• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖南嘉禾大窝岭剖面晚二叠世吴家坪期-长兴期之交长英质火山作用记录

    高秋灵 陈中强 张宁 夏雪飞 姜腾飞 王国庆 肖明 陈晴

    高秋灵, 陈中强, 张宁, 夏雪飞, 姜腾飞, 王国庆, 肖明, 陈晴, 2022. 湖南嘉禾大窝岭剖面晚二叠世吴家坪期-长兴期之交长英质火山作用记录. 地球科学, 47(8): 2925-2939. doi: 10.3799/dqkx.2022.175
    引用本文: 高秋灵, 陈中强, 张宁, 夏雪飞, 姜腾飞, 王国庆, 肖明, 陈晴, 2022. 湖南嘉禾大窝岭剖面晚二叠世吴家坪期-长兴期之交长英质火山作用记录. 地球科学, 47(8): 2925-2939. doi: 10.3799/dqkx.2022.175
    Gao Qiuling, Chen Zhong-Qiang, Zhang Ning, Xia Xuefei, Jiang Tengfei, Wang Guoqing, Xiao Ming, Chen Qing, 2022. Felsic Volcanisms across the Wuchiapingian⁃Changhsingian Boundary (Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province. Earth Science, 47(8): 2925-2939. doi: 10.3799/dqkx.2022.175
    Citation: Gao Qiuling, Chen Zhong-Qiang, Zhang Ning, Xia Xuefei, Jiang Tengfei, Wang Guoqing, Xiao Ming, Chen Qing, 2022. Felsic Volcanisms across the Wuchiapingian⁃Changhsingian Boundary (Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province. Earth Science, 47(8): 2925-2939. doi: 10.3799/dqkx.2022.175

    湖南嘉禾大窝岭剖面晚二叠世吴家坪期-长兴期之交长英质火山作用记录

    doi: 10.3799/dqkx.2022.175
    基金项目: 

    国家自然科学基金项目“陆相断陷盆地深部热流体活动及其成岩效应——以白音查干凹陷下白垩统腾格尔组为例” 42102168

    详细信息
      作者简介:

      高秋灵(1986—),副研究员,主要从事岩石地球化学和储层成岩作用研究.ORCID:0000-0002-9169-8293.E-mail:g3q7l91@163.com

      通讯作者:

      张宁,ORCID:0000-0002-5528-8334.E-mail: zhangn@cug.edu.cn

    • 中图分类号: P597

    Felsic Volcanisms across the Wuchiapingian⁃Changhsingian Boundary (Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province

    • 摘要: 在华南地区,中-晚二叠世之交和二叠纪-三叠纪之交的火山作用已成为地学研究的热点. 相比较,地学界对晚二叠世内部的火山活动关注较少,以至对华南地区晚二叠世内部火山作用的喷发特征认识不够. 湖南省嘉禾地区大窝岭剖面大隆组中下部,即吴家坪阶-长兴阶界线附近沉积了3层粘土岩,自下而上分别为HD08、HD12和HD20.对这3层粘土岩进行全岩地球化学,锆石U⁃Pb年代学、微量元素和Lu⁃Hf同位素测试工作表明,这些粘土岩源自蚀变的火山灰,代表吴家坪阶-长兴阶之交的三期火山作用.全岩和锆石微量元素特征显示火山灰来源于流纹质或流纹英安质火山作用,具有钙碱系列的亲属性,形成于汇聚大陆边缘的后碰撞构造环境. 其中,HD08和HD20的εHft)值为-6.4~7.1,范围变化较大,岩浆源于峨眉山/新元古代新生地壳物质和古老地壳物质的混合;HD12的εHft)值为-12.0~-3.5,岩浆主要来源于古老地壳物质.这3层火山灰层的发现丰富了华南地区乐平统地层中火山作用的记录,综合前人研究成果,进一步证实了华南地块周边地区在晚二叠世中期发生强烈的、与Pangea超大陆汇聚有关的长英质火山作用.

