Formation Mechanism and Influencing Factors of Micro-Fractures in Tight Glutenite of Kongdian Formation in Bozhong Sag
-
摘要: 渤中凹陷西南部多口井钻遇巨厚孔店组砂砾岩,整体埋深大,储层明显致密化,部分井段产能不足10 m3/d,少部分井产能较高,储层差异演化机制是制约勘探的核心问题.针对储层形成机制,开展了薄片、扫描电镜、压实模拟等实验.研究表明,微裂缝发育程度决定了储层物性差异,储层裂缝发育程度受砾石成分构成及杂基含量的影响.以花岗岩为母岩的低杂基砂砾岩,钾长石裂缝发育,溶蚀作用强,储层物性好;高杂基砂砾岩,裂缝不发育,溶蚀作用弱,测试产能低;混杂了大量碳酸盐岩砾石的砂砾岩,储层早期胶结作用强,整体致密,压裂改造后效果仍较差.压实应力物理模拟实验表明,在模拟埋深2 500 m以下,砾石出现粒内缝,并随着模拟埋深加大不断增加;裂缝发育的类型、特点与研究区微裂缝特征可比对,证实压实成缝是研究区裂缝形成的重要机制.钾长石与斜长石裂缝生成有很大差异性:钾长石更容易发育破裂缝,经后期流体溶蚀改造,形成粒内溶蚀扩大缝;斜长石由于易发生高岭土化、钠黝帘石化等次生改造作用,改变了矿物的力学性质,不易产生裂缝.Abstract: Many deep wells in the southwestern part of the Bozhong sag reveal thick glutenite of Kongdian Formation. Due to the large burial depth, the glutenite reservoir is obviously densified, and the production of some wells is less than 10 m3/d. A part of wells have high productivity, and the differential evolution mechanism of reservoirs is a key issue that restricts exploration. Aiming at the differential evolution mechanism of the reservoir, this study carried out experiments such as thin section, scanning electron microscope, compaction simulation. It is found that the degree of development of micro-fractures determines the physical properties of reservoirs. And the differential evolution of the reservoir is significantly affected by the composition of gravel and the content of matrix. The glutenite whose parent rock comes from granite, with low matrix content, develops potash feldspar fractures, strong dissolution, and good reservoir properties. The glutenite with high matrix is characterized by underdeveloped fractures, weak dissolution, and low productivity. The glutenite mixed with a large amount of carbonate gravel has strong cementation in the early stage, and the productivity is still poor even after fracturing. The physical compaction simulation shows that intragranular fractures appear in the gravel below simulation burial depth 2 500 meters, which increase with the increase of simulation burial depth; the types and characteristics of fractures can be compared with the characteristics of micro-fractures in the study area. This confirms that glutenite with low matrix content can generate a large number of compaction fractures. Potassium feldspar and plagioclase are quite different in their ability to form fractures: potash feldspar is more prone to form fractures, and which is further corroded by later fluids, forming dissolution enlarged fractures. Plagioclase is prone to kaolinization, sodium zoisite and other secondary transformations, which changes the mechanical properties of minerals, and is not prone to form fractures.
-
Key words:
- Bozhong sag /
- Kongdian Formation /
- glutenite /
- fracture /
- reservoirs /
- control factors /
- petroleum geology
-
图 5 孔店组砂砾岩成岩作用与储层特征
a. 砂砾岩压实作用强烈,石英加大强烈(箭头所示),BZ19-6-1井,3 710 m;b.菱铁矿呈孔隙衬里状充填,BZ19-6-3井,4 047.8 m;c. 颗粒的贴粒缝,斜长石的粘土化(箭头所示),BZ19-6-3井,4 048.57 m;d. 物源区砾石内继承了变质岩的密集微裂缝,微裂缝被云母矿物充填(箭头所示),BZ19-6-1井,3 670 m;e. 钾长石受应力作用粒内发育共轭微裂隙,裂隙溶蚀扩大,BZ19-6-3井,3 851.31 m;f. 贯穿多个颗粒的构造缝(箭头所示),BZ19-6-3井,3 851.16 m
Fig. 5. Diagenesis and reservoir characteristics of glutenite in Kongdian Formation
图 7 孔店组砂砾岩微裂缝特征及砂砾岩压实模拟实验裂缝特征对比
