Paleoenviromental Reconstruction and Organic Matter Accumulation Mechanism for Youganwo Formation Oil Shale in Maoming Basin
-
摘要: 查明油页岩的形成背景和高品质油页岩形成机制是开展油页岩原位改造的基础工作.利用有机碳、主微量元素、稀土元素、生物标志物等地球化学方法,对茂名盆地油柑窝组油页岩的沉积环境进行恢复并探讨了有机质聚集机制.结果表明,茂名盆地油柑窝组全段油页岩均富有机质,底部为薄层碳质页岩、砂岩和褐煤层段.Mo含量、Ba/Al、Babio和生物标志物特征表明油柑窝组具有很高的初级生产力,油柑窝组存在间断性的“藻类勃发”现象;V/(V+Ni)、Ceanom、Th/U、草莓体黄铁矿颗粒大小和Pr/nC17-Ph/nC18交汇图表明了沉积水体处于缺氧还原环境;Sr/Cu、Rb/Sr和气候指数C指示油柑窝组为温暖湿润的古气候条件;Sr/Ba、Ba/Ga、Ca/(Fe+Ca)、Al2O3/MgO以及伽马蜡烷等特征反映了古湖泊水体为淡水;Zr/Al、Rb/K和MnO含量指示为半深湖-深湖沉积环境.通过各指标与TOC含量之间的相关性分析,认为温暖湿润气候和淡水环境为藻类的繁盛提供了良好的环境,具备很高的初级生产力,直接影响了油页岩的品质和发育特征,具有丰富有机质来源的表层生产力是油页岩形成的首要条件,缺氧还原的半深湖-深湖环境有利于沉积有机质堆积和保存,是有机质聚集的促进因素.综合各因素,提出了茂名盆地油柑窝组优质油页岩有机质的聚集模式.Abstract: To identify the formation background of oil shale and the enrichment mechanism of high-quality intervals are the fundamental works for in-situ upgrading of oil shale reservoir. In this paper, geochemical methods, e.g., TOC, major and trace element, rare earth element and biomarkers, were carried out to restore paleosedimentary environment as well as discuss organic matter accumulation mechanism. The results suggest that oil shale within the entire interval of Youganwo Formation is rich in organic matter, and the bottom is composed of thin carbonaceous shale, sandstone and lignite. Mo content, Ba/Al, Babio and biomarkers all reflect that Youganwo Formation has high primary productivity, with intermittent "algal bloom" phenomenon. V/(V+Ni), Ceanom, Th/U, pyrite framboids and Pr/nC17-Ph/nC18 crossplot indicate that Youganwo Formation was anoxic environment. Sr/Cu, Rb/Sr and climate index C identify that the climate of Youganwo Formation was warm and humid. Sr/Ba, Ba/Ga, Ca/(Fe+Ca), Al2O3/MgO and gammacerane feature suggest that water of ancient lake is fresh. The ancient lake of Youganwo Formation was semi-deep to deep, proved by Zr/Al, Rb/K and MnO content. Through the correlations between paleo-environmental parameters with TOC content, it is deemed that the warm and humid climate and freshwater environment can provide good conditions for the flourishing of algae, forming high quality productivity, and therefore it determines the quality and development characteristics of Youganwo Formation oil shale. High primary productivity with abundant organic matter sources is the main condition for oil shale formation, and anoxic semi-deep to deep lake environment, as a promoting factor, is conducive to organic matter accumulation and preservation. To sum up, in this paper it proposes the accumulation model of organic matter in high-quality oil shale of Youganwo Formation in the Maoming Basin.