       

    • 图  1  湖南嘉禾大窝岭剖面区域地质

      Fig.  1.  Geological map of the Jiahe aera, Hunan Province, showing the location of the Dawoling section

      图  2  湖南大窝岭剖面生物岩石地层柱状图

      据叶茜和江海水(2016)

      Fig.  2.  Lithostratigraphy and biostratigraphy of late Permian in the Dawoling section

      图  3  稀土元素和微量元素蛛网图

      Fig.  3.  Rare earth elements and trace elements spider diagrams

      图  4  锆石阴极发光图像

      Fig.  4.  Cathodoluminescence images of zircon grains

      图  5  锆石U⁃Pb年龄谐和图和加权平均年龄

      a,c,e. U⁃Pb年龄谐和图;b,d,f. 加权平均年龄b,d,f中,红色标记数据为参与加权平均计算的数据;蓝色标记数据为未参与加权平均计算的数据;嵌入小图为206Pb/238U年龄频数和频率分布图,绿色曲线为全部谐和数据的频率分布,红色曲线为参与加权平均计算的数据的频率分布. 所有图中数据误差均为1σ

      Fig.  5.  U⁃Pb age concordia diagrams and weighted ages of zircon grains

      图  6  锆石稀土元素配分图

      球粒陨石(CI)标准值引自McDonough and Sun(1995)

      Fig.  6.  REE patterns of zircon grains

      图  7  锆石Hf同位素组成图

      a. εHft)值对年龄分布图;b. 地层沉积序列对εHft)值分布图;图a中:1. 峨眉山A型花岗岩(Xu et al., 2008Shellnutt et al., 2009);2. 峨眉山正长岩和闪长岩(Xu et al., 2008);3、4. 新元古代裂谷环境形成的双峰式火山岩(全岩Hf同位素)(Li et al., 2005),3. 流纹岩,4. 玄武岩;5. 新元古代裂谷环境形成的镁铁质岩墙(全岩Hf同位素)(Lin et al., 2007

      Fig.  7.  Hf⁃isotope compositons of zircon grains

      图  8  全岩Nb/Y比值⁃Zr/TiO2比值判别岩石类型图

      Fig.  8.  Whole⁃rock Nb/Y⁃Zr/TiO2 diagram, showing discrimination of rock types

      图  9  锆石微量元素判别岩石类型图

      图a中:Ⅰ. 金伯利岩;Ⅱ. 超镁铁质、镁铁质和中性岩石;Ⅲ. 含石英的中酸性岩石;Ⅳ. 具有高SiO2含量的酸性岩石;Ⅴ.云英岩;Ⅵ.碱性杂岩中的碱性岩和碱性交代岩;Ⅶ. 碳酸岩. 图b中:拉斑质斜长花岗岩⁃1a;固溶线上碱性花岗岩/流纹岩⁃1b⁃c⁃d⁃e;碱性/过碱性正长岩/粗面岩⁃1c⁃d⁃e;夏威夷岩和碱性玄武岩⁃1c;固溶线下碱性花岗岩/流纹岩⁃1e,2,3a⁃b⁃c,4a⁃b⁃c;中基性钙碱性岩石(辉长岩,闪长岩,英云闪长岩,石英闪长岩,安山岩⁃英安岩)⁃4a⁃b⁃c,5a⁃b⁃c,6a⁃b;钙碱性花岗岩/流纹岩⁃5a⁃b⁃c;高钾钙碱性或Mg⁃K花岗岩/流纹岩⁃4a⁃b,5a⁃b⁃c;亚碱性或Fe⁃K花岗岩/流纹岩⁃4c,5a⁃b⁃c;过铝质斑状花岗岩/流纹岩⁃3b⁃c,4b⁃c,5b⁃c,6a⁃b;过铝质淡色花岗岩⁃3c,4c,5c,6a;原地产生的过铝质花岗岩和混合岩⁃3c,4c,5c,6a;图中灰色区域代表钙碱性中性岩石(闪长岩-英云闪长岩/安山岩-英安岩)中的锆石;a. Hf vs Y(Belousova et al., 2002);b. Y2O3 vs HfO2Pupin,2000

      Fig.  9.  Zircon trace element diagrams, showing discrimination of rock types

      图  10  锆石微量元素判别构造背景图

      底图高秋灵(2013)