a.颗粒接触点处钾长石强烈破碎,裂缝发育产状呈放射状(箭头所示),BZ19-6-3井,4 054.4 m;b. 长石颗粒长宽比较高,受到多方向挤压,形成扭张缝(箭头所示),BZ19-6-3井,4 049.70 m;c. 钾长石颗粒被周围多个颗粒围限,挤压作用下颗粒强烈破碎,周围颗粒侵占原颗粒空间(红色箭头所示),破裂的碎块有受压再位移特点(黄色箭头所示),BZ19-6-3井,4 051.35 m;d. 钾长石受压强烈破碎并沿裂缝溶蚀扩大,裂缝共轭发育,以一定角度斜交,BZ19-6-3井,3 850.47 m;e.钾长石挤压破裂发育多组粒内缝,BZ19-6-3井,4 051.92 m;f.片麻岩,长石在接触点部位向粒内分散状破裂(箭头所示),模拟埋深2 500 m;g.片麻岩,长石在接触点强烈破碎(箭头所示),碎裂块发生位移,模拟埋深5 000 m;h.长宽比较高的长石扭张缝,花岗岩,等效埋深4 000 m;i.花岗岩,长石受到强烈挤压破碎,与研究区膨胀缝类似(箭头所示),模拟埋深5 000 m
Fig. 7. Comparison of the micro-fracture characteristics of the Kongdian glutenite and the fracture characteristics of the glutenite compaction simulation experiment
图 9 受压岩石应力集中区分布(Gallagher et al., 1974)
暖色为高应力值,黄色最高,主要集中于颗粒接触点和颗粒与外壁接触点,冷色为低应力值
Fig. 9. Distribution of stress concentration areas of compressed rocks (Gallagher et al., 1974)
图 10 渤中凹陷渤中19-6构造孔店组成藏史(王清斌等,2019)
星号为包裹体测温投点,箭头为对应的成藏时间
Fig. 10. History map of the pore shop composition of Bozhong 19-6 structure in Bozhong sag
图 11 碳酸盐含量及杂基含量对裂缝发育的影响
a. BZ26-5-1,3 828 m,早期碳酸盐致密胶结,裂缝不发育;b.砾石颗粒由于黏土矿物的“压力缓冲垫”作用(箭头所示),裂缝不发育,BZ19-6-3井,3 858.3 m;c.裂缝发育微观差异明显,有黏土矿物缓冲的裂缝不发育(黄色箭头所示),无黏土矿物缓冲的发育裂缝(红色箭头所示),BZ19-6-3井,4 049.14 m;d.黏土杂基含量较高(30%),砾石不发育裂缝,BZ19-6-5井,3 865 m
Fig. 11. The influence of carbonate content and matrix content on fracture development
图 12 钾长石与斜长石裂缝发育程度差异性对比
a.黄色花岗岩(采样地点鞍山市莘英路路旁),原岩钾长石含量较高,表面洁净不发育裂缝(红色箭头所示);b.加压后钾长石表面出现较多微裂缝(黄色箭头所示),相邻的斜长石黏土化、绢云母化较明显,未见微裂缝(红色箭头所示),实验条件:应力强度115.19 MPa,围压20 MPa;c.加压后钾长石表面出现大量微裂缝(箭头所示),实验条件:应力强度158.85 MPa,围压40 MPa;d,e.钾长石大量破裂形成共轭粒内缝(黄色箭头所示),相邻的斜长石黏土化蚀变较强(红色箭头所示),部分颗粒绢云母化(红色箭头所示),BZ19-6-3井,4 054.4 m;e:d的同视域正交光;f.斜长石的书斜式错动变形(箭头所示),BZ19-6-3井,4 030 m
Fig. 12. Comparison of the difference in the development of fractures between potash feldspar and plagioclase
表 1 压实模拟实验样品配置方案
样品编号 石英 钾长石 斜长石 黏土矿物 砾石 1 16% 7% 14% 10% 55%(花岗岩) 2 17% 9% 15% 10% 50%(片麻岩) 注:石英、钾长石、斜长石粒度0.25~1 mm, 砾石2~5 mm, 黏土粒度 < 0.062 5 mm. 表 2 不同埋藏深度所对应的模拟实验温度和压力
编号 模拟温度
(℃)模拟压力
(MPa)模拟深度
(m)1-6/2-6 125 110 2 000 1-5/2-5 175 137 3 000 1-4/2-4 200 151 3 500 1-3/2-3 220 165 4 000 1-2/2-2 250 178 4 500 1-1/2-1 325 220 6 000 -
Cao, Y. C., Ma, B. B., Wang, Y. Z., et al., 2013. Genetic Mechanisms and Classified Evaluation of Low Permeability Reservoirs of Es4s in the North Zone of Bonan Sag. Natural Gas Geoscience, 24(5): 865-878 (in Chinese with English abstract). Ding, Y. C., Shao, Z. G., 2001. An Experimental Research into Determination of Highest Paleotectonic Stress State Experienced by Rock through Geological Ages. Earth Science, 26(1): 99-104 (in Chinese with English abstract). Ding, Y. C., Sun, B. S., Wang, X. H., et al., 1997. Present Stress State Determined by AE in the Northern Tarim Oil Field. Earth Science, 22(2): 101-104 (in Chinese with English abstract). Feng, J. R., Gao, Z. Y., Cui, J. G., et al., 2018. Reservoir Porosity Evolution Characteristics and Evaluation of the Jurassic Deep Reservoir from Dibei in Kuqa Depression: Insight from Diagenesis Modeling Experiments under the Influence of Burial Mode. Advances in Earth Science, 33(3): 305-320 (in Chinese with English abstract). Gallagher, J. J. Jr., Friedman, M., Handin, J., et al., 1974. Experimental Studies Relating to Microfracture in Sandstone. Tectonophysics, 21(3): 203-247. https://doi.org/10.1016/0040-1951(74)90053-5 Gao, Z. Y., Cui, J. G., Feng, J. R., et al., 2013. An Effect of Burial Compaction on