Genesis, Zircon U-Pb Geochronology and Geological Significance of Late Paleozoic Granite in Aquedun, West of East Kunlun Mountains
-
摘要: 东昆仑西段阿确墩地区晚古生代花岗质岩体,主要分布在豹子沟一带,呈岩基状产出.岩石地球化学研究显示,其具有钙碱性、弱过铝质(A/CNK=0.99~1.04)特征;稀土元素球粒陨石标准化表现为轻稀土富集,重稀土亏损的特征,具弱负Eu异常,δEu为0.73~0.97;微量元素显示高场强元素Nb、Ta、Ti等亏损的特征,认为其形成于陆缘弧环境,属于I型花岗岩.运用LA-ICP-MS技术对该花岗质岩体进行锆石U-Pb测年,获得二长花岗岩年龄为281.5±4.0 Ma,表明其形成于早二叠世晚期.结合区域构造演化,表明特提斯洋于早二叠世晚期就已经开始向塔里木板块俯冲,该数据代表了目前已知最早的一期晚古生代-早中生代花岗岩浆活动时间,而此时的古特提斯洋处于伸展结束-俯冲开始转变时期.Abstract: The Late Paleozoic granitic rocks, which is batholith-like, in Aquedun, the west of East Kunlun mountains are mainly distributed in the area of Baozigou. The geochemical characteristics showed that it has calc-alkaline and weak peraluminous (A/CNK=0.99-1.04).The standardized distribution of chondrites of rare earth elements is steep on the left and slow on the right with negative Eu anomaly(δEu=0.73-0.97). Trace elements show losses of high-field strength elements such as Nb, Ta and Ti, which are believed to be formed in the continental margin arc environment and belong to the I-type granite. By the technique of LA-ICP-MS, zircon U-Pb dating of the granitic rock shows that the age of the monzonitic granite is 281.5±4.0 Ma. It is believed that the granite formed in the late of Early Permian. Combined with the regional tectonic evolution, it shows that the Paleotethys ocean began to subducting to the Tarim plate in the late of Early Permian, which may represent the earliest time of subduction, and the Paleotethys ocean was at the end of extension and the beginning of subduction transition.
-
Key words:
- East Kunlun orogenic belt /
- monzonite granite /
- geochemistry /
- zircon U-Pb dating /
- Paleotethys ocean
-
图 1 东昆仑造山带大地构造位置图(a)和区域地质简图(b)
NAT.北阿尔金俯冲增生带;NQL.北祁连俯冲增生带;CAB.中阿尔金地块;QLB.祁连地块; SAT.南阿尔金俯冲碰撞杂岩带;NQD.柴北缘俯冲碰撞杂岩带;NKT.昆北地体;SKT.昆南地体;ECKF.东昆中断裂;ESKF.东昆南断裂;WQF.温泉断裂;ATF.阿尔金断裂;据张建新等(2015)修改
Fig. 1. Simplified maps showing (a) the location of the East Kunlun Orogenic Belt in China, and (b) the geological map of the East Kunlun area
图 4 SiO2-(Na2O+K2O)图解(a)和A/CNK-A/NK图(b)
a.据Middlemost(1994);b.据Peccerillo and Taylor(1976)
Fig. 4. SiO2-(Na2O+K2O) diagram (a) and A/CNK-A/NK diagram (b)
图 5 SiO2-K2O图解(a)和SiO2-(Na2O+K2O-CaO)图解(b)
a.据Rickwood(1989);b.据Frost et al.(2001)
Fig. 5. SiO2-K2O diagram (a) and SiO2-(Na2O+K2O-CaO) diagram (b)
图 6 侵入岩稀土元素球粒陨石化配分模式(a)和微量元素原始地化幔蛛网图(b)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized spidergrams of trace elements(b)
图 9 岩石SiO2-P2O5图解(a)和Na2O-K2O图解(b)
a.据Chappell and White(1974);b.据Collins et al.(1982)
Fig. 9. SiO2-P2O5 diagram (a) and Na2O-K2O diagram (b)
图 10 Nb+(Y-Rb)、Y-Nb图解
VAG.火山弧花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;Syn-COLG.同碰撞花岗岩;Pearce et al.(1984)
Fig. 10. Nb+Y-Rb, Y-Nb diagram
-
Chappell, B.W., White, A.J., 2001.Two Contrasting Granite Types:25 Years Later. Australian Journal of Earth Sciences, 48(4):489-499. http://cn.bing.com/academic/profile?id=ad9bdcbd951be7ab6cf02f747a9aa508&encoded=0&v=paper_preview&mkt=zh-cn Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Types. Pacific Geology, 8(2):173-174. http://cn.bing.com/academic/profile?id=b3cb78774c04d449c409c58967abf9e3&encoded=0&v=paper_preview&mkt=zh-cn Chen, B.X., Xu, S.L., Yang, Y.S., et al., 2019. Genesis and Tectonic Significance of Late Permian Qimulaike Intrusive Rocks in the West of East Kunlun Mountains, Xinjiang. Geological Bulletin of China, 38(6):1040-1051(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201906014 Chen, S.J., Li, R.S., Ji, W.H., et al., 2010. The Permian Litho-Facies Palegeographic Characteristics and Basin-Mountain Conversion in the Kunlun Orogenic Belt. Geology in China, 37(2):374-393(in Chinese with English abstract). doi: 10.3724/SP.J.1011.2010.01081 Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2005. Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt. Geology in China, 32(3):386-395(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200503006 Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2):189-200. doi: 10.1007/BF00374895 Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications. Lithos, 205:266-283. doi: 10.1016/j.lithos.2014.07.015 Dong, Y.P., Sun, S.S., Liu, X.M., et al., 2019. Geochronology and Geochemistry of the Yazidaban Ophiolitic Mélange in Qimantagh:Constraints on the Early Paleozoic Back-Arc Basin of the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 176(2):306. doi: 10.1144/jgs2018-145 Feng, C.Y., Wang, S., Li, G.C., et al., 2012. Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China:Chronology, Geochemistry and Metallogenic Significances. Acta Petrologica Sinica, 28(2):665-678(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=94373c6473811da394b9fb558dfbc420&encoded=0&v=paper_preview&mkt=zh-cn Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033 Guo, Z.F., Deng, J.F., Xu, Z.Q., et al., 1998. Late Palaeozoic-Mesozoic Intracontinenetal Orogenic Process and Intermediate-Acidic-Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China. Geoscience, 12(3):344-352(in Chinese with English abstract). Hu, C.B., Li, M., Zha, X.F., et al., 2018. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun:A Case Study of the Mafic-Ultramafic Layered Intrusion in Yingzhuagou. Earth Science, 43(12):4334-4349(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812005.htm Huang, H., Niu, Y., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau:Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370:1-18. doi: 10.1016/j.chemgeo.2014.01.010 Jiang, C.F., Wang, Z.Q., Li, J.Y., 2000. Central Orogenic Belt Kaihe Tectonics. Geological Publishing House, Beijing, 7-13(in Chinese). Li, R.S., Xu, X.Y., Ji, W.H., 2008. Some Problems of Geological Study in the Western China Orogenic Belt. Geological Bulletin of China, 27(12):2020-2025(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200812007 Li, R.S., 2008. Geology of Kunlun Mountains and Adjacent Areas. Geology Press, Beijing (in Chinese). Li, Y.G, Wang, S.S., Liu, M.W, et al., 2015. U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application. Acta Geologica Sinica, 89(12):2400-2418(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201512015.htm Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6):1785-1807(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201206007 Liu, Z., Jiang, Y.H., Jia, R.Y., et al., 2015. Origin of Late Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Tibet Plateau, Northwest China:Implications for Paleo-Tethys Evolution. Gondwana Research, 27(27):326-341. doi: 10.1016/j.gr.2013.09.022 Liu, C.D., Zhang, W.Q., Mo, X.X., et al., 2002. The Features of Mafic-Microgranular Enclaves of Yuegelu Granite and Its Origin in Eastern Kunlun. Geological Bulletin of China, 21(11):739-744 (in Chinese with English abstract). Liu, C.D., Mo, X.X., Yu, X.H., et al., 2004. Mixing Events between the Crust and Mantle-Derived Magmas in the Eastern Kunlun:Evidence from Zircon SHRIMP Ⅱ Chronology. Chinese Science Bulletin, 49(6):506-602 (in Chinese English abstract). doi: 10.1007/BF02889756 Ludwig, K.R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California. Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002. Late Indosinian Mantle-Drived Magmatism in the East Kunlun. Geological Bulletin of China, 6:292-297(in Chinese with English abstract). doi: 10.1080/12265080208422884 Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism:An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12):3555-3568 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201512004.htm Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 7(3):215-224. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 3:403-414(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=fc5ea73d95680f7cf00988cb80fbb1da&encoded=0&v=paper_preview&mkt=zh-cn Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. doi: 10.1093/petrology/25.4.956 Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. doi: 10.1007/BF00384745 Qi, S.S., Deng, J.F., Ye, Z.F., et al., 2013. LA-ICP-MS Zircon U-Pb Dating of Late Devonian Diabase Dike Swarms in Qimantag Area. Geological Bulletin of China, 232(9):1385-1393(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201309007 Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. http://cn.bing.com/academic/profile?id=48ee05899fe73a3e65576df37db3f9b6&encoded=0&v=paper_preview&mkt=zh-cn Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematic of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Sun, Yu., Pei, X.Z., Ding, S.P., 2009. Halagatu Magma Mixing Granite in the East Kunlun Mountains:Evidence from Zircon U-Pb Dating. Acta Geologica Sinica, 83(7):1000-1010. http://cn.bing.com/academic/profile?id=5afe2bf6c52638b1945b81bea5f184d5&encoded=0&v=paper_preview&mkt=zh-cn Van Achterbergh, E., Ryan, C.G., Jackson, S.E., et al., 2001. Data Reduction Software for LA-ICP-MS. In: Sylvester, P.J., ed., Laser-Ablation-ICP MS in the Earth Sciences. Principles and Applications, Mineralogical Society of Canada Short Course Series 29, 239-243. Wang, B.Z., 2012. The Study and Investigation on the Assembly and Coupling Petrotectonic Assemblage during Paleozoic-Mesozoic Period at Qimantage Geological Corridor Domain(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Wang, E.C., 2017. A Discussion on the Timing of the Initial Collision between the Indian and Asian Continents. Science China Earth Sciences, 47:284-292(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201703002 Wang, Y.J., Shen, Y.C., Lin, K., 2000. Preliminary Research on the Tectonostratigraphy in the Northern Central-Kunlun Orogenic Belt. Journal of Stratigraphy.01:55-59(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200001008 Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017. Highly Fractionated Granites:Recognition and Research. Science China Earth Sciences, 60:1201-1219(in Chinese with English abstract). doi: 10.1007/s11430-016-5139-1 Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 26(3):1217-1238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 Wu, F.Y., 1998. The Material Exchange at the Crust-Mantle Boundary:Evidence from Igneous Petrology. Earth Science Frontiers, 5(3):95-103(in Chinese with English abstract). Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircons and Its limitations on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604(in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589 Xia, R., Wang, C., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt:Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93:193-210. doi: 10.1016/j.jseaes.2014.07.013 Xiao, W.J., Windley, B.F., Fang, A.M., et al., 2001. Palaeozoic-Early Mesozoic Accretionary Tectonics of the Western Kunlun Range, NW China. Gondwana Research, 4(4):826-827. doi: 10.1016/S1342-937X(05)70611-0 Xiao, W., Windley, B., Hao, J.I.E., et al., 2002. Arc-Ophiolite Obduction in the Western Kunlun Range (China):Implications for the Palaeozoic Evolution of Central Asia. Journal of the Geological Society, 159(5):517-528. doi: 10.1144/0016-764901-093 Xiong, F. H., Ma, C. Q., Zhang, J.Y., et al., 2012a. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinhai-Tibet Plateau:Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104:211-224. doi: 10.1007/s00710-011-0187-1 Xiong, Q., Zheng, J., Griffin, W.L., et al., 2012b. Decoupling of U-Pb and Lu-Hf Isotopes and Trace Elements in Zircon from the UHP North Qaidam Orogen, NE Tibet (China):Tracing the Deep Subduction of Continental Blocks. Lithos, 155:125-145. doi: 10.1016/j.lithos.2012.08.022 Xuan, X., Pan, G.T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events. Earth Science Frontiers, 13(6):043-051(in Chinese with English abstract). doi: 10.1007/s11442-006-0415-5 Yang, Y.S., Chen, B.X., Zhu, Z.X., et al., 2018. Geochemical Characteristics and Formation Age of Aksukule Ophiolite:Evidence from Gabbro Dyke and Pillow Basalt in East Kunlun, Xinjiang. Geological Bulletin of China, 32(2):369-381(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2018Z1017.htm Yuan, C., Sun, M., Xiao, W., et al., 2009. Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau:Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 27(2):275-278. http://cn.bing.com/academic/profile?id=edbe05e6b415fd8bd5ae99f386483c5b&encoded=0&v=paper_preview&mkt=zh-cn Zhai, M.G., 2017. Granites:Leading Study Issue for Continental Evolution. Acta Petrologica Sinica, 33(5):1369-1380(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705001.htm Zhai, M.G., Zhang, Q., Chen, G.N., et al., 2016. Adventure on the Research of Continental Evolution and Related Granite Geochemistry. Chinese Science Bulletin, 61(13):1414-1420 (in Chinese). doi: 10.1360/N972015-01272 Zhai, M.G., 2015. New Research Interests and Concept of Material Evolution for Continental Dynamics. Journal of Earth Sciences and Environment, 37(4):1-13(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2015.04.003 Zhang, C.L., Lu, S.N., Yu, H.F., et al., 2007. Tectonic Evolution of the West Kunlun Orogenic Belt at the Northern Margin of the Qinghai-Tibet Plateau:Evidence from Zircon SHRIMP and LA-ICP-MS Dating. Science China Earth Sciences, 37(2):145-154(in Chinese). Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5):892-908. doi: 10.1017/S0016756811001142 Zhang, J.X., Yu, S.Y., Li, Y.S., 2015. Subduction, Accretion and Closure of Proto-Tethyan Ocean:Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System. Acta Petrologica Sinica, 31(12):3531-3554 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201512003.htm Zong, Q.W., Jiang, C.F., Yan, Q.R., et al., 2001. Accretion and Collision Orogeneses in the West Kunlun Mountains, China. Gondwana Research, 4(4):843-844. doi: 10.1016/S1342-937X(05)70626-2 陈邦学, 徐胜利, 杨有生, 等, 2019.