      Fig.  10.  Zircon trace element diagrams, distinguishing the possible tectonic setting of the volcanism that produced the zircons

      表  1  大窝岭剖面火山灰层全岩主量元素和微量元素数据表

      Table  1.   Major and trace⁃element compositions of whole rocks from the Dawoling ash beds

      样品 HD08 HD12 HD20 样品 HD08 HD12 HD20
      SiO2 53.37 55.69 61.51 Y 93.6 45.8 72.8
      TiO2 0.42 0.2 0.24 Zr 534 208 449
      Al2O3 27.37 25.92 22.77 Nb 40.4 11.9 40
      Fe2O3 1.62 1.48 1.42 Cs 8.31 5.58 4.82
      MnO 0.02 0.01 0 Ba 268 202 329
      MgO 1.81 1.79 1.54 La 122 38 82.9
      CaO 1.06 1.03 0.79 Ce 292 84.4 199
      Na2O 0.47 1 1.01 Pr 34.2 11 24.7
      K2O 3.96 3.52 3.11 Nd 128 41.3 88.9
      P2O5 0.08 0.07 0.06 Sm 25.7 9.96 18.8
      LOI 10 8.8 7.37 Eu 0.97 0.47 0.68
      Total 100.18 99.51 99.82 Gd 23.05 8.56 16.61
      里特曼指数(σ) 1.9 1.6 0.9 Tb 3.76 1.49 2.86
      Li 12.4 8.05 11.3 Dy 21.6 9.1 17.1
      Be 5.2 2.18 3.04 Ho 4.62 1.91 3.59
      V 32.1 16.2 9.29 Er 14.4 6.16 11.4
      Cr 26.5 13.8 13.9 Tm 2.2 0.99 1.74
      Co 6.27 2.72 3.46 Yb 13.9 6.72 11.4
      Ni 17.1 9.46 12 Lu 1.89 0.93 1.55
      Cu 18.2 9.18 11.6 Hf 22.6 8.11 18.2
      Zn 105.8 64.2 92.0 Ta 5.12 1.52 4.13
      Ga 45.3 26.9 36.3 Pb 50 31.5 21.8
      Ge 1.49 0.86 1.2 Th 77.6 40.9 55.9
      Rb 107 108 93.5 U 18.4 10.7 15
      Sr 163 159 193
      下载: 导出CSV

      表  2  大窝岭剖面火山灰层锆石U-Pb测年、Lu-Hf同位素和微量元素数据汇总表

      Table  2.   Summary of U⁃Pb, Hf⁃isotope ratios and trace-element compositions of zircon grains from the Dawoling ash beds