Deep Reservoirs of Foreland Basins and Its Reworking Mechanism. Acta Petrolei Sinica, 34(5): 867-876 (in Chinese with English abstract). Huang, S. J., Huang, K. K., Feng, W. L., et al., 2009. Mass Exchanges among Feldspar, Kaolinite and Illite and Their Influen Ces on Secondary Porosity Formation in Clastic Diagenesis—A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica, 38(5): 498-506 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.05.009 Mao, Z., Zeng, L. B., Liu, G. P., et al., 2020. Characterization and Effectiveness of Natural Fractures in Deep Tight Sandstones at the South Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(6): 1212-1221 (in Chinese with English abstract). Shi, H. S., Wang, Q. B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19-6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.01.005 Wang, K., Zhang, H. L., Zhang, R. H., et al., 2016. Characteristics and Influencing Factors of Ultra-Deep Tight Sandstone Reservoir Structural Fracture: A Case Study of Keshen-2 Gas Field, Tarim Basin. Acta Petrolei Sinica, 37(6): 715-727, 742 (in Chinese with English abstract). Wang, Q. B., Niu, C. M., Liu, X. J., et al., 2019. Hydrocarbon Charging and Reservoir Densification of the Deep-Seated Glutenite Gas Reservoirs in the Bozhong Sag. Natural Gas Industry, 39(5): 25-33 (in Chinese with English abstract). Wang, Q. B., Niu, C. M., Pan, W. J., et al., 2020. Impacts of Basement Lithology on Reservoir of Lacustrine Carbonate and Clastic Mixed-Deposition in Member 1 of Shahejie Formation, Bohai Sea Area. Earth Science, 45(10): 3556-3566 (in Chinese with English abstract). Wang, Q. B., Zang, C. Y., Lai, W. C., et al., 2009. Distribution Characteristics and Origin of Carbonate Cements in the Middle and Deep Clastic Reservoirs of the Paleogene in the Bozhong Depression. Oil & Gas Geology, 30(4): 438-443 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2009.04.008 Wang, S. P., Wang, Z. K., Cao, Y. C., et al., 2019. Controlling Factors and Evaluation of the Medium-Deep Glutenite Reservoirs: An Example from the Lower Part of the Fourth Member of the Paleogene Shahejie Formation in the Yong 1 Block, Dongying Sag. Acta Sedimentologica Sinica, 37(5): 1069-1078 (in Chinese with English abstract). Xia, Q. L., Zhou, X. H., Li, J. P., et al., 2012. The Sedimentary Evolution and Distribution of Paleogene Sequence in the Bohai Sea Area. Petroleum Industry Press, Beijing (in Chinese with English abstract). Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 25-38 (in Chinese with English abstract). Xue, Y. A., 2020. Formation and Exploration of Large Natural Gas Reservoirs in Continental Lacustrine Basin of Bohai Bay. Science Press, Beijing (in Chinese with English abstract). Xue, Y. A., Wang, D. Y., 2020. Formation Conditions and Exploration Direction of Large Natural Gas Reservoirs in the Oil-Prone Bohai Bay Basin, East China. Petroleum Exploration and Development, 47(2): 260-271 (in Chinese with English abstract). Zeng, D. G., Li, S. Z., 1994. Types and Characteristics of Low Permeability Sandstone Reservoirs in China. Acta Petrolei Sinica, 15(1) : 38-45 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1994.01.014 Zeng, L. B., Li, Y. G., Wang, Z. G., et al., 2007. Type and Sequence