东昆仑西段其木来克一带晚二叠世侵入岩的成因及其构造意义.地质通报, 38(6):1040-1051. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201906014 陈守建, 李荣社, 计文化, 等, 2010.昆仑造山带二叠纪岩相古地理特征及盆山转换探讨.中国地质, 37(2):374-393. doi: 10.3969/j.issn.1000-3657.2010.02.011 谌宏伟, 罗照华, 莫宣学, 等, 2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质, 32(3):386-395. doi: 10.3969/j.issn.1000-3657.2005.03.006 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学, 地球化学及成矿意义.岩石学报, 2012, 28(2):665-678. 郭正府, 邓晋福, 许志琴, 等, 1998.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程.现代地质, 12(3):345-352. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ803.006.htm 胡朝斌, 李猛, 查显锋, 等, 2018.东昆仑祁漫塔格晚古生代末期幔源岩浆活动成因及地质意义:以鹰爪沟岩体为例.地球科学, 43(12):4334-4349. doi: 10.3799/dqkx.2018.120 姜春发, 王宗起, 李锦, 2000.中央造山带开合构造.北京:地质出版社, 7-13. 李荣社, 徐学义, 计文化, 2008.对中国西部造山带地质研究若干问题的思考.地质通报, 27(12):2020-2025. doi: 10.3969/j.issn.1671-2552.2008.12.007 李荣社, 2008.昆仑山及邻区地质.北京:地质出版社. 李艳广, 汪双双, 刘民武, 等, 2015.斜锆石LA-ICP-MS U-Pb定年方法及应用.地质学报, 89(12):2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015 刘彬, 马昌前, 张金阳, 等, 2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报, 28(6):1785-1807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201206007 刘成东, 张文秦, 莫宣学, 等, 2002.东昆仑约格鲁岩体暗色微粒包体特征及成因.地质通报, 21(11):739-744. doi: 10.3969/j.issn.1671-2552.2002.11.009 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):592-602. doi: 10.3321/j.issn:0023-074X.2004.06.017 罗照华, 曹永清, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 马昌前, 熊富浩, 尹烁, 等, 2015.造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例.岩石学报, 31(12):3555-3568. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201512004.htm 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 祁生胜, 邓晋福, 叶占福, 等, 2013.青海祁漫塔格地区晚泥盆世辉绿岩墙群LA-ICP-M锆石U-Pb年龄及其构造意义.地质通报, 32(9):1385-1393. doi: 10.3969/j.issn.1671-2552.2013.09.007 孙雨, 裴先治, 丁仨平, 等, 2009.东昆仑哈拉尕吐岩浆混合岩浆岩:来自锆石U-Pb年代学的证据.地质学报, 83(7):1000-1010. doi: 10.3321/j.issn:0001-5717.2009.07.008 王秉璋, 2012.祁漫塔格地质走廊域古生代-中生代火成岩岩石构造组合研究(博士学位论文).北京: 中国地质大学. 王二七, 2017.关于印度与欧亚大陆初始碰撞时间的讨论.中国科学:地球科学, 247:284-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201703002 王岳军, 沈远超, 林舸, 2000.中昆仑北部地区构造地层学初步研究.地层学杂志, 24(1):55-59. doi: 10.3969/j.issn.0253-4959.2000.01.008 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学, 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 吴福元, 1998.壳幔物质交换的岩浆岩石学研究.地学前缘, 5(3):95-103. doi: 10.3321/j.issn:1005-2321.1998.03.009 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 杨有生, 陈邦学, 朱志新, 等, 2018.新疆东昆仑阿克苏库勒蛇绿岩地球化学特征和形成时限——来自辉长岩岩墙和枕状玄武岩的证据.地质通报, 37(2):369-381. doi: 10.3969/j.issn.1671-2552.2018.02.016 翟明国, 2017.花岗岩:大陆地质研究的突破口以及若干关键科学问题.岩石学报, 33(5):1369-1380. 翟明国, 张旗, 陈国能, 等, 2016.大陆演化与花岗岩研究的变革.科学通报, 61(13):1414-1420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201613005 翟明国, 2015.大陆动力学的物质演化研究方向与思路.地球科学与环境学报, 37(4):1-13. doi: 10.3969/j.issn.1672-6561.2015.04.003 张传林, 陆松年, 于海锋, 等, 2007.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据.中国科学:地球科学, 37(2):145-154. doi: 10.3321/j.issn:1006-9267.2007.02.001 张建新, 于胜尧, 李云帅, 等, 2015.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用.岩石学报, 31(12):3531-3554. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201512003.htm -
dqkx-45-7-2598-Table1-2.docx
-