• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤中凹陷孔店组致密砂砾岩微裂缝形成机制及影响因素

    王清斌 臧春艳 万琳 潘文静 刘晓健 李新琦 周淋

    王清斌, 臧春艳, 万琳, 潘文静, 刘晓健, 李新琦, 周淋, 2024. 渤中凹陷孔店组致密砂砾岩微裂缝形成机制及影响因素. 地球科学, 49(5): 1821-1831. doi: 10.3799/dqkx.2022.210
    引用本文: 王清斌, 臧春艳, 万琳, 潘文静, 刘晓健, 李新琦, 周淋, 2024. 渤中凹陷孔店组致密砂砾岩微裂缝形成机制及影响因素. 地球科学, 49(5): 1821-1831. doi: 10.3799/dqkx.2022.210
    Wang Qingbin, Zang Chunyan, Wan Lin, Pan Wenjing, Liu Xiaojian, Li Xinqi, Zhou Lin, 2024. Formation Mechanism and Influencing Factors of Micro-Fractures in Tight Glutenite of Kongdian Formation in Bozhong Sag. Earth Science, 49(5): 1821-1831. doi: 10.3799/dqkx.2022.210
    Citation: Wang Qingbin, Zang Chunyan, Wan Lin, Pan Wenjing, Liu Xiaojian, Li Xinqi, Zhou Lin, 2024. Formation Mechanism and Influencing Factors of Micro-Fractures in Tight Glutenite of Kongdian Formation in Bozhong Sag. Earth Science, 49(5): 1821-1831. doi: 10.3799/dqkx.2022.210

    渤中凹陷孔店组致密砂砾岩微裂缝形成机制及影响因素

    doi: 10.3799/dqkx.2022.210
    基金项目: 

    国家“十三五”科技重大专项 2016ZX05024003

    详细信息
      作者简介:

      王清斌(1975-),男,教授级高级工程师,博士,主要从事油气勘探及石油地质研究工作. ORCID:0000-0003-4900-8700. E-mail:wangqb@cnooc.com.cn

    • 中图分类号: P618

    Formation Mechanism and Influencing Factors of Micro-Fractures in Tight Glutenite of Kongdian Formation in Bozhong Sag

    • 摘要: 渤中凹陷西南部多口井钻遇巨厚孔店组砂砾岩,整体埋深大,储层明显致密化,部分井段产能不足10 m3/d,少部分井产能较高,储层差异演化机制是制约勘探的核心问题.针对储层形成机制,开展了薄片、扫描电镜、压实模拟等实验.研究表明,微裂缝发育程度决定了储层物性差异,储层裂缝发育程度受砾石成分构成及杂基含量的影响.以花岗岩为母岩的低杂基砂砾岩,钾长石裂缝发育,溶蚀作用强,储层物性好;高杂基砂砾岩,裂缝不发育,溶蚀作用弱,测试产能低;混杂了大量碳酸盐岩砾石的砂砾岩,储层早期胶结作用强,整体致密,压裂改造后效果仍较差.压实应力物理模拟实验表明,在模拟埋深2 500 m以下,砾石出现粒内缝,并随着模拟埋深加大不断增加;裂缝发育的类型、特点与研究区微裂缝特征可比对,证实压实成缝是研究区裂缝形成的重要机制.钾长石与斜长石裂缝生成有很大差异性:钾长石更容易发育破裂缝,经后期流体溶蚀改造,形成粒内溶蚀扩大缝;斜长石由于易发生高岭土化、钠黝帘石化等次生改造作用,改变了矿物的力学性质,不易产生裂缝.

