Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides
-
摘要: 黏土化蚀变岩是在岩浆期后热液作用或后期水热作用下形成的具有不良工程地质性质的特殊地质体.在野外调查、黏土矿物测试和物理力学试验分析的基础上,阐述了川藏交通廊道黏土化蚀变岩的形成条件、区域分布特征、地质特征及蚀变程度的判据,以白格滑坡为例揭示了黏土化蚀变岩对大型滑坡的促滑作用.结果表明,黏土化蚀变岩的区域分布受活动断裂、热液作用和地层岩性控制,常沿侵入岩脉、断裂带、岩浆岩节理密集带、侵入岩体与其他岩层的接触带等部位发育,其蚀变程度按蚀变系数可划分为微蚀变、弱蚀变、中等蚀变和强蚀变4个等级,在干湿交替和松弛条件下极易发生崩解、软化,中等-强蚀变的岩体抗剪强度低.黏土化蚀变岩对滑坡的促滑作用主要体现在强度弱化效应、岩体结构劣化效应及失稳滞后效应3个方面,是促进构造混杂岩带深切河谷斜坡失稳、形成大型滑坡不可忽视的重要因素.Abstract: Clayey altered rock is a special geological body with poor engineering geological properties formed under hydrothermal action or hydrothermal action after the magmatic period. Based on field geological survey, clay mineral identification, and physical mechanics test analysis, the formation conditions, regional distribution characteristics, geological characteristics and the criterion of alteration degree of clayey altered rocks in the Sichuan-Tibet traffic corridor are described. Taking Baige landslide as an example, the sliding promotion of clayey altered rock on large-scale landslides are discussed. The results show that the regional distribution of clayey altered rocks is controlled by active faults, hydrothermal action and lithology. The clayey altered rocks often develop along intrusive dikes, fault zones, concentrated joint zones of magmatic rocks, and contact zones between intrusive rock mass and other rock formation. According to the alteration coefficient, the degree of alteration can be divided into four grades: very low alteration, low alteration, medium alteration and high alteration. In alternating wet and dry conditions and relaxation conditions, the altered rock is easy to disintegrate and soften. The medium-high altered rock mass usually has low shearing strength. The promoting effect of clayey altered rock on landslide is mainly reflected in three aspects: strength weakening effect, rock mass structure deterioration effect and instability hysteresis effect, which is an important factor in promoting the instability of slopes and large-scale landslides in deep-cut valley slopes in tectonic melange belts.
-
图 1 川藏交通廊道地质略图
1.第四系冲洪积、冰碛物等;2.白垩系陆相碎屑岩为主,局部海相碎屑岩及火山岩;3.侏罗系陆相碎屑岩为主,藏南海相砂页岩夹泥灰岩;4.三叠系海相砂板岩夹灰岩、砂页岩、砾岩及火山岩;5.中生界并层;6.冈瓦纳相(灰岩、砂板岩夹玄武岩、千枚岩);7.石炭-二叠系并层;8.冈瓦纳相(砂页岩、大理岩、灰岩);9.泥盆系(中-上统为磨拉石);10.上古生界并层;11.前泥盆系变质砂板岩、片麻岩、大理岩;12.志留系灰岩夹千枚岩、大理岩夹基性火山岩;13.奥陶-志留系并层;14.奥陶系碎屑岩及火山岩;15.下古生界并层;16.元古宇;17.太古宇;18.中生代杂岩;19.喜山期花岗岩;20.燕山晚期-喜山期花岗岩;21.燕山期花岗岩;22.华力西期-燕山期花岗岩;23.元古宙花岗岩;24.闪长岩类;25.超铁镁质岩类;26.碱性岩类;27.水系;28.断裂;29.已建铁路;30.在建铁路;31.公路
Fig. 1. Geological map of Sichuan-Tibet traffic corridor
图 5 黏土化蚀变岩吸水率与抗压强度的关系曲线(据魏伟等, 2012数据编绘)
Fig. 5. Relationship between water absorption and compressive strength of clayey altered rock (data from Wei et al., 2012)
表 1 黏土化蚀变岩的粘土矿物组成及蚀变系数实验结果
Table 1. Test results of clay composition and alteration coefficient of clayey altered rocks in Sichuan-Tibet traffic corridor
编号 采样地点 蚀变岩颜色 粘土矿物相对含量(%) I/S混层比(%) 粘粒组成(mm·%) 蚀变系数(ζ) S I/S I K C < 0.005 < 0.002 BGS-01 白格滑坡上游 灰色 - - 97 3 2 - 27.8 20.8 0.71 BGS-02 白格滑坡后缘 灰色 - 4 22 - 74 90 10.0 5.9 0.65 BG01-01 白格滑坡滑带土 灰色 - 36 55 4 5 53 22.0 13.6 0.85 BG01-02 白格滑坡滑带土 灰色 - 4 22 - 74 90 8.7 5.4 0.64 BS-01 八宿县城东侧 灰绿色 - - 96 2 2 8.4 6.4 0.68 BS-02 八宿县城东侧 土黄色 56 - 23 4 17 11.4 8.9 0.72 TMDA-01 巴塘金沙江右岸 褐黄色 9 26 46 5 14 81 20.3 15.4 0.75 NJ-01 同卡镇怒江大桥 棕黄色 67* - - - - 6.4 5.4 0.44 JSJ-01 绒盖乡金沙江左岸 灰色 - 12 76 12 - 40 - - - JSJ-02 绒盖乡金沙江左岸 灰色 24 34 - 36 6 67 28.6 18.7 0.76 注:*为半定量测试结果. -