      层号 206Pb/238U年龄 加权平均年龄 εHf(t) 平均εHf(t) Tcrust年龄 REE (Yb/Gd)N Eu异常a Ce异常a Y 平均Y Hf 平均Hf
      (Ma) (Ma) (Ga) (10-6) (10-6) (10-6) (10-6) (10-6)
      HD20 244~279 253.9±1.8 -6.4~7.1 2.7 0.83~1.68 801~5 109 9.4~25.5 0.00~0.27 1.5~108 1 171~9 701 2 672 6 057~13 252 8 513
      HD12 240~285 253.3±2.4 -12.0~-3.5 -5.7 1.51~2.04 619~3 530 11.6~31.1 0.07~0.24 1.4~34.7 881~5 970 1 824 8 737~13 872 10 528
      HD08 246~283 255.1±2.0 -5.0~4.6 1.4 0.99~1.61 730~1 719 11.1~29.4 0.01~0.32 2.5~102.4 1 014~2 795 1 826 8 029~13 836 10 037
      层号 Y2O3 HfO2 Ti Th U Th/U U/Yb Nb/Ta Yb/Y Yb/Nb Hf/Yb
      (10-6) (10-6) (10-6) (10-6) (10-6)
      HD20 1 488~12 320 7 143~15 627 1.25~51.7 100~794 100~693 0.36~1.48 0.22~1.35 2.23~6.42 0.20~0.31 31.9~466.5 3.5~30.7
      HD12 1 119~7 582 10 303~16 359 1.4~9.2 66~895 151~922 0.36~1.10 0.33~1.35 1.58~3.70 0.24~0.33 121.4~744.9 6.2~37.0
      HD08 1 288~3 550 9 468~16 317 3.4~24.3 104~366 84~569 0.36~1.24 0.22~1.27 1.35~3.27 0.25~0.41 49.2~509.2 12.3~30.4
      注:a Eu异常和Ce异常计算公式:δEu=[Eu]/SQRT([Sm]×[Gd]);δCe=[Ce]/SQRT([La]×[Pr]).REE标准化数据引自McDoungh and Sun(1995).
      下载: 导出CSV
    • [1] Bailie, R., Leetz, A., 2021. A Comparison between the ~1.08-1.13 Ga Volcano-Sedimentary Koras Group and Plutonic Keimoes Suite: Insights into the Post-Collisional Tectono-Magmatic Evolution of the Eastern Namaqua Metamorphic Province, South Africa. Journal of Earth Science, 32(6): 1300-1331. https://doi.org/10.1007/s12583-021-1462-7
      [2] Bastias-Mercado, F., González, J., Oliveros, V., 2020. Volumetric and Compositional Estimation of the Choiyoi Magmatic Province and Its Comparison with other Silicic Large Igneous Provinces. Journal of South American Earth Sciences, 103: 102749. https://doi.org/10.1016/j.jsames.2020.102749
      [3] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      [4] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
      [5] Chen, Z. Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian-Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and its Aftermath. Earth-Science Reviews, 149: 67-107. https://doi.org/10.1016/j.earscirev.2014.10.005
      [6] Davydov, V. I., 2021. Tunguska Сoals, Siberian Sills and the Permian-Triassic Extinction. Earth-Science Reviews, 212: 103438. https://doi.org/10.1016/j.earscirev.2020.103438
      [7] Fildani, A., Drinkwater, N. J., Weislogel, A., et al., 2007. Age Controls on the Tanqua and Laingsburg Deep-Water Systems: New Insights on the Evolution and Sedimentary Fill of the Karoo Basin, South Africa. Journal of Sedimentary Research, 77(11): 901-908. https://doi.org/10.2110/jsr.2007.088
      [8] Gao, Q. L., 2013. Felsic Volcanism in South China across the Permain-Triassic Boundary (Dissertation). China University of Geosciences, Wuhan, 26-30 (in Chinese with English abstract).
      [9] Gao, Q. L., Zhang, N., Xia, W. C., et al., 2013. Origin of Volcanic Ash Beds across the Permian-Triassic Boundary, Daxiakou, South China: Petrology and U-Pb Age, Trace Elements and Hf-Isotope Composition of Zircon. Chemical Geology, 360-361: 41-53. https://doi.org/10.1016/j.chemgeo.2013.09.020
      [10] Grevenitz, P., Carr, P., Hutton, A., 2003. Origin, Alteration and Geochemical Correlation of Late Permian Airfall Tuffs in Coal Measures, Sydney Basin, Australia. International Journal of Coal Geology, 55(1): 27-46. https://doi.org/10.1016/s0166-5162(03)00064-8
      [11] Halpin, J. A., Tran, H. T., Lai, C. K., et al., 2016. U-Pb Zircon Geochronology and Geochemistry from NE Vietnam: A 'Tectonically Disputed' Territory between the Indochina and South China Blocks. Gondwana Research, 34: 254-273. https://doi.org/10.1016/j.gr.2015.04.005
      [12] Hao, S. B., Chen, Y., Huang, P., et al., 2021. Lopingian Conodont Biostratigraphy and Age of Dalong Formation at Wujiachong Section, East Hubei Province. Earth Science, 46(11): 4057-4071 (in Chinese with English abstract).