       

    • 图  1  区域地质背景

      Fig.  1.  Regional geological background map

      图  2  渤中凹陷西环孔店组沉积相图及母岩区岩性分布预测

      Fig.  2.  Sedimentary facies map of Kongdian Formation in the west ring of Bozhong sag and prediction map of lithology distribution in the parent rock area

      图  3  BZ19-6-3井综合柱状图

      孔隙度、渗透率为岩心与旋转壁心实测资料;钾长石,斜长石,黏土矿物含量为岩心、岩屑X衍射全岩分析实测资料

      Fig.  3.  Comprehensive column chart of well BZ19-6-3

      图  4  孔店组砂砾岩物性分布特征

      Fig.  4.  Distribution characteristics of glutenite in Kongdian Formation

      图  5  孔店组砂砾岩成岩作用与储层特征

      a. 砂砾岩压实作用强烈,石英加大强烈(箭头所示),BZ19-6-1井,3 710 m;b.菱铁矿呈孔隙衬里状充填,BZ19-6-3井,4 047.8 m;c. 颗粒的贴粒缝,斜长石的粘土化(箭头所示),BZ19-6-3井,4 048.57 m;d. 物源区砾石内继承了变质岩的密集微裂缝,微裂缝被云母矿物充填(箭头所示),BZ19-6-1井,3 670 m;e. 钾长石受应力作用粒内发育共轭微裂隙,裂隙溶蚀扩大,BZ19-6-3井,3 851.31 m;f. 贯穿多个颗粒的构造缝(箭头所示),BZ19-6-3井,3 851.16 m

      Fig.  5.  Diagenesis and reservoir characteristics of glutenite in Kongdian Formation

      图  6  不同井区储层储集空间构成(共12件样品)

      Fig.  6.  Reservoir space composition of different areas (12 samples in total)

      图  7  孔店组砂砾岩微裂缝特征及砂砾岩压实模拟实验裂缝特征对比

      a.颗粒接触点处钾长石强烈破碎,裂缝发育产状呈放射状(箭头所示),BZ19-6-3井,4 054.4 m;b. 长石颗粒长宽比较高,受到多方向挤压,形成扭张缝(箭头所示),BZ19-6-3井,4 049.70 m;c. 钾长石颗粒被周围多个颗粒围限,挤压作用下颗粒强烈破碎,周围颗粒侵占原颗粒空间(红色箭头所示),破裂的碎块有受压再位移特点(黄色箭头所示),BZ19-6-3井,4 051.35 m;d. 钾长石受压强烈破碎并沿裂缝溶蚀扩大,裂缝共轭发育,以一定角度斜交,BZ19-6-3井,3 850.47 m;e.钾长石挤压破裂发育多组粒内缝,BZ19-6-3井,4 051.92 m;f.片麻岩,长石在接触点部位向粒内分散状破裂(箭头所示),模拟埋深2 500 m;g.片麻岩,长石在接触点强烈破碎(箭头所示),碎裂块发生位移,模拟埋深5 000 m;h.长宽比较高的长石扭张缝,花岗岩,等效埋深4 000 m;i.花岗岩,长石受到强烈挤压破碎,与研究区膨胀缝类似(箭头所示),模拟埋深5 000 m

      Fig.  7.  Comparison of the micro-fracture characteristics of the Kongdian glutenite and the fracture characteristics of the glutenite compaction simulation experiment

      图  8  声发射法测定的古应力值与母岩破裂强度对比

      Fig.  8.  Comparison of the ancient stress value measured by acoustic emission method and the fracture strength of the parent rock

      图  9  受压岩石应力集中区分布(Gallagher et al., 1974

      暖色为高应力值,黄色最高,主要集中于颗粒接触点和颗粒与外壁接触点,冷色为低应力值

      Fig.  9.  Distribution of stress concentration areas of compressed rocks (Gallagher et al., 1974)

      图  10  渤中凹陷渤中19-6构造孔店组成藏史(王清斌等,2019

      星号为包裹体测温投点,箭头为对应的成藏时间

      Fig.  10.  History map of the pore shop composition of Bozhong 19-6 structure in Bozhong sag

      图  11  碳酸盐含量及杂基含量对裂缝发育的影响

      a. BZ26-5-1,3 828 m,早期碳酸盐致密胶结,裂缝不发育;b.砾石颗粒由于黏土矿物的“压力缓冲垫”作用(箭头所示),裂缝不发育,BZ19-6-3井,3 858.3 m;c.裂缝发育微观差异明显,有黏土矿物缓冲的裂缝不发育(黄色箭头所示),无黏土矿物缓冲的发育裂缝(红色箭头所示),BZ19-6-3井,4 049.14 m;d.黏土杂基含量较高(30%),砾石不发育裂缝,BZ19-6-5井,3 865 m

