Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun
-
摘要: 东昆仑造山带广泛发育晚古生代-早中生代富含暗色微粒包体的花岗闪长岩类,被认为是研究壳幔岩浆混合作用的天然实验室,然而同时代的过铝质-强过铝质型花岗岩在该地区鲜有报道.在东昆仑东段加鲁河地区新识别出一套含石榴石二云母花岗岩,为了探究其成因归属及地质意义,我们对其开展了详细的矿物学、岩石学、锆石U-Pb年代学、岩石地球化学及锆石Lu-Hf同位素研究.该套岩石呈多条近平行脉状侵入花岗闪长岩中,主要组成矿物包括石英、斜长石、钾长石、黑云母和白云母,副矿物中可见少量石榴石.LA-ICP-MS锆石U-Pb定年获得含石榴石二云母花岗岩成岩年龄为242.0±1.4 Ma,属于中三叠世岩浆活动产物.化学成分上,该岩石具有高SiO2(74.49%~75.24%)、高K2O(4.21%~4.33%)、低P2O5(0.02%~0.03%)含量和过铝质-强过铝质(A/CNK值为1.08~1.12)特征,表现出较高的分异程度.其U、Th、Pb、Rb等元素相对富集,Nb、Ta、P、Ti等元素相对亏损,其中P、Ti强烈亏损,这可能与磷灰石及钛磁铁矿的早期结晶分异有关.稀土元素总量较低为(61.55×10-6~119.05×10-6),有弱负Eu异常(δEu=0.51~0.65).锆石εHf(t)值变化范围为-8.19~-2.78(均值为-5.61),二阶段模式年龄(TDM2)为1.3~1.6 Ga,全岩Nb/Ta比值8.22~9.67(接近地壳比值10.91),这与区域内近同期的黑云母二长花岗岩特征相似,均指示该岩石可能源于下地壳的重熔.岩石中广泛发育的富云包体暗示岩浆上升途中捕获围岩物质,岩浆存在明显同化混染作用.综上,本文认为东昆仑加鲁河地区的含石榴石二云母花岗岩脉为一套过铝质-强过铝质的高分异I型花岗岩,是下地壳部分熔融产生的长英质岩浆经历长期结晶分异作用并在上升途中受到围岩同化混染作用之后的产物.Abstract: Late Paleozoic to Early Mesozoic I-type granodiorites enriched in mafic microgranular enclaves are widespread in Eastern Kunlun orogen, which therefore has been considered as a natural laboratory for studying magma mixing between mantle- and crust-derived melts. In contrast, coeval peraluminum to strong peraluminous granitoids are rarely reported in this region. Recently, we identified a set of garnet-bearing two-mica granites in the Jialuhe region at eastern part of the East Kunlun Orogen. Hereby we present a synthetical mineralogy, petrology, zircon U-Pb geochronology, and lithogeochemistry and Lu-Hf isotope study on it, aiming to constrain its petrogenesis and tectonic implications. The rock outcropped as multiple sub-parallel dykes in the field, intruding into granodiorite. It mainly consists of quartz, plagioclase, k-feldspar, biotite and muscovite, with minor garnet as accessory minerals. LA-ICP-MS zircon U-Pb isotopic dating yields an age of 242.0±1.4 Ma, indicating that the garnet-bearing two-mica granites were formed in the Middle Triassic. Chemical analyses show that the rocks have characteristics of high SiO2(74.49%~75.24%), K2O(4.21%~4.33%), but low P2O5(0.02%~0.03%) contents, belonging to peraluminous to strong peraluminous series (A/CNK=1.08~1.12), showing a high degree of differentiation. They are relatively enriched in elements such as U, Th, Pb, Rb, but depleted in Nb, Ta and other related elements. Note that, P and Ti are strongly depleted, which may indicate early crystallization of apatite and titanomagnetite. The rocks also have a low total amounts of rare earth elements (61.55×10-6~119.05×10-6), and show a weak negative Eu anomaly (δEu=0.51~0.65). Their zircon εHf(t) values ranged from -8.19 to -2.78 (mean of -5.61), with a two-stage model ages (TDM2) of 1.3 Ga to 1.6 Ga Ma and whole-rock Nb/Ta ratios are 8.22~9.67 (close to continental crust ratio of 10.91). These features are similar to those of nearly coeval biotite monzogranite in the region, indicating that the rocks may be originated from remelting of lower crust. The biotite-rich enclaves are widely developed in the rocks, suggesting that the wall rock materials are captured during magma ascent, with obvious assimilation and contamination. Thus, we propose that the garnet-bearing two-mica granitic dykes belong to high-fractionated and peraluminous to strongly peraluminous I-type granites series, which are products of felsic magma produced by partial melting of lower crust undergoing long-term fractionation and being subjected to surrounding rocks assimilation during its ascent.