-
Key words:
- oil shale /
- paleo environment /
- geochemistry /
- organic matter accumulation /
- Youganwo Formation /
- Maoming basin /
- petroleum geology
-
图 16 茂名盆地油柑窝组有机质富集模式
据孟庆涛等(2020)修改
Fig. 16. Organic matter enrichment pattern of Youganwo Formation in Maoming basin
-
Algeo, T. J., Henderson, C. M., Tong, J. N., et al., 2013. Plankton and Productivity during the Permian-Triassic Boundary Crisis: An Analysis of Organic Carbon Fluxes. Global and Planetary Change, 105(6): 52-67. https://doi.org/10.1016/j.gloplacha.2012.02.008 Cao, X. X., Song, Z. G., Li, Y., et al., 2016. The Characteristics of Organic Matter in Maoming Oil Shales and Their Paleoclimate Significance. Earth Science Frontiers, 23(3): 243-252 (in Chinese with English abstract). Chen, C., Mu, C. L., Zhou, K. K., et al., 2016. The Geochemical Characteristics and Factors Controlling the Organic Matter Accumulation of the Late Ordovician-Early Silurian Black Shale in the Upper Yangtze Basin, South China. Marine and Petroleum Geology, 76(9): 159-175. https://doi.org/10.1016/j.marpetgeo.2016.04.022 Das, B. K., Haake, B. G., 2003. Geochemistry of Rewalsar Lake Sediment, Lesser Himalaya, India: Implications for Source-Area Weathering, Provenance and Tectonic Setting. Geosciences Journal, 7(4): 299-312. https://doi.org/10.1007/BF02919560 Dong, T., Harris, N. B., Ayranci, K., 2018. Relative Sea-Level Cycles and Organic Matter Accumulation in Shales of the Middle and Upper Devonian Horn River Group, Northeastern British Columbia, Canada: Insights into Sediment Flux, Redox Conditions, and Bioproductivity. GSA Bulletin, 130(5/6): 859-880. Francois, R., Honjo, S., Manganini, S. J., et al., 1995. Biogenic Barium Fluxes to the Deep Sea: Implications for Paleoproductivity Reconstruction. Global Biogeochemical Cycles, 9(2): 289-303. https://doi.org/10.1029/95gb00021 Guo, W., Feng, Q. L., Khan, M. Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng-Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582 (in Chinese with English abstract). Haskin, M. A., Haskin, L. A., 1966. Rare Earths in European Shales: A Redetermination. Science, 154(3748): 507-509. https://doi.org/10.1126/science.154.3748.507 Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. . Chemical Geology, 99(1/2/3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y He, L., Wang, Y. P., Chen, D. F., et al., 2019. Relationship between Sedimentary Environment and Organic Matter Accumulation in the Black Shale of Wufeng-Longmaxi Formations in Nanchuan Area, Chongqing. Natural Gas Geoscience, 30(2): 203-218 (in Chinese with English abstract). Hou, H. H., Shao, L. Y., Li, Y. H., et al., 2022. Effect of Paleoclimate and Paleoenvironment on Organic Matter Accumulation in Lacustrine Shale: Constraints from Lithofacies and Element Geochemistry in the Northern Qaidam Basin, NW China. Journal of Petroleum Science and Engineering, 208: 109350. https://doi.org/10.1016/j.petrol.2021.109350 Hou, L. Y., Sun, P. C., Liu, Z. J., et al., 2021. Qingshankou Formation Oil Shale Exploitation In-Situ Pilot Test Demonstration Area Optimization. Coal Geology of China, 33(8): 9-16 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2021.08.02 Hu, X. F., Liu, Z. J., Liu, R., et al., 2012. Clay Mineral and Inorganic Geochemical Characteristics of Eocene Huadian Formation in Huadian Basin and Their Paleoenvironment Implications. Journal of China Coal Society, 37(3): 416-423 (in Chinese with English abstract). Jin, Z. D., Zhang, E. L., 2002. Paleoclimate Implication of Rb/Sr Ratios from Lake Sediments. Science Technology and Engineering, 2(3): 20-22 (in Chinese with English abstract). Kang, Z. Q., Zhao, Y. S., Yang, D., et al., 2021. Pilot Test of In-Situ Steam Injection for Oil and Gas Production from Oil Shale and Applicability of Multi-Mode In-Situ Thermal Recovery Technology. Acta Petrolei Sinica, 42(11): 1458-1468 (in Chinese with English abstract). doi: 10.7623/syxb202111005 Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A., et al., 2002. Enhanced Productivity Led to Increased Organic Carbon Burial in the Euxinic North Atlantic Basin during the Late Cenomanian Oceanic Anoxic Event. Paleoceanography, 17(4): 3-1-3-13. https://doi.org/10.1029/2000pa000569 Li, D. C., Zhu, J. W., Yan, H. R., et al., 2006. Sedimentary Characteristics and Distribution Rule of Oil Shale in Maoming Basin in Guangdong Province. Journal of Jilin University (Earth Science Edition), 36(6): 938-943 (in Chinese with English abstract). Li, P., Liu, Q. Y., Bi, H., et al., 2021. Analysis of the Difference in Organic Matter Preservation in Typical Lacustrine Shale under the Influence of Volcanism and Transgression. Acta Geologica Sinica, 95(3): 632-642(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.03.003 Li, Q., Wu, S. H., Xia, D. L., et al., 2020. Major and Trace Element Geochemistry of the Lacustrine Organic-Rich Shales from the Upper Triassic Chang 7 Member in the Southwestern Ordos Basin, China: Implications for Paleoenvironment and Organic Matter Accumulation. Marine and Petroleum Geology, 111(1): 852-867. https://doi.org/10.1016/j.marpetgeo.2019.09.003 Li, Q. Q., Lan, B. F., Li, G. Q., et al., 2021. Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift. Earth Science, 46(9): 3172-3188 (in Chinese with English abstract). Liu, C. L., Xu, J. L., 2002. Estimation Method on Productivity of Oil-Producing Lake and a Case Study. Acta Sedimentologica Sinica, 20(1): 144-150 (in Chinese with English abstract). Liu, D. X., Wang, H. Y., Zheng, D. W., et al., 2009. World Progress of Oil Shale In-Situ Exploitation Methods. Natural Gas Industry, 29(5): 128-132, 148 (in Chinese with English abstract). Liu, S. M., Jiang, L., Liu, B. J., et al., 2023. Investigation of Organic Matter Sources and Depositional Environment Changes for Terrestrial Shale Succession from the Yuka Depression: Implications from Organic Geochemistry and Petrological Analyses. Journal of Earth Science, 34(5): 1577-1595. https://doi.org/10.1007/s12583-022-1617-1 Liu, Y. H., Li, K. J., Liu, D. N., et al., 2020. Evaluation and Analysis of Paleoenvironments of the Neogene Oil Shale of Zhangcun Formation, Qinshui Basin. Coal Geology & Exploration, 48(5): 16-25 (in Chinese with English abstract). Liu, Z. J., Meng, Q. T., Liu, R., et al., 2009. Geochemical Characteristics of Oil Shale of Eocene Jijuntun Formation and Its Geological Significance, Fushun Basin. Acta Petrologica Sinica, 25(10): 2340-2350 (in Chinese with English abstract). Lu, X. Z., Shen, J., Guo, W., et al., 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340 (in Chinese with English abstract). Luo, H. W., Hou, M. C., Liu, Y., et al., 2019. Geochemical Characteristics and Organic Matter Enrichment of the Lower Section of Luzhai Formation in Luzhai Area, Guangxi, China. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2): 227-239 (in Chinese with English abstract). Ma, F. H., Zhang, Y., Pan, J. L., et al., 2021. Geochemical Characteristics of Rare Earth Element and Their Geological Significance of Mud-Shale in Cretaceous Madongshan Formation, Liupanshan Basin. Geological Review, 67(1): 209-217 (in Chinese with English abstract). Meng, Q. T., Li, J. G., Liu, Z. J., et al., 2020. Organic Geochemical Characteristics and Depositional Environment of Oil Shale of Eocene of Paleocene Youganwo Formation in Yangjiao Mining Area of Maoming Basin. Journal of Jilin University (Earth Science Edition), 50(2): 356-367 (in Chinese with English abstract). Meng, Q. T., Liu, Z. J., Hu, F., et al., 2012. Productivity of Eocene Ancient Lake and Enrichment Mechanism of Organic Matter in Huadian Basin. Journal