平板俯冲和远程效应.郁南运动之后, 华南板块构成了东冈瓦纳北缘的一部分, 处在洋陆转换带之上(Xu et al., 2014a).目前的证据很难确定东冈瓦纳北缘的构造属性属于活动大陆边缘还是被动大陆边缘, 主要原因是古特提斯洋的打开和关闭、以及印度板块与欧亚板块在新生代的碰撞可能导致一系列构成东冈瓦纳北缘的地体的裂离, 有效的地质证据保留不多.目前东冈瓦纳北缘地体的复原情况表明, 与华夏板块邻近的板块边缘位于扬子板块北缘和澳大利亚东缘, 扬子板块的北缘面向原特提斯洋(图 5).

        Wang et al.(2007)最早提出华南广西期的陆内变形是华北板块与华南板块之间特提斯洋洋壳双向消减在华北板块南缘和扬子板块北缘之下、之后沿着秦岭造山带碰撞导致的远程效应, 但是后来的研究表明扬子板块北缘缺乏与早古生代消减作用相关的岛弧岩浆岩(Wu et al., 2009; Dong et al., 2013), 早古生代扬子板块的北缘可能并不处于活动大陆边缘的构造背景, 因此广西运动远程响应于华北板块和华南板块的碰撞作用就缺乏驱动力.

        东冈瓦纳东缘从晚前寒武纪-早中生代(570~230 Ma, Terra Australis造山带)长期处于原太平洋板块向东冈瓦纳之下消减引起的增生造山作用背景下(Collins, 2002; Cawood, 2005), 持续的构造活动使得构造应力向东冈瓦纳内部传递、聚集在澳大利亚板块中部, 形成了Alice Springs陆内造山作用(Raimondo et al., 2014).尤其值得注意的是, Alice Springs造山作用与华南内部广西运动的启动时间同步(图 7), 并且共同经历了460~400 Ma的陆内变形过程.而郁南运动之后, 华夏板块南缘与澳大利亚板块相接.根据这个时空关系, 笔者推断原太平洋和东冈瓦纳之间的增生造山作用形成的应力向冈瓦纳内部传递, 不仅聚集在澳大利亚中部, 也可能向华南板块传递并聚集在南华盆地内部, 引起盆地构造反转, 最终导致了广西运动的产生.

        图  7  华南陆内广西运动热年代学与澳大利亚中部Alice Springs陆内造山作用热年代学对比

        Figure 7.  Comparison of tectonothermal events during the intraplate Kwangsian Orogeny in South China and the Alice Springs Orogeny in central Australia

      • 综上所述, 本文认为华南东南缘早古生代的造山作用经历了由板缘碰撞到陆内造山的演化过程(图 8).寒武纪时期, 华南板块是冈瓦纳-印度板块北部的一部分, 它们与澳大利亚板块之间被Kuunga洋盆分割, 来自印度北缘和澳大利亚板块的沉积物分别沉积在华南的东南缘和三亚地体之上.Kuunga洋壳的消减形成了暴露在海南岛中部屯昌一带的岛弧型岩浆岩(丁式江等, 2002; Xu et al., 2007, 2008)(图 8a).洋盆在寒武纪-奥陶纪之交关闭, 华南板块和澳大利亚板块碰撞, 形成了广泛分布在东冈瓦纳北缘的寒武系和奥陶系之间的不整合面, 在华南南缘表现为郁南运动及其南部的东西向构造(图 8b).郁南运动之后, 冈瓦纳最终聚合, 华南板块和澳大利亚板块拼合在一起, 两个板块的边界条件发生变化, 来自澳大利亚东缘的增生造山作用应力持续向冈瓦纳内陆传播, 聚集在具有弱流变学性质的澳大利亚中部(Raimondo et al., 2014)和华南东南部的南华盆地内部(Xu et al., 2016).应力在南华盆地聚集并活化了华南基底, 产生了分布在华南南部的少量同期变质作用(于津海等, 2007; 张爱梅等, 2011).随着应力的进一步集中, 最终导致了地壳由南向北的抬升(陈旭等, 2012, 2014)以及早期与裂谷作用相关的正断层的反转(Charvet et al., 2010; Shu et al., 2014).随着变形由南向北传播, 奥陶纪晚期到达扬子东南缘, 遇到冷的、稳定的扬子板块的阻挡(Zhang et al., 2013; Lu et al., 2014), 在造成扬子东南缘局部的不均衡上升(如桐梓上升、黔中隆起以及新元古代江南造山带的剥露)(戎嘉余等, 2011, 2012; Yu et al., 2015)的同时, 南华盆地被夹持在碰撞带和扬子板块之间, 双向的挤压导致南华盆地的全面反转, 地壳加厚, 早期岩石深埋进入下地壳发生深熔, 产生呈面状分布在华南内陆的S型花岗质岩浆和广泛的北东向构造(图 8c).挤压作用一直持续到中志留世(435 Ma), 此后向伸展转换, 造山带遭受剥蚀夷平.早泥盆世初期, 新的海侵由南向北推进, 不同层位的泥盆系超覆在整个华南之上, 形成泥盆系下部的区域不整合面—广西运动面.因此, 华南东南缘早古生代经历了由寒武纪-奥陶纪之交的板缘碰撞造山作用到晚奥陶世-志留纪之间的陆内造山作用的演化过程.

        图  8  华南东南缘早古生代造山作用演化

        Figure 8.  The evolution of Early Paleozoic orogenesis in the southeastern part of South China

      • 尽管近年来华南早古生代的构造演化研究取得了较大进展, 但是仍然有几个关键的科学问题需要进一步讨论.

        (1) 华南东南缘寒武纪-奥陶纪早期(郁南运动之前)活动大陆边缘的进一步厘定.由于政和-大浦断裂以东几乎被中-新生代岩石以及东海和南海海域覆盖, 导致在华南东南缘建立活动大陆边缘相当困难, 需要更多的来自其他地区的地质资料加以佐证.

        (2) 早古生代华南东南部是否存在南海地块及其构造属性.造成中亚新生代板内变形的应力是通过处于板内变形带和印度-欧亚碰撞带之间的塔里木板块传播而来.郁南运动是华南直接与澳大利亚板块碰撞导致的还是通过相间的南海地块传递的?即是否存在这样一个中间地块以及它是华南属性还是澳大利亚属性?仍然需要进一步证实.

        (3) 广西运动结束的时间与钦防海槽的成因.目前变质岩石学研究表明广西运动挤压阶段结束在430 Ma左右, 但是与造山作用相关的花岗质岩浆作用一直持续到380 Ma(图 3), 这个时间段部分与钦防海槽的扩张期重叠, 广西运动准确的结束时间及其如何与板块南缘钦防海槽的扩张相协调等问题需要进一步研究.

    参考文献 (225)

    目录

      /

      返回文章
      返回