-
图 1 (a) 东昆仑造山带及邻区构造单元划分简图;(b)东昆仑东段加鲁河岩体分布示意图;(c)含石榴石二云母花岗岩脉剖面示意图(图a据陈国超等, 2016;图b据1:25万冬给措纳湖幅修改)
Fig. 1. (a) Tectonic units division of the East Kunlun Orogen and its adjacent area; (b) Distribution diagram for Jialuhe pluton in eastern part of Eastern Kunlun; (c) Profile geoligical map of the garnet-bearing two-mica granite dykes
图 3 (a) 锆石CL图像(白色圈-锆石年测点、空心圈-Hf同位素测点);(b)锆石稀土配分模式图(球粒陨石标准化值据Sun and McDonough, 1989);(c)和(d)含石榴石二云母花岗岩U-Pb年龄谐和图
Fig. 3. (a) Cathodoluminescence (CL) images of zircons (White circle - U-Pb dating; Vancant circle-Hf isotope); (b)Chondrite-normolized REE distribution pattern of the zircons; (c) and (d)Zircon U-Pb concordia diagram of Garnet-bearing two-mica granites from Jialuhe
图 4 含石榴石二云母花岗岩主量元素判别图解
a. TAS判别图解,据Middlemost (1994);b. SiO2-K2O判别图解,据Peccerillo and Taylor (1976);c. A/NK-A/CNK判别图解,据Peccerillo and Taylor (1976)
Fig. 4. Major elements discrimination diagrams for the garnet-bearing two-mica granites
图 6 (a) 含石榴石二云母花岗岩原始地幔标准化微量元素蛛网图和(b)球粒陨石标准化稀土元素配分模式图
原始地幔标准化值和球粒陨石标准化值据Sun and McDonough(1989)
Fig. 6. (a) Primitive mantle-normalized trace element spider diagram and (b)Chondrite-normolized REE distribution pattern of Garnet-bearing two-mica granites
图 8 含石榴石二云母花岗岩中石榴石、白云母和斜长石主量元素图解
a.石榴石成分投影图,据Miller and Stoddard (1981);b, c.白云母成分判别图,据孙涛等(2002);d~f.寄主岩和富云包体中斜长石成分对比图(虚线连接代表同一个薄片)
Fig. 8. The major elements diagrams of garnet, muscovite and plagioclase in garnet-bearing two mica granites
图 10 含石榴石二云母花岗类型判别图解
a. 100×(MgO+FeOT+TiO2)/SiO2-(Al2O3+CaO)/(FeOT+Na2O+K2O); b. (Zr+Nb+Ce+Y)-(Na2O+K2O/CaO); c. (Zr+Nb+Ce+Y)-(FeOT/MgO); 其中:OGT. I、S和M型花岗岩区;FG.分异的I型花岗岩;图a据Sylvester (1989);图b,c据Eby (1990)
Fig. 10. Type discrimination diagram of garnet-bearing two-mica granites
图 11 含石榴石二云母花岗岩的岩浆源区判别图解和锆石εHf(t)平均值图解
图a据Douce (1999)
Fig. 11. Source discrimination diagram and Weighted average εHf(t) of zicrons from garnet-bearing two-mica granites
图 13 含石榴石二云母花岗岩构造环境判别图
WPG.板内花岗岩;ORG.大洋中脊花岗岩;VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;图a据Pearce et al. (1984);图b据Batchelor and Bowden (1985)
Fig. 13. Tectonic discrimination diagram of the garnet-bearing two-mica granites
-
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 Blichert-Toft, J., Gleason, J. D., Télouk, P., et al., 1999. The Lu-Hf Isotope Geochemistry of Shergottites and the Evolution of the Martian Mantle-Crust System. Earth and Planetary Science Letters, 173(1/2): 25-39. https://doi.org/10.1016/s0012-821x(99)00222-8 Castro, A., 2013. Erratum to 'Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis'. Earth-Science Reviews, 129: 178. https://doi.org/10.1016/j.earscirev.2013.05.006 Chai, Y. C., Feng, B. G., Yang, J. S., 1983. On the Geological Feature and Genesis of the Granitic Zone in the Dong-Xi-Da Tan Area of Middle-Eastern Kunlun Mountains. Contribution to the Geology of the Qinghai-Xizang (TIBET) Plateau, (15):78-90 (in Chinese). Chappell, B. W., 1999. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 Chen, G. C., Pei, X. Z., Li, R. B., et al., 2016. Genesis of Magma Mixing and Mingling from Xiangjia'nanshan Granite Batholith in the Eastern Section of East Kunlun Orogen: Evidence of Mafic Microgranule Enclaves (MMEs). Earth Science Frontier, 23(4):226-240 (in Chinese with English abstract). Chen, H. W., Luo, Z. H., Mo, X. X., et al., 2005. Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt. Chinese Geology, 32(3):393-395 (in Chinese with English absrtact). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200503006 Deng, W. B., Pei, X. Z., Liu, C. J., et al., 2016. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai Syenogranites in Xiangride Area of East Kunlun and Its Geological Significance. Geological Bulletin of China, 35(5):687-699 (in Chinese with English abstract). Douce, A. E., 1999. What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1):55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05 Eby, G. N., 1990. The A-Type Granitoids: A Review of their Occurrence and Chemical Characteristics and Speculations on their Petrogenesis. Lithos, 26(1/2): 115-134. https://doi.org/10.1016/0024-4937(90)90043-z Gao, L. E., Zeng, L. S., Shi, W. G., et al., 2012. Two Types of Garnets in the Cenozoic Granites from the Himayalan Orogenic Belt:Geochemical Characteristics and Implications for Crustal Anatexis. Acta Petrologica Sinica, 28(9):2963-2980 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201209023 Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICP MS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011 He, Y., 1995.Inclaves and Their Origin in Xihuashan Granite Body.Joural of Northwest University (Natural Science Edition), (3):241-244 (in Chinese with English abstract). He, C., Wang, L.Y., Tian, L.M., et al., 2018. Petrogenesis and Geological Implication of Granitiods from Halasen, East Kunlun. Earth Science, 43(4):1207-1208 (in Chinese with English abstract). Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010 Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- And A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018 Liu, C. D., Zhang, W. Q., Mo, X. X., et al., 2002. Features and Origin of Mafic Microgranular Enclaves in the Yuegelu Granite in the Eastern Kunlun. Geological Bulletin of China, 21(11):739-744 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200211009 Liu, C. D., Mo, X. X., Luo, Z. H., et al., 2004. Crust-Mantle Magma Mixing in East Kunlun: Evidence from Zircon SHRIMP Chronology. Chinese Science Bulletin, 47(6):596-602 (in Chinese). Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008a. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 Luo, Z. H., Ke, S., Cao, Y. Q., et al., 2012. Late Indosinian Mantle-Derived Magmatism in the East Kunlun. Regional Geology of China, 21(6):292-297(in Chinese with English absrtact). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200206003 Ma, C. Q., Wang, R. J., Qiu, J. R., 1992. Enclaves as Indicators of the Origin of Granitoid Magma and Repeater Magma Mingling:An Example from the Zhoukoudian Intrusion, Beijing. Geological Review, 38(2):109-119(in Chinese with English abstract). Ma, Q., Zheng, J. P., Griffin, W. L., et al., 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust. Lithos, 149: 159-173. https://doi.org/10.1016/j.lithos.2012.04.017 Meng, F. C., Zhang, J. X., Cui, M. H., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and its Tectonic Significance. Gondwana Research, 23(2): 825-836. https://doi.org/10.1016/j.gr.2012.06.007 Miller, C. F., Stoddard, E. F., 1981. The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman-Piute Range, California: A Reply. The Journal of Geology, 89(6): 770-772. https://doi.org/10.1086/628645 Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 Pei, X. Z., Hu, N., Liu, C. J., et al., 2015. Detrial Composition, Geochemical Characteristic and Provenance Analysis for the Marerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region. Geological Review, 61(2): 307-323 (in Chinese with English abstract). Peng, Z. L., Cheng, G. N., Grapes, R., 2008. Water in Mafic Microgranular Enclave of Granite and Its Significance for Researches of Encalve Genesis. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science Edition), 47(1):118-120 (in Chinese with English abstract). Pitcher, W. S., 1983. Granite Type and Tectonic Environment. In: Hsu, K.J., ed., Mountain Building Processes. Academic Press, London, 19-40. Ren, J. S., 2004. Some Problems on the Kunlun-Qinling Orogenic System. North Eastern Geology, 37(1):1-5 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200401001 Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Sun, T., Chen, P., Zhou, X., et al., 2002.Strongly Peraluminous Granites in Eastern Nanling Mountains, China: Study on Muscovites. Geological Review, 48(5):518-525(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005888 Sun, Y., Pei, X. Z., Ding, S., et al., 2009. Halagatu Magma Mixing Granite in the East Kunlun Mountains-Evidence from Zircon U-Pb Dating. Acta Geologica Sinica, 83(7):1000-1010(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200907008 Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302 Tao, J. H., Li, W. X., Li, X. H., et al., 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 56(6): 922-939 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=94b3336e6d78e888c17efe739f6482b9&encoded=0&v=paper_preview&mkt=zh-cn Wang, D. Z., Zhou, X. M., Xu, X. S., 1992.On Geneses of Microgranitoid Enclaves. Journal of Guilin Institute of Technology, (3):235-241 (in Chinese with English abstract). Wang, G. C., Wei, Q. R., Jia, C. X., et al., 2007.Some Ideas of Precambrian Geology in the East Kunlun, China. Geological Bulletin of China, 26(8): 929- 937 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200708003 Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206-207: 147-163. Wang, L. X., Ma, C. Q., Xiong, F. H., et al., 2017.Geological Mapping Approach to Hybrid Type Granitic Batholiths: A Case Study of the Jialuhe Complex from East Kunlun Orogen. Geological Bulletin of China, 36(11):1971-1986 (in Chinese with English abstract). Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated I-Type Granites in NE China (Ⅱ): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191-204. https://doi.org/10.1016/s0024-4937(03)00015-x Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007a. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007b. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010 Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). Xia, R., Wang, C. M., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93: 193-210. https://doi.org/10.1016/j.jseaes.2014.07.013 Xiao, Q. H., Qiu, R. Z., Xing, Z. Y., et al., 2007. Major Frontiers on Studies of Granite Formation. Geological Review, 53:17-27 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004862 Xiong, F. H., 2014. Spatial-Temporal Pattern, Petrogenesis and Geological Implication of Paleo-Tethyan Granitoids in the East Kunlun Orengenic Belt (Eastern segment) (Dissertation). China University of Geoscience, Wuhan (in Chinese with English abstract). Xu, X. S., Zhou, X. M., 1991. Rock Inclusions within Precambrian Granitoids in South Anhui Province. Mineralogy and Petrology, (1):24-28 (in Chinese with English abstract). Xu, Z. Q., Yang, J. S., Jiang, M., et al., 2001. Deep Structure and Lithospheric Shear Faults in the East Kunlun-Qiangtang Region, Northern Tibetan Plateau. Science in China, 44(1):1-9 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=4d1ea84a12f025ae59727a52a5d1bdf5&encoded=0&v=paper_preview&mkt=zh-cn Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau: The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4):1-17 (in Chinese with English abstract). Xu, J., Zheng, Y. Y., Sun, X., et al., 2016. Geochronology and Petrogenesis of Miocene Granitic Intrusions Related to the Zhibula Cu Skarn Deposit in the Gangdese Belt, Southern Tibet. Journal of Asian Earth Sciences, 120: 100-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=442832cac0f3596716956bb2df1e317d Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. https://doi.org/10.1007/s12583-009-0027-y Ye, L., Niu, Y. L., Hu, Y., et al., 2014. U-Pb Zircon Chronology, Geochemistry and Sr-Nd-Hf Isotopes of Granite in Balong Area, East Kunlun. Annual Meeting of Chinese Geoscience Uion., Beijing, 2034-2036 (in Chinese). Yin, H. F., Zhang, K. X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science, 22(4):339-342 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201803019 Yu, J. H., Zhao, L., Zhou, X., et al., 2004. Mineralogical Characteristics and Origin of Garnet-Bearing I-Type Granitoids in Southeastern Fujian Province. Geological Journal of China Universities, (3):364-377(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200403007 Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. https://doi.org/10.1017/s0016756811001142 Zhang, M. D., Ma, C. Q., Wang, L. X., et al., 2018. Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen. Earth Science, 43(4):1183-1206 (in Chinese with English abstract). Zhang, Q., Pan, G. Q., Li, C. D., et al., 2007. Does Fractional Crystallization Occur in Granitic Magma? Some Crucial Questions on Granite Study (2). Acta Petrologica Sinica, 23(6):1239-1251 (in Chinese with English abstract). Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6): 1374-1380. https://doi.org/10.1017/s143192761601182x Zhou, T. F., Yue, C. S., 1994.Genetic Types, Models and Significance of Rock Enclaves in Granitoids. Journal of Hefei University of Technology (Natural Science Edition), (2):146-152(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400188016 Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009. Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China Series D: Earth Sciences, 52(9): 1223-1239 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=553f026a53097e397774a17b9aedb83c&encoded=0&v=paper_preview&mkt=zh-cn Zhu, R. Z., Lai, S. C., Qin, J. F., et al., 2015. Early-Cretaceous Highly Fractionated I-Type Granites from the Northern Tengchong Block, Western Yunnan, SW China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 100: 145-163. http://cn.bing.com/academic/profile?id=1da9f2f38f0cab1af76cafb73e0caf0a&encoded=0&v=paper_preview&mkt=zh-cn 柴耀楚, 冯秉贵, 杨经绥, 1983.东昆仑中段东西大滩花岗岩带的基本特征及其成因的探讨.青藏高原地质文集, (15):78-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001799544 陈国超, 裴先治, 李瑞保, 等, 2016.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据.地学前缘, 23(4):226-240. http://d.old.wanfangdata.com.cn/Periodical/dxqy201604019 谌宏伟, 罗照华, 莫宣学, 等, 2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质, 32(3):386-395. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200503006 邓文兵, 裴先治, 刘成军, 等, 2016.东昆仑东段香日德地区察汗陶勒盖正长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 35(5):687-699. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201605006 高利娥, 曾令森, 石卫刚, 等, 2012.喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义.岩石学报, 28(9):2963-2980. http://d.old.wanfangdata.com.cn/Conference/8276183 赫英.1995.西华山花岗岩中的包体和成因.西北大学学报:自然科学版, (3):241-244. http://www.cnki.com.cn/Article/CJFDTotal-XBDZ503.013.htm 何成, 王力圆, 田立明, 等, 2018.东昆仑哈拉森地区花岗岩类岩石成因及地质意义.