      Fig.  11.  The influence of carbonate content and matrix content on fracture development

      图  12  钾长石与斜长石裂缝发育程度差异性对比

      a.黄色花岗岩(采样地点鞍山市莘英路路旁),原岩钾长石含量较高,表面洁净不发育裂缝(红色箭头所示);b.加压后钾长石表面出现较多微裂缝(黄色箭头所示),相邻的斜长石黏土化、绢云母化较明显,未见微裂缝(红色箭头所示),实验条件:应力强度115.19 MPa,围压20 MPa;c.加压后钾长石表面出现大量微裂缝(箭头所示),实验条件:应力强度158.85 MPa,围压40 MPa;d,e.钾长石大量破裂形成共轭粒内缝(黄色箭头所示),相邻的斜长石黏土化蚀变较强(红色箭头所示),部分颗粒绢云母化(红色箭头所示),BZ19-6-3井,4 054.4 m;e:d的同视域正交光;f.斜长石的书斜式错动变形(箭头所示),BZ19-6-3井,4 030 m

      Fig.  12.  Comparison of the difference in the development of fractures between potash feldspar and plagioclase

      表  1  压实模拟实验样品配置方案

      样品编号 石英 钾长石 斜长石 黏土矿物 砾石
      1 16% 7% 14% 10% 55%(花岗岩)
      2 17% 9% 15% 10% 50%(片麻岩)
      注:石英、钾长石、斜长石粒度0.25~1 mm, 砾石2~5 mm, 黏土粒度 < 0.062 5 mm.
      下载: 导出CSV