of Fractures in the Second Member of Xujiahe Formation at the South of Western Sichuan Depression. Earth Science, 32(2): 194-200 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.02.006 Zeng, L. B., Li, Z. X., Shi, C. W., et al., 2007. Characteristics and Origin of Fractures in the Extra Low-Permeability Sandstone Reservoirs of the Upper Triassic Yanchang Formation in the Ordos Basin. Acta Geologica Sinica, 81(2): 174-180 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.02.005 Zhu, W. L., 2009. Paleolimnology and Source Rock Studies of Cenozoic Hydrocarbon-Bearing Offshore Basins in China. Geological Publishing House, Beijing (in Chinese with English abstract). Zhu, W. L., Mi, L. J., Gong, Z. S., 2009. Oil and Gas Accumulation and Exploration in Bohai Sea Area. Science Press, Beijing (in Chinese with English abstract). 操应长, 马奔奔, 王艳忠, 等, 2013. 渤南洼陷北带沙四上亚段储层低渗成因机制及分类评价. 天然气地球科学, 24(5): 865-878. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305001.htm 丁原辰, 邵兆刚, 2001. 测定岩石经历的最高古应力状态实验研究. 地球科学, 26(1): 99-104. doi: 10.3321/j.issn:1000-2383.2001.01.017 丁原辰, 孙宝珊, 汪西海, 等, 1997. 塔北油田现今地应力的AE法测量. 地球科学, 22(2): 101-104. http://www.earth-science.net/article/id/476 冯佳睿, 高志勇, 崔京钢, 等, 2018. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价: 埋藏方式制约下的成岩物理模拟实验研究. 地球科学进展, 33(3): 305-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201803011.htm 高志勇, 崔京钢, 冯佳睿, 等, 2013. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制. 石油学报, 34(5): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305007.htm 黄思静, 黄可可, 冯文立, 等, 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. doi: 10.3321/j.issn:0379-1726.2009.05.009 毛哲, 曾联波, 刘国平, 等, 2020. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性. 石油与天然气地质, 41(6): 1212-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006011.htm 施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005 王珂, 张惠良, 张荣虎, 等, 2016. 超深层致密砂岩储层构造裂缝特征及影响因素: 以塔里木盆地克深2气田为例. 石油学报, 37(6): 715-727, 742. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201606003.htm 王清斌, 牛成民, 刘晓健, 等, 2019. 渤中凹陷深层砂砾岩气藏油气充注与储层致密化. 天然气工业, 39(5): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905003.htm 王清斌, 牛成民, 潘文静, 等, 2020. 渤海海域沙一段基底岩性条件对湖相混积岩储层的控制作用. 地球科学, 45(10): 3556-3566. doi: 10.3799/dqkx.2020.256 王清斌, 臧春艳, 赖维成, 等, 2009. 渤中坳陷古近系中、深部碎屑岩储层碳酸盐胶结物分布特征及成因机制. 石油与天然气地质, 30(4): 438-443. doi: 10.3321/j.issn:0253-9985.2009.04.008 王淑萍, 王铸坤, 操应长, 等, 2019. 中深层砂砾岩储层控制因素与分类评价方法——以东营凹陷永1块沙四下亚段为例. 沉积学报, 37(5): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905016.htm 夏庆龙, 周心怀, 李建平, 等, 2012. 渤海海域古近系层序沉积演化及储层分布规律. 北京: 石油工业出版社. 徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm 薛永安, 2020. 渤海湾陆相湖盆大型天然气藏形成与勘探. 北京: 科学出版社. 薛永安, 王德英, 2020. 渤海湾油型湖盆大型天然气藏形成条件与勘探方向. 石油勘探与开发, 47(2): 260-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002007.htm 曾大乾, 李淑贞, 1994. 中国低渗透砂岩储层类型及地质特征. 石油学报, 15(1): 38-45. doi: 10.3321/j.issn:0253-2697.1994.01.014 曾联波, 李跃纲, 王正国, 等, 2007a. 川西南部须二段低渗透砂岩储层裂缝类型及其形成序列. 地球科学, 32(2): 194-200. http://www.earth-science.net/article/id/3439 曾联波, 李忠兴, 史成恩, 等, 2007b. 鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因. 地质学报, 81(2): 174-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702005.htm 朱伟林, 2009. 中国近海新生代含油气盆地古湖泊学与烃源条件. 北京: 地质出版社. 朱伟林, 米立军, 龚再升, 等, 2009. 渤海海域油气成藏与勘探. 北京: 科学出版社. -