of China University of Petroleum (Edition of Natural Science), 36(5): 38-44 (in Chinese with English abstract). Miao, Y., Sang, S. X., Lin, H. X., et al., 2007. Trace Element Signatures of the Carboniferous-Permian Deposits in the Bohai Gulf Basin and Their Facies Significance. Sedimentary Geology and Tethyan Geology, 27(4): 27-32 (in Chinese with English abstract). Moradi, A. V., Akkaya, A. S., 2016. Geochemistry of the Miocene Oil Shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate Conditions, Source-Area Weathering, Provenance and Tectonic Setting. Sedimentary Geology, 341(7): 289-303. https://doi.org/10.1016/j.sedgeo.2016.05.002 Pattan, J. N., Pearce, N. J. G., Mislankar, P. G., 2005. Constraints in Using Cerium-Anomaly of Bulk Sediments as an Indicator of Paleo Bottom Water Redox Environment: A Case Study from the Central Indian Ocean Basin. Chemical Geology, 221(3/4): 260-278. https://doi.org/10.1016/j.chemgeo.2005.06.009 Qiao, S. H., Li, Y. H., Guo, W., et al., 2019. Inorganic Geochemical Characteristics and Paleoenvironment of Chang 7 Oil Shale in Yanchang Formation, Tongchuan Area, Shaanxi Province. Petroleum Geology & Experiment, 41(1): 121-126 (in Chinese with English abstract). Qiu, Z., Wang, Q. C., 2012. Main Factors Controlling the Deposition of the Middle-Upper Permian Source Rocks in Laibin Area and Its Tectonic Setting. Chinese Journal of Geology, 47(4): 1085-1098 (in Chinese with English abstract). Sarki Yandoka, B. M., Abdullah, W. H., Abubakar, M. B., et al., 2015. Geochemical Characterisation of Early Cretaceous Lacustrine Sediments of Bima Formation, Yola Sub-Basin, Northern Benue Trough, NE Nigeria: Organic Matter Input, Preservation, Paleoenvironment and Palaeoclimatic Conditions. Marine and Petroleum Geology, 61(3): 82-94. https://doi.org/10.1016/j.marpetgeo.2014.12.010 Shen, Y. L., Qin, Y., Wang, G. G. X., 2017. Sedimentary Control on the Formation of a Multi-Superimposed Gas System in the Development of Key Layers in the Sequence Framework. Marine and Petroleum Geology, 88(12): 268-281. https://doi.org/10.1016/j.marpetgeo.2017.08.024 Sun, S. S., Yao, Y. B., Lin, W., 2015. Elemental Geochemical Characteristics of the Oil Shale and the Paleo-Lake Environment of the Tongchuan Area, Southern Ordos Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 642-645 (in Chinese with English abstract). Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Black Well Scientific Publications, Oxford, 28-30. Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 Wang, D. Y., Tang, D. Z., Gou, M. F., et al., 2007. Oil-Shale Geology of Lucaogou Formation in Fukang Area on Southern Margin of Junggar Basin. China Petroleum Exploration, 12(6): 18-22, 71 (in Chinese with English abstract). Wang, Z. Y., Cheng, A. J., Zhuo, E. J., et al., 1994. Paleosalinity Index of Holocene Sediments in Taihu Lake and Its Environmental Significance. Journal of Stratigraphy, 18(3): 196-202 (in Chinese with English abstract). Wei, H., Feng, Q. L., Yu, J. X., et al., 2022. Characteristics and Sources of Organic Matter from the Early Cambrian Niutitang Formtion and Its Preservation Environment in Guizhou. Journal of Earth Science, 33(4): 933-944. https://doi.org/10.1007/s12583-020-1371-1 Wei, W., Algeo, T. J., 2020. Elemental Proxies for Paleosalinity Analysis of Ancient Shales and Mudrocks. Geochimica et Cosmochimica Acta, 287(10): 341-366. https://doi.org/10.1016/j.gca.2019.06.034 Wu, D. X., Zhou, J. G., Ren, J. F., et al., 2023. Reconstruction of Depositional Environment and Source-Reservoir Configuration Relationship of Ordovician Majiagou Formation in Ordos Basin. Earth Science, 48(2): 553-567(in Chinese with English abstract). Wu, Z. Y., Zhao, X. Z., Wang, E. N., 2021. Sedimentary Environment and Organic Enrichment Mechanisms of Lacustrine Shale: A Case Study of the Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110404. https://doi.org/10.1016/j.palaeo.2021.110404 Xu, C., 2018. Geochemical Characteristics of Oil Shale in Youganwo Formation and Its Aggregation Factors of Organic Matter, Maoming Basin (Dissertation). Jinlin University, Changchun (in Chinese with English abstract). Xu, X. D., Zhang, Y. Z., Huang, Y. W., et al., 2013. Main Controlling Factors of Oil Shale Development in Liushagang Formation, Wushi Depression, Beibu Gulf Basin. Acta Petrolei Sinica, 34(S2): 66-73 (in Chinese with English abstract). Xu, Y. B., Li, F., Zhang, J. Q., et al., 2022. Enrichment Characteristics of Organic Matter in the Permian Lucaogou Formation in Shitoumei Area, Santanghu Basin. Acta Geologica Sinica, 96(11): 4010-4022 (in Chinese with English abstract). Xu, Z. J., Cheng, R. H., Wang, L. L., et al., 2009. Paleosalinity Records to Sea Level Change of the Northern Margin of the South China Sea in Early Jurassic. Acta Sedimentologica Sinica, 27(6): 1147-1154 (in Chinese with English abstract). Xu, Z. J., Wang, Y., Jiang, S., 2022. Impact of Input, Preservation and Dilution on Organic Matter Enrichment in Lacustrine Rift Basin: A Case Study of Lacustrine Shale in Dehui Depression of Songliao Basin, NE China. Marine and Petroleum Geology, 135: 105386. https://doi.org/10.1016/j.marpetgeo.2021.105386 Yang, J. H., Luo, C. G., Du, S. J., et al., 2020. Discussion on the Applicability of Paleoenvironmental Index for Sedimentary Rocks with High Clay Content. Acta Mineralogica Sinica, 40(6): 723-733 (in Chinese with English abstract). Yu, J. F., Wu, Z. J., 1983. Sporopollen Assemblage and Its Geological Age in Maowu Well, Maoming Basin, Guangdong Province. Journal of Stratigraphy, 7(2): 112-118, 163-164 (in Chinese with English abstract). Zhang, G. W., Tao, S., Tang, D. Z., et al., 2017. Geochemical Characteristics of Trace Elements and Rare Earth Elements in Permian Lucaogou Oil Shale, Santanghu Basin. Journal of China Coal Society, 42(8): 2081-2089 (in Chinese with English abstract). Zhang, Q., Liang, F., Wang, H. Y., et al., 2018. Elements Geochemistry and Paleo Sedimentary Significance: A Case Study of the Wufeng-Longmaxi Shale in Southeast Chongqing. Journal of China University of Mining & Technology, 47(2): 380-390 (in Chinese with English abstract). Zhao, C. J., Kang, Z. H., Hou, Y. H., et al., 2020. Geochemical Characteristics of Rare Earth Elements and Their Geological Significance of Permian Shales in Lower Yangtze Area. Earth Science, 45(11): 4118-4127 (in Chinese with English abstract). Zheng, Y. D., Lei, Y. H., Zhang, L. Q., et al., 2015. Characteristics of Element Geochemistry and Paleo Sedimentary Environment Evolution of Zhangjiatan Shale in the Southeast of Ordos Basin and Its Geological Significance for Oil and Gas. Natural Gas Geoscience, 26(7): 1395-1404 (in Chinese with English abstract). 曹新星, 宋之光, 李艳, 等, 2016. 茂名油页岩沉积有机质特征及古气候意义. 地学前缘, 23(3): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603033.htm 郭伟, 冯庆来, Maliha Zareen Khan, 2021. 重庆焦页143-5井五峰组-龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572-582. doi: 10.3799/dqkx.2020.049 何龙, 王云鹏, 陈多福, 等, 2019. 重庆南川地区五峰组-龙马溪组黑色页岩沉积环境与有机质富集关系. 天然气地球科学, 30(2): 203-218. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201902005.htm 侯丽云, 孙平昌, 刘招君, 等, 2021. 松辽盆地扶余-长春岭矿区青山口组油页岩原位开采中试示范区优选. 中国煤炭地质, 33(8): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202108002.htm 胡晓峰, 刘招君, 柳蓉, 等, 2012. 桦甸盆地始新统桦甸组黏土矿物和无机地球化学特征及其古环境意义. 煤炭学报, 37(3): 416-423. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203012.htm 金章东, 张恩楼, 2002. 湖泊沉积物Rb/Sr比值的古气候含义. 科学技术与工程, 2(3): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200203008.htm 康志勤, 赵阳升, 杨栋, 等, 2021. 油页岩原位注蒸汽开采油气中试与多模式原位热采技术的适用性分析. 石油学报, 42(11): 1458-1468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111006.htm 李殿超, 朱建伟, 严焕榕, 等, 2006. 