      [13] Hoa, T. T., Anh, T. T., Phuong, N. T., et al., 2008. Permo-Triassic Intermediate-Felsic Magmatism of the Truong Son Belt, Eastern Margin of Indochina. Comptes Rendus Geoscience, 340(2/3): 112-126. https://doi.org/10.1016/j.crte.2007.12.002
      [14] Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j
      [15] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
      [16] Huang, H., Cawood, P. A., Hou, M. C., et al., 2018. Provenance of Late Permian Volcanic Ash Beds in South China: Implications for the Age of Emeishan Volcanism and its Linkage to Climate Cooling. Lithos, 314-315: 293-306. https://doi.org/10.1016/j.lithos.2018.06.009
      [17] Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      [18] Kramer, W., Weatherall, G., Offler, R., 2001. Origin and Correlation of Tuffs in the Permian Newcastle and Wollombi Coal Measures, NSW, Australia, Using Chemical Fingerprinting. International Journal of Coal Geology, 47(2): 115-135. https://doi.org/10.1016/s0166--5162(01)00034-9
      [19] Lai, X. L., Jiang, H. S., Wignall, P. B., 2018. A Review of the Late Permian-Early Triassic Conodont Record and its Significance for the End-Permian Mass Extinction. Revue de Micropaléontologie, 61(3/4): 155-164. https://doi.org/10.1016/j.revmic.2018.10.002
      [20] Li, X. H., Qi, C. S., Liu, Y., et al., 2005. Petrogenesis of the Neopro-Terozoic Bimodal Volcanic Rocks along the Western Margin of the Yangtze Block: New Constraints from Hf Isotopes and Fe/Mn Ratios. Chinese Science Bulletin, 50(21): 2481. https://doi.org/10.1360/982005-287
      [21] Lin, G. C., Li, X. H., Li, W. X., 2007. SHRIMP U-Pb Zircon Age, Geochemistry and Nd-Hf Isotope of Neoproterozoic Mafic Dyke Swarms in Western Sichuan: Petrogenesis and Tectonic Significance. Science in China Series D: Earth Sciences, 50(1): 1-16. https://doi.org/10.1007/s11430-007-2018-0
      [22] Liu, H. C., Liu, X. P., Zhang, Y. W., et al., 2020. Beginning of the Indosinian Orogeny: Insights from Late Permian Gabbro and Diorite in the Diancangshan Area of the Yunnan Province. Geotectonica et Metallogenia, 44(3): 527-542.
      [23] Liu, T. J., Wang, Z. T., Wang, X. L., et al., 2021. The Source and Tectonic Setting of the Changhsingian K-Bentonites in the Huaying Mountain Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110642. https://doi.org/10.1016/j.palaeo.2021.110642
      [24] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      [25] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, Berkeley Geochronology Center, California.
      [26] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [27] Pei, Y., Chen, Z. Q., Fang, Y. H., et al., 2019. Volcanism, Redox Conditions, and Microbialite Growth Linked with the End-Permian Mass Extinction: Evidence from the Xiajiacao Section (Western Hubei Province), South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 194-208. https://doi.org/10.1016/j.palaeo.2017.07.020
      [28] Potts, P. J., Kane, J. S., 2005. International Association of Geoanalysts Certificate of Analysis: Certified Reference Material OU-6 (Penrhyn Slate). Geostandards and Geoanalytical Research, 29(2): 233-236. https://doi.org/10.1111/j.1751-908x.2005.tb00895.x
      [29] Pupin, J. P., 2000. Granite Genesis Related to Geodynamics from Hf-Y in Zircon. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1/2): 245-256. https://doi.org/10.1017/s0263593300007410
      [30] Qi, L., Hu, J., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, (51): 507-513.
      [31] Renne, P. R., Black, M. T., Zhang, Z. C., et al., 1995. Synchrony and Causal Relations between Permian-Triassic Boundary Crises and Siberian Flood Volcanism. Science, 269(5229): 1413-1416. https://doi.org/10.1126/science.269.5229.1413