      表  2  不同埋藏深度所对应的模拟实验温度和压力

      编号 模拟温度
      (℃)
      模拟压力
      (MPa)
      模拟深度
      (m)
      1-6/2-6 125 110 2 000
      1-5/2-5 175 137 3 000
      1-4/2-4 200 151 3 500
      1-3/2-3 220 165 4 000
      1-2/2-2 250 178 4 500
      1-1/2-1 325 220 6 000
      下载: 导出CSV
    • Cao, Y. C., Ma, B. B., Wang, Y. Z., et al., 2013. Genetic Mechanisms and Classified Evaluation of Low Permeability Reservoirs of Es4s in the North Zone of Bonan Sag. Natural Gas Geoscience, 24(5): 865-878 (in Chinese with English abstract).
      Ding, Y. C., Shao, Z. G., 2001. An Experimental Research into Determination of Highest Paleotectonic Stress State Experienced by Rock through Geological Ages. Earth Science, 26(1): 99-104 (in Chinese with English abstract).
      Ding, Y. C., Sun, B. S., Wang, X. H., et al., 1997. Present Stress State Determined by AE in the Northern Tarim Oil Field. Earth Science, 22(2): 101-104 (in Chinese with English abstract).
      Feng, J. R., Gao, Z. Y., Cui, J. G., et al., 2018. Reservoir Porosity Evolution Characteristics and Evaluation of the Jurassic Deep Reservoir from Dibei in Kuqa Depression: Insight from Diagenesis Modeling Experiments under the Influence of Burial Mode. Advances in Earth Science, 33(3): 305-320 (in Chinese with English abstract).
      Gallagher, J. J. Jr., Friedman, M., Handin, J., et al., 1974. Experimental Studies Relating to Microfracture in Sandstone. Tectonophysics, 21(3): 203-247. https://doi.org/10.1016/0040-1951(74)90053-5
      Gao, Z. Y., Cui, J. G., Feng, J. R., et al., 2013. An Effect of Burial Compaction on Deep Reservoirs of Foreland Basins and Its Reworking Mechanism. Acta Petrolei Sinica, 34(5): 867-876 (in Chinese with English abstract).
      Huang, S. J., Huang, K. K., Feng, W. L., et al., 2009. Mass Exchanges among Feldspar, Kaolinite and Illite and Their Influen Ces on Secondary Porosity Formation in Clastic Diagenesis—A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica, 38(5): 498-506 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.05.009
      Mao, Z., Zeng, L. B., Liu, G. P., et al., 2020. Characterization and Effectiveness of Natural Fractures in Deep Tight Sandstones at the South Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(6): 1212-1221 (in Chinese with English abstract).
      Shi, H. S., Wang, Q. B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19-6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.01.005
      Wang, K., Zhang, H. L., Zhang, R. H., et al., 2016. Characteristics and Influencing Factors of Ultra-Deep Tight Sandstone Reservoir Structural Fracture: A Case Study of Keshen-2 Gas Field, Tarim Basin. Acta Petrolei Sinica, 37(6): 715-727, 742 (in Chinese with English abstract).
      Wang, Q. B., Niu, C. M., Liu, X. J., et al., 2019. Hydrocarbon Charging and Reservoir Densification of the Deep-Seated Glutenite Gas Reservoirs in the Bozhong Sag. Natural Gas Industry, 39(5): 25-33 (in Chinese with English abstract).
      Wang, Q. B., Niu, C. M., Pan, W. J., et al., 2020. Impacts of Basement Lithology on Reservoir of Lacustrine Carbonate and Clastic Mixed-Deposition in Member 1 of Shahejie Formation, Bohai Sea Area. Earth Science, 45(10): 3556-3566 (in Chinese with English abstract).
      Wang, Q. B., Zang, C. Y., Lai, W. C., et al., 2009. Distribution Characteristics and Origin of Carbonate Cements in the Middle and Deep Clastic Reservoirs of the Paleogene in the Bozhong Depression. Oil & Gas Geology, 30(4): 438-443 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2009.04.008
      Wang, S. P., Wang, Z. K., Cao, Y. C., et al., 2019. Controlling Factors and Evaluation of the Medium-Deep Glutenite Reservoirs: An Example from the Lower Part of the Fourth Member of the Paleogene Shahejie Formation in the Yong 1 Block, Dongying Sag. Acta Sedimentologica Sinica, 37(5): 1069-1078 (in Chinese with English abstract).
      Xia, Q. L., Zhou, X. H., Li, J. P., et al., 2012. The Sedimentary Evolution and Distribution of Paleogene Sequence in the Bohai Sea Area. Petroleum Industry Press, Beijing (in Chinese with English abstract).
      Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 25-38 (in Chinese with English abstract).