广东省茂名盆地油页岩的沉积特征及分布规律. 吉林大学学报(地球科学版), 36(6): 938-943. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606011.htm 李鹏, 刘全有, 毕赫, 等, 2021. 火山活动与海侵影响下的典型湖相页岩有机质保存差异分析. 地质学报, 95(3): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103003.htm 李琪琪, 蓝宝锋, 李刚权, 等, 2021. 黔中隆起北缘五峰-龙马溪组页岩元素地球化学特征及其地质意义. 地球科学, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354 刘传联, 徐金鲤, 2002. 生油古湖泊生产力的估算方法及应用实例. 沉积学报, 20(1): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201023.htm 刘德勋, 王红岩, 郑德温, 等, 2009. 世界油页岩原位开采技术进展. 天然气工业, 29(5): 128-132, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905041.htm 刘燕海, 李琨杰, 刘东娜, 等, 2020. 沁水盆地新近纪张村组油页岩评价及古环境分析. 煤田地质与勘探, 48(5): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005002.htm 刘招君, 孟庆涛, 柳蓉, 等, 2009. 抚顺盆地始新统计军屯组油页岩地球化学特征及其地质意义. 岩石学报, 25(10): 2340-2350. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910004.htm 卢贤志, 沈俊, 郭伟, 等, 2021. 中上扬子地区奥陶纪-志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258 罗宏谓, 侯明才, 刘宇, 等, 2019. 桂中鹿寨地区鹿寨组下段地球化学特征及有机质富集因素. 成都理工大学学报(自然科学版), 46(2): 227-239. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201902012.htm 马风华, 张勇, 潘进礼, 等, 2021. 六盘山盆地白垩系马东山组泥页岩稀土元素地球化学特征及地质意义. 地质论评, 67(1): 209-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101021.htm 孟庆涛, 李金国, 刘招君, 等, 2020. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境. 吉林大学学报(地球科学版), 50(2): 356-367. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002005.htm 孟庆涛, 刘招君, 胡菲, 等, 2012. 桦甸盆地始新世古湖泊生产力与有机质富集机制. 中国石油大学学报(自然科学版), 36(5): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201205009.htm 苗耀, 桑树勋, 林会喜, 等, 2007. 渤海湾盆地石炭-二叠系微量元素特征及其指相意义. 沉积与特提斯地质, 27(4): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200704006.htm 乔世海, 李玉宏, 郭望, 等, 2019. 陕西铜川地区延长组长7油页岩无机地球化学特征及古环境恢复. 石油实验地质, 41(1): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201901017.htm 邱振, 王清晨, 2012. 来宾地区中晚二叠世之交烃源岩沉积的主控因素及大地构造背景. 地质科学, 47(4): 1085-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201204013.htm 孙莎莎, 姚艳斌, 吝文, 2015. 鄂尔多斯盆地南缘铜川地区油页岩元素地球化学特征及古湖泊水体环境. 矿物岩石地球化学通报, 34(3): 642-645. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201503026.htm 王东营, 汤达祯, 苟明福, 等, 2007. 准噶尔南缘阜康地区芦草沟组油页岩地质特征. 中国石油勘探, 12(6): 18-22, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200706005.htm 王子玉, 程安进, 卓二军, 等, 1994. 太湖全新世沉积物的古盐度指标及其环境意义. 地层学杂志, 18(3): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ403.006.htm 吴东旭, 周进高, 任军峰, 等, 2023. 鄂尔多斯盆地奥陶系马家沟组沉积环境恢复与源储配置关系. 地球科学, 48(2): 553-567. doi: 10.3799/dqkx.2022.346 徐川, 2018. 茂名盆地古近系油柑窝组油页岩地球化学特征及有机质聚集条件(硕士学位论文). 长春: 吉林大学. 徐新德, 张迎朝, 黄义文, 等, 2013. 北部湾盆地乌石凹陷流沙港组油页岩发育的主控因素. 石油学报, 34(增刊2): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2009.htm 徐银波, 李锋, 张家强, 等, 2022. 三塘湖盆地石头梅地区二叠系芦草沟组有机质富集特征. 地质学报, 96(11): 4010-4022. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211023.htm 许中杰, 程日辉, 王嘹亮, 等, 2009. 南海北部陆缘早侏罗世海平面变化的古盐度记录. 沉积学报, 27(6): 1147-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906018.htm 杨季华, 罗重光, 杜胜江, 等, 2020. 高黏土含量沉积岩古环境指标适用性讨论. 矿物学报, 40(6): 723-733. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202006009.htm 余金凤, 吴作基, 1983. 广东茂名盆地茂五井的孢粉组合及其地质时代的探讨. 地层学杂志, 7(2): 112-118, 163-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198302003.htm 张国伟, 陶树, 汤达祯, 等, 2017. 三塘湖盆地二叠系芦草沟组油页岩微量元素和稀土元素地球化学特征. 煤炭学报, 42(8): 2081-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201708021.htm 张琴, 梁峰, 王红岩, 等, 2018. 页岩元素地球化学特征及古环境意义: 以渝东南地区五峰—龙马溪组为例. 中国矿业大学学报, 47(2): 380-390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802018.htm 赵晨君, 康志宏, 侯阳红, 等, 2020. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义. 地球科学, 45(11): 4118-4127. doi: 10.3799/dqkx.2019.274 郑一丁, 雷裕红, 张立强, 等, 2015. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义. 天然气地球科学, 26(7): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507023.htm -
dqkxzx-49-4-1367-附表1-2.docx