      [32] Rocha-Campos, A. C., Basei, M. A., Nutman, A. P., et al., 2011. 30 Million Years of Permian Volcanism Recorded in the Choiyoi Igneous Province (W Argentina) and Their Source for Younger Ash Fall Deposits in the Paraná Basin: SHRIMP U-Pb Zircon Geochronology Evidence. Gondwana Research, 19(2): 509-523. https://doi.org/10.1016/j.gr.2010.07.003
      [33] Segal, I., Halicz, L., Platzner, I. T., 2003. Accurate Isotope Ratio Measurements of Ytterbium by Multiple Collection Inductively Coupled Plasma Mass Spectrometry Applying Erbium and Hafnium in an Improved Double External Normalization Procedure. Journal of Analytical Atomic Spectrometry, 18(10): 1217. https://doi.org/10.1039/b307016f
      [34] Shellnutt, J. G., 2014. The Emeishan Large Igneous Province: A Synthesis. Geoscience Frontiers, 5(3): 369-394. https://doi.org/10.1016/j.gsf.2013.07.003
      [35] Shellnutt, J., Wang, C. Y., Zhou, M. F., et al., 2009. Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 35(1): 45-55. https://doi.org/10.1016/j.jseaes.2008.12.003
      [36] Shen, J., Chen, J. B., Algeo, T. J., et al., 2019a. Evidence for a Prolonged Permian-Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1-10. https://doi.org/10.1038/s41467-019-09620-0
      [37] Shen, J., Yu, J. X., Chen, J. B., et al., 2019b. Mercury Evidence of Intense Volcanic Effects on Land during the Permian-Triassic Transition. Geology, 47(12): 1117-1121. https://doi.org/10.1130/g46679.1
      [38] Sheng, J. Z., Chen, C. Z., Wang, Y. G., et al., 1983. The Permian-Triassic Boundary Stratotype Research in the Changxing Area, Zhejiang. Journal of Stratigraphy, 7(4): 245-257 (in Chinese with English abstract).
      [39] Tian, M. Y., Di, Y. J., Wang, S., et al., 2021. Geochronology, Geochemical Characteristics and Genesis of Napeng Granite Biotite Monzogranite in Yunkai Area, Guangxi. Journal of Jilin University (Earth Science Edition), 51(3): 749-766 (in Chinese with English abstract).
      [40] Tran, T. H., Lan, C. Y., Usuki, T., et al., 2015. Petrogenesis of Late Permian Silicic Rocks of Tu Le Basin and Phan Si Pan Uplift (NW Vietnam) and their Association with the Emeishan Large Igneous Province. Journal of Asian Earth Sciences, 109: 1-19. https://doi.org/10.1016/j.jseaes.2015.05.009
      [41] Wang, X. D., Cawood, P. A., Zhao, H., et al., 2019b. Global Mercury Cycle during the End-Permian Mass Extinction and Subsequent Early Triassic Recovery. Earth and Planetary Science Letters, 513: 144-155. https://doi.org/10.1016/j.epsl.2019.02.026
      [42] Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019a. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian-Triassic Boundary, South China: Constraints from Trace Elements and Hf-Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011
      [43] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
      [44] Woodhead, J. D., Hergt, J. M., 2005. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for in Situ Hf Isotope Determination. Geostandards and Geoanalytical Research, 29(2): 183-195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x
      [45] Wu, K., Tong, J. N., Li, H. J., et al., 2022. Advance in the Study of Global Conodont during the Palaeozoic-Mesozoic Upheavals. Earth Science, 47(3): 1012-1037 (in Chinese with English abstract).
      [46] Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002
      [47] Xu, W., Liu, F. L., Ji, L., et al., 2021. Middle Permian-Late Triassic Magmatism in the Deqen-Weixi area of the Sanjiang Orogenic Belt: Implications for Paleo-Tethyan Evolution. Acta Petrologica Sinica, 37(2): 462-480(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.02.08
      [48] Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917. https://doi.org/10.1130/g20602.1