Dolejš, D., Wagner, T., 2008. Thermodynamic Modeling of Non-Ideal Mineral-Fluid Equilibria in the System Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at Elevated Temperatures and Pressures: Implications for Hydrothermal Mass Transfer in Granitic Rocks. Geochimica et Cosmochimica Acta, 72(2): 526-553. https://doi.org/10.1016/j.gca.2007.10.022 Fedo, C., Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 Guo, J., Xu, M., Zhang, Q., 2009. Study on Characteristics and Engineering Properties of Altered Granite. Gansu Water Conservancy and Hydropower Technology, 45(9): 27-42(in Chinese with English abstract). Hu, W., Scaringi, G., Xu, Q., et al., 2018. Suction and Rate-Dependent Behaviour of a Shear-Zone Soil from a Landslide in a Gently-Inclined Mudstone-Sandstone Sequence in the Sichuan Basin, China. Engineering Geology, 237: 1-11. https://doi.org/10.1016/j.enggeo.2018.02.005 Hu, S. X., Ye, Y., Fang, C. Q., 2004. The Significance of Petrology of Metasomatic Alteration and Prospecting. Geological Publishing Press, Beijing(in Chinese). Jamali, S., Wittig, V., Börner, J., et al., 2019. Application of High Powered Laser Technology to Alter Hard Rock Properties towards Lower Strength Materials for more Efficient Drilling, Mining, and Geothermal Energy Production. Geomechanics for Energy and the Environment, 20: 100112. https://doi.org/10.1016/j.gete.2019.01.001 Liu, L. J., 2017. Altered Mineral Petrologic Characteristics and Genetic Analysis of Saccharoidal Compresso-Crushed Zone in Dam Site of Yebatan Hydropower Station (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). Li, W. Q., 1988. Research on Petrology of the Dam Area of Ertan Hydropower Plant. Design of Hydroelectric Power Station, 4(1): 55-63(in Chinese with English abstract). Liu, K. Y., Shao, Z. P., 1989. Study on Mechanical Properties of Rock Mass of Ertan Hydroelectric Plant. Design of Hydroelectric Power Station, 5(1): 1-14(in Chinese with English abstract). Machek, M., Roxerová, Z., Janoušek, V., et al., 2013. Petrophysical and Geochemical Constraints on Alteration Processes in Granites. Studia Geophysica et Geodaetica, 57(4): 710-740. https://doi.org/10.1007/s11200-013-0923-6 Meller, C., Kontny, A., Kohl, T., 2014. Identification and Characterization of Hydrothermally Altered Zones in Granite by Combining Synthetic Clay Content Logs with Magnetic Mineralogical Investigations of Drilled Rock Cuttings. Geophysical Journal International, 199(1): 465-479. https://doi.org/10.1093/gji/ggu278 Miao, Z., Shen, J. H., Li, W. G., et al., 2014. Argillization and Mechanism Characteristics of Altered-Dolerite in Dagangshan Hydropower Station. Journal of Engineering Geology, 22(1): 130-136(in Chinese with English abstract). Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract). Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract). Savage, D., Cave, M. R., Milodowski, A. E., et al., 1987. Hydrothermal Alteration of Granite by Meteoric Fluid: An Example from the Carnmenellis Granite, United Kingdom. Contributions to Mineralogy and Petrology, 96(3): 391-405. https://doi.org/10.1007/bf00371257 Simon, K., 1990. Hydrothermal Alteration of Variscan Granites, Southern Schwarzwald, Federal Republic of Germany. Contributions to Mineralogy and Petrology, 105(2): 177-196. https://doi.org/10.1007/bf00678985 Wei, W., Shen, J. H., Miao, Z., et al., 2012. Influence Analysis of Weathering and Altering for Physical and Mechanical Characteristics of Granite-Porphyry. Journal of Engineering Geology, 20(4): 599-506(in Chinese with English abstract). Wei, W., Shen, J. H., Zhu, H. P., et al., 2015. Comparative Study on Engineering Characteristics of Clay Altered-Rock and Fault Argillaceous Materials of Mengdigou Hydropower Station. Yangtze River, 46(13): 29-32(in Chinese with English abstract). Wang, B. D., Liu, H., Wang, L. Q., et al., 2020. Spatial-Temporal Framework of Shiquanhe-Laguoco-Yongzhu-Jiali Ophiolite Mélange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8): 2764-2784(in Chinese with English abstract). Wang, X. D., Fu, X. M., 2008. Unaxial Compressive Rheology Testing for Rheological Properties of Rotten Rock. Journal of Engineering Geology, 16(1): 27-31(in Chinese with English abstract). Xu, C. S., Wang, X., Du, X. L., et al., 2017. Experimental Study on Residual Strength and Index of Shear Strength Characteristics of Different Clay Soils. Chinese Journal of Geotechnical Engineering, 39(3): 436-443(in Chinese with English abstract). Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 129-146 (in Chinese with English abstract). Xu, Y. J., Ma, H. C., Peng, S. Y., 2014. Study on Identification of Altered Rock in Hyperspectral Imagery Using Spectrum of Field Object. Ore Geology Reviews, 56: 584-595. https://doi.org/10.1016/j.oregeorev.2013.07.004 Yan, S. X., Li, X., Zhang, B., 2005. A Study on the Correlation Relationships between Smectite Contents and Spectral Absorption Indices of Swelling Soils. Journal of Remote Sensing, 9(3): 328-336(in Chinese with English abstract). Yang, C. L., Wang, S. L., Wang, Q. Q., et al., 2019. Analysis of Rock Alteration Characteristics in Dam Site Area of a Hydropower Station in Tibet. Journal of Water Resources and Architectural Engineering, 17(6): 93-98(in Chinese with English abstract). Yang, G. L., Huang, R. Q., Wang, J. Z., et al., 2006. Study on the Pore Characteristics and the Weakness of Altered-Rock for a Project. Journal of Mineralogy and Petrology, 26(4): 111-115(in Chinese with English abstract). Ye, T. Q., 1991. Research on the Characteristic of Pb-Zn Mine Ore and the Metallogenesis System in Nujiang-Lancangjiang-Jinshajiang Region. Beijing Press of Science and Technology, Beijing(in Chinese). Yi, S. J., Cui, P., Wu, C. H., et al., 2021. Control Effects of Suture Zones on Distribution of Soft Rock and Its Engineering Influence along Sichuan-Tibet Railway Corridor. Journal of Engineering Geology, 29(2): 275-288(in Chinese with English abstract). Yoshida, H., Metcalfe, R., Seida, Y., et al., 2009. Retardation Capacity of Altered Granitic Rock Distributed along Fractured and Faulted Zones in the Orogenic Belt of Japan. Engineering Geology, 106(3-4): 116-122. https://doi.org/10.1016/j.enggeo.2009.03.008 Zeng, Q. G., Wang, B. D., Xi, L. L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract). Zhai, Y. S., 1999. Regional Metallogeny. Geological Publishing House, Beijing(in Chinese). Zhang, Y. S., Ba, R. J., Ren, S. S., et al., 2020. An Analysis of Geo-Mechanism of the Baige