地球科学, 43(4):1207-1208. doi: 10.3799/dqkx.2018.716 李瑞保, 裴先治, 李佐臣, 等, 2014.东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义.地学前缘, 21(1):183-195. http://d.old.wanfangdata.com.cn/Periodical/dxqy201401016 刘成东, 张文秦, 莫宣学, 等, 2002.东昆仑约格鲁岩体暗色微粒包体特征及成因.地质通报, 21(11):739-744. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200211009 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. http://d.old.wanfangdata.com.cn/Periodical/kxtb200406018 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200206003 马昌前, 王人镜, 邱家骧, 1992.花岗质岩浆起源和多次岩浆混合的标志:包体——以北京周口店岩体为例.地质论评, 38(2):109-119. http://www.cnki.com.cn/Article/CJFDTotal-DZLP199202001.htm 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200703010 裴先治, 胡楠, 刘成军, 等, 2015.东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析.地质论评, 61(2):307-323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201502006 彭卓伦, 陈国能, Grapes R., 2008.花岗岩暗色微粒包体中的水及其在包体研究中的意义.中山大学学报(自然科学版), 47(1):118-120. http://d.old.wanfangdata.com.cn/Periodical/zsdxxb200801028 任纪舜, 2004.昆仑—秦岭造山系的几个问题.西北地质, 37(1):1-5. http://d.old.wanfangdata.com.cn/Periodical/xbdz200401001 孙涛, 陈培荣, 周新民, 等, 2002.南岭东段强过铝质花岗岩中白云母研究.地质论评, 48(5):518-525. http://d.old.wanfangdata.com.cn/Periodical/dzlp200205010 孙雨, 裴先治, 丁仨平, 等, 2009.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据.地质学报, 83(7):1000-1010. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200907008 陶继华, 李武显, 李献华, 等, 2013.赣南龙源坝地区燕山期高分异花岗岩年代学, 地球化学及锆石Hf-O同位素研究.中国科学:地球科学, 43(5):760-778. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201305008.htm 肖庆辉, 邱瑞照, 邢作云, 等, 2007.花岗岩成因研究前沿的认识.地质论评, 53(s1):17-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7128053 许志琴, 杨经绥, 姜枚, 等, 2001.青藏高原北部东昆仑-羌塘地区的岩石圈结构及岩石圈剪切断层.中国科学:地球科学, (S1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200101277646 许志琴, 李海兵, 杨经绥, 2006.造山的高原——青藏高原巨型造山拼贴体和造山类型.地学前缘, 13(4):1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604002 王德滋, 周新民, 徐夕生, 等, 1992.微粒花岗岩类包体的成因.桂林冶金地质学院学报, (3):235-241. http://www.cnki.com.cn/Article/CJFD1992-GLGX199203007.htm 王国灿, 魏启荣, 贾春兴, 等, 2007.关于东昆仑地区前寒武纪地质的几点认识.地质通报, 26(8):929-937. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200708003 王连训, 马昌前, 熊富浩, 等, 2017.浆混花岗岩专题填图方法初探——以东昆仑加鲁河地区为例.地质通报, 36(11):2061-2076. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711008 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706001 吴福元, 李献华, 郑永飞, 等, 2007b. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学:地球科学, 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. http://d.old.wanfangdata.com.cn/Periodical/kxtb200416002 熊富浩, 2014.东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340842.htm 徐夕生, 周新民. 1991.皖南前寒武纪花岗岩类中的岩石包体.矿物岩石, (1):24-28. http://www.cnki.com.cn/Article/CJFDTotal-KWYS199101004.htm 叶蕾, 牛耀龄, 胡妍, 等, 2014.东昆仑巴隆地区花岗岩锆石U-Pb年代学、元素及Sr-Nd-Hf同位素地球化学.北京: 中国地球科学联合学术年会, 2034-2036. 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. http://www.earth-science.net/article/id/532 于津海, 赵蕾, 周旋, 2004.闽东南含石榴子石I型花岗岩的矿物学特征及成因.高校地质学报, (3):364-377. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200403006.htm 周涛发, 岳书仓, 1994.花岗质岩石中的包体及其研究.合肥工业大学学报(自然科学版), (2):146-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400188016 张明东, 马昌前, 王连训, 等, 2018.后碰撞阶段的"俯冲型"岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据.地球科学, 43(4):1183-1206. doi: 10.3799/dqkx.2018.715 张旗, 潘国强, 李承东, 等, 2007.花岗岩结晶分离作用问题——关于花岗岩研究的思考之二.岩石学报, 23(6):25-37. doi: 10.1016-j.jpdc.2005.04.005/ 朱弟成, 莫宣学, 王立全, 等, 2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学:地球科学, 39(7):833-848. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200907001.htm -
dqkx-45-2-400-Table1-3.pdf