      [49] Xu, Y. G., Luo, Z. Y., Huang, X. L., et al., 2008. Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. Geochimica et Cosmochimica Acta, 72(13): 3084-3104. https://doi.org/10.1016/j.gca.2008.04.019
      [50] Ye, X., Jiang, H. S., 2016. Conodont Biostratigraphy and a Negative Excursion in Carbonate Carbon Isotopes across the Wuchiapingian-Changhsingian Boundary at the DawolingSection, Hunan Province. Earth Science, 41(11): 1883-1892 (in Chinese with English abstract).
      [51] Yin, H., Feng, Q., Lai, X., et al., 2007. The Protracted Permo-Triassic Crisis and Multi-Episode Extinction around the Permian-Triassic Boundary. Global and Planetary Change, 55(1/2/3): 1-20. https://doi.org/10.1016/j.gloplacha.2006.06.005
      [52] Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      [53] Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End-Permian Mass Extinction. Science Advances, 7(47): 1390. https://doi.org/10.1126/sciadv.abh1390
      [54] Zhang, Z. P., He, X. L., Zhu, M. L., et al., 1993. The Assemblage Characters of the Upper Permian Brachiopod in Chen County-Jiahe Area, Southern Hunan Province. Journal of China University of Mining & Technology, 22(3): 36-46 (in Chinese with English abstract).
      [55] Zhao, L. X., Dai, S. F., Graham, I. T., et al., 2016. New Insights into the Lowest Xuanwei Formation in Eastern Yunnan Province, SW China: Implications for Emeishan Large Igneous Province Felsic Tuff Deposition and the Cause of the End-Guadalupian Mass Extinction. Lithos, 264: 375-391. https://doi.org/10.1016/j.lithos.2016.08.037
      [56] Zhao, T. Y., Algeo, T. J., Feng, Q. L., et al., 2019. Tracing the Provenance of Volcanic Ash in Permian-Triassic Boundary Strata, South China: Constraints from Inherited and Syn-Depositional Magmatic Zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 190-202. https://doi.org/10.1016/j.palaeo.2018.12.002
      [57] Zhong, Y. T., He, B., Xu, Y. G., 2013. Mineralogy and Geochemistry of Claystones from the Guadalupian-Lopingian Boundary at Penglaitan, South China: Insights into the Pre-Lopingian Geological Events. Journal of Asian Earth Sciences, 62: 438-462. https://doi.org/10.1016/j.jseaes.2012.10.028
      [58] Zhu, J., Zhang, Z. C., Santosh, M., et al., 2021. Submarine Basaltic Eruptions Across the Guadalupian-Lopingian Transition in the Emeishan Large Igneous Province: Implication for End-Guadalupian Extinction of Marine Biota. Gondwana Research, 92: 228-238. https://doi.org/10.1016/j.gr.2020.12.025
      [59] Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144-145: 145-160. https://doi.org/10.1016/j.lithos.2012.04.020
      [60] 高秋灵, 2013. 华南二叠-三叠之交的长英质火山作用(博士学位论文). 武汉: 中国地质大学, 26-30.
      [61] 郝少波, 陈龑, 黄攀, 等, 2021. 鄂东伍家冲剖面乐平世牙形石生物地层及大隆组的时代. 地球科学, 46(11): 4057-4071. doi: 10.3799/dqkx.2021.032
      [62] 盛金章, 陈楚震, 王义刚, 等, 1983. 浙江长兴地区二叠系与三叠系界线层型研究. 地层学杂志, 7(4): 245-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198304000.htm
      [63] 田梦宇, 狄永军, 王帅, 等, 2021. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因. 吉林大学学报(地球科学版), 51(3): 749-766. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103009.htm
      [64] 吴奎, 童金南, 李红军, 等, 2022. 全球古‒中生代之交牙形石研究进展. 地球科学, 47(3): 1012-1037. doi: 10.3799/dqkx.2021.196
      [65] 许王, 刘福来, 冀磊, 等, 2021. 西南三江德钦-维西地区中二叠-晚三叠世岩浆岩与古特提斯演化. 岩石学报, 37(2): 462-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202102008.htm
      [66] 叶茜, 江海水, 2016. 湖南嘉禾大窝岭剖面吴家坪阶-长兴阶界线牙形石生物地层及一次碳同位素负偏. 地球科学, 41(11): 1883-1892. doi: 10.3799/dqkx.2016.130
      [67] 张志沛, 何锡麟, 朱梅丽, 等, 1993. 湖南郴县——嘉禾地区晚二叠世腕足动物组合特征. 中国矿业大学学报, 22(3): 36-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD199303004.htm
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  48
    • HTML全文浏览量:  25
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-08
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回