Landslide in Jinsha River, Tibet. Geology in China, 47(6): 1637-1645(in Chinese with English abstract). Zhang, Y. S., Guo, C. B., Li, X. Q., et al., 2021. Key Problems on Hydro-Engineering-Environmental Geology along the Sichuan-Tibet Railway Corridor: Current Status and Development Direction. Hydrogeology & Engineering Geology, 48(5): 1-12(in Chinese with English abstract). Zhang, Y. S., Qu, Y. X., Liu, J. R., et al., 2007. Engineering Geological Research on Altered Rocks in the Area of NW Yunnan along Yunnan-Tibet Railway Line. Chinese Journal of Geotechnical Engineering, 29(4): 531-536(in Chinese with English abstract). Zhao, Z. T., Shen, J. H., Zhu, H. P., et al., 2016. Integrated Deformation Modulus of Intensive Altered Rock Zone at Meng Digou Hydropower Station. Journal of Engineering Geology, 24(3): 459-464(in Chinese with English abstract). 郭健, 许模, 张强, 2009. 蚀变花岗岩特征及工程特性研究. 甘肃水利水电技术, 45(9): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSJ200909013.htm 胡受奚, 叶瑛, 方长泉, 2004. 交代蚀变岩岩石学及找矿意义. 北京: 地质出版社. 刘恋嘉, 2017. 叶巴滩水电站坝址区"砂糖状"挤压破碎带蚀变矿物岩石学特征及成因分析(硕士学位论文). 成都: 成都理工大学. 酆文清, 1988. 二滩水电站坝区岩石学研究. 水电站设计, 4(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSJ198801005.htm 刘克远, 邵宗平, 1989. 二滩水电站岩体力学特性研究. 水电站设计, 5(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSJ198901000.htm 苗朝, 沈军辉, 李文纲, 等, 2014. 大岗山坝区辉绿岩脉蚀变泥化特征及机理研究. 工程地质学报, 22(1): 130-136. doi: 10.3969/j.issn.1004-9665.2014.01.018 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm 魏伟, 沈军辉, 苗朝, 等, 2012. 风化、蚀变对花岗斑岩物理力学特性影响分析. 工程地质学报, 20(4): 599-506. doi: 10.3969/j.issn.1004-9665.2012.04.017 魏伟, 沈军辉, 祝华平, 等, 2015. 黏土化蚀变岩与断层泥质物的工程性质对比研究: 以孟底沟水电站工程为例. 人民长江, 46(13): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201513008.htm 王保弟, 刘函, 王立全, 等, 2020. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化. 地球科学, 45(8): 2764-2784. doi: 10.3799/dqkx.2020.083 王旭东, 付小敏, 2008. 蚀变岩的蠕变特性研究. 工程地质学报, 16(1): 27-31. doi: 10.3969/j.issn.1004-9665.2008.01.006 许成顺, 王馨, 杜修力, 等, 2017. 不同黏性土的残余强度及其抗剪强度指标特性研究. 岩土工程学报, 39(3): 436-443. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703009.htm 许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 129-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm 燕守勋, 李兴, 张兵, 2005. 蒙皂石含量与膨胀土光谱吸收参量相关关系研究. 遥感学报, 9(3): 328-336 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200503015.htm 杨成龙, 王森林, 王钦权, 等, 2019. 西藏某水电站坝址区岩石蚀变特征分析. 水利与建筑工程学报, 17(6): 93-98. doi: 10.3969/j.issn.1672-1144.2019.06.017 杨根兰, 黄润秋, 王奖臻, 等, 2006. 某工程蚀变岩孔隙特征及其软弱程度研究. 矿物岩石学, 26(4): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200604018.htm 叶同庆, 1991. 怒江、澜沧江、金沙江地区铅锌矿床特征和成矿系列. 北京: 北京科学技术出版社. 易树健, 崔鹏, 伍纯昊, 等, 2021. 川藏铁路廊道板块缝合带对软岩分布的控制效应及其工程影响. 工程地质学报, 29(2): 275-288. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102001.htm 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 翟裕生, 1999. 区域成矿学. 北京: 地质出版社. 张永双, 巴仁基, 任三绍, 等, 2020. 中国西藏金沙江白格滑坡的地质成因分析. 中国地质, 47(6): 1637-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006004.htm 张永双, 郭长宝, 李向全, 等, 2021. 川藏铁路廊道关键水工环地质问题: 现状与发展方向. 水文地质工程地质, 48(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105001.htm 张永双, 曲永新, 刘景儒, 等, 2007. 滇藏铁路滇西北段蒙脱石化蚀变岩的工程地质研究. 岩土工程学报, 29(4): 531-536. doi: 10.3321/j.issn:1000-4548.2007.04.010 赵梓彤, 沈军辉, 祝华平, 等, 2016. 孟底沟水电站蚀变岩密集带综合变形模量研究. 工程地质学报, 24(3): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603017.htm