      Xue, Y. A., 2020. Formation and Exploration of Large Natural Gas Reservoirs in Continental Lacustrine Basin of Bohai Bay. Science Press, Beijing (in Chinese with English abstract).
      Xue, Y. A., Wang, D. Y., 2020. Formation Conditions and Exploration Direction of Large Natural Gas Reservoirs in the Oil-Prone Bohai Bay Basin, East China. Petroleum Exploration and Development, 47(2): 260-271 (in Chinese with English abstract).
      Zeng, D. G., Li, S. Z., 1994. Types and Characteristics of Low Permeability Sandstone Reservoirs in China. Acta Petrolei Sinica, 15(1) : 38-45 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1994.01.014
      Zeng, L. B., Li, Y. G., Wang, Z. G., et al., 2007. Type and Sequence of Fractures in the Second Member of Xujiahe Formation at the South of Western Sichuan Depression. Earth Science, 32(2): 194-200 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.02.006
      Zeng, L. B., Li, Z. X., Shi, C. W., et al., 2007. Characteristics and Origin of Fractures in the Extra Low-Permeability Sandstone Reservoirs of the Upper Triassic Yanchang Formation in the Ordos Basin. Acta Geologica Sinica, 81(2): 174-180 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.02.005
      Zhu, W. L., 2009. Paleolimnology and Source Rock Studies of Cenozoic Hydrocarbon-Bearing Offshore Basins in China. Geological Publishing House, Beijing (in Chinese with English abstract).
      Zhu, W. L., Mi, L. J., Gong, Z. S., 2009. Oil and Gas Accumulation and Exploration in Bohai Sea Area. Science Press, Beijing (in Chinese with English abstract).
      操应长, 马奔奔, 王艳忠, 等, 2013. 渤南洼陷北带沙四上亚段储层低渗成因机制及分类评价. 天然气地球科学, 24(5): 865-878. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305001.htm
      丁原辰, 邵兆刚, 2001. 测定岩石经历的最高古应力状态实验研究. 地球科学, 26(1): 99-104. doi: 10.3321/j.issn:1000-2383.2001.01.017
      丁原辰, 孙宝珊, 汪西海, 等, 1997. 塔北油田现今地应力的AE法测量. 地球科学, 22(2): 101-104. http://www.earth-science.net/article/id/476
      冯佳睿, 高志勇, 崔京钢, 等, 2018. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价: 埋藏方式制约下的成岩物理模拟实验研究. 地球科学进展, 33(3): 305-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201803011.htm
      高志勇, 崔京钢, 冯佳睿, 等, 2013. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制. 石油学报, 34(5): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305007.htm
      黄思静, 黄可可, 冯文立, 等, 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. doi: 10.3321/j.issn:0379-1726.2009.05.009
      毛哲, 曾联波, 刘国平, 等, 2020. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性. 石油与天然气地质, 41(6): 1212-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006011.htm
      施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005
      王珂, 张惠良, 张荣虎, 等, 2016. 超深层致密砂岩储层构造裂缝特征及影响因素: 以塔里木盆地克深2气田为例. 石油学报, 37(6): 715-727, 742. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201606003.htm
      王清斌, 牛成民, 刘晓健, 等, 2019. 渤中凹陷深层砂砾岩气藏油气充注与储层致密化. 天然气工业, 39(5): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905003.htm
      王清斌, 牛成民, 潘文静, 等, 2020. 渤海海域沙一段基底岩性条件对湖相混积岩储层的控制作用. 地球科学, 45(10): 3556-3566. doi: 10.3799/dqkx.2020.256
      王清斌, 臧春艳, 赖维成, 等, 2009. 渤中坳陷古近系中、深部碎屑岩储层碳酸盐胶结物分布特征及成因机制. 石油与天然气地质, 30(4): 438-443. doi: 10.3321/j.issn:0253-9985.2009.04.008
      王淑萍, 王铸坤, 操应长, 等, 2019. 中深层砂砾岩储层控制因素与分类评价方法——以东营凹陷永1块沙四下亚段为例. 沉积学报, 37(5): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905016.htm
      夏庆龙, 周心怀, 李建平, 等, 2012. 渤海海域古近系层序沉积演化及储层分布规律. 北京: 石油工业出版社.
      徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
      薛永安, 2020. 渤海湾陆相湖盆大型天然气藏形成与勘探. 北京: 科学出版社.
      薛永安, 王德英, 2020. 渤海湾油型湖盆大型天然气藏形成条件与勘探方向. 石油勘探与开发, 47(2): 260-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002007.htm
      曾大乾, 李淑贞, 1994. 中国低渗透砂岩储层类型及地质特征. 石油学报, 15(1): 38-45. doi: 10.3321/j.issn:0253-2697.1994.01.014
      曾联波, 李跃纲, 王正国, 等, 2007a. 川西南部须二段低渗透砂岩储层裂缝类型及其形成序列. 地球科学, 32(2): 194-200. http://www.earth-science.net/article/id/3439
      曾联波, 李忠兴, 史成恩, 等, 2007b. 鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因. 地质学报, 81(2): 174-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702005.htm
      朱伟林, 2009. 中国近海新生代含油气盆地古湖泊学与烃源条件. 北京: 地质出版社.
      朱伟林, 米立军, 龚再升, 等, 2009. 渤海海域油气成藏与勘探. 北京: 科学出版社.
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  459
    • HTML全文浏览量:  152
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-10
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回