Quantification of Groundwater Discharge and Its Spatial Variability in Jingjiang Section of Middle Reach of the Yangtze River
-
摘要: 地下水与河流的相互作用对于维持河流生态系统的健康十分关键,但是目前对于地下水向湿润地区大型河流排泄过程的定量化研究较为薄弱.针对这一问题,以长江中游荆江段为研究区,通过野外采样和水文气象数据收集,利用222Rn质量平衡模型定量估算长江中游荆江段的地下水排泄,并用EC质量平衡模型及水量平衡模型验证222Rn质量平衡的结果.结果显示:长江中游荆江段的平均地下水排泄速率为133 mm/d,排泄总量为1.06×108 m3/d,对水量平衡的贡献约为10.99%.其中枝城-沙市段地下水排泄速率最大,监利-螺山段地下水排泄速率最低.含水层富水性和地下水位可能是控制地下水排泄速率的关键因素.本研究对于流域水资源管理具有重要意义,也可为今后长江中游地区水资源的合理开发利用以及生态环境保护提供理论依据.Abstract: The interaction between groundwater and rivers is critical to maintaining the health of river ecosystems, but the quantitative research on the groundwater discharge to large rivers in humid regions is currently weak. In response to this problem, in this paper it takes the Jingjiang Section of the middle reach of the Yangtze River as the study area, and uses the 222Rn mass balance model to estimate the groundwater discharge in the Jingjiang Section of the middle reach of the Yangtze River through field sampling and hydrometeorological data collection, and uses the EC mass balance model and water balance model to verify the result of 222Rn mass balance. The results show that the average groundwater discharge rate of the Jingjiang Section in the middle reach of the Yangtze River is 133 mm/d, the total discharge volume is 1.06×108 m3/d, and the contribution to the water balance is about 10.99%. Among different sub-sections, the groundwater discharge rate from Zhicheng to Shashi is the highest, and the groundwater discharge rate from Jianli to Luoshan is the lowest. Aquifer richness and groundwater table may be key factors controlling the rate of groundwater discharge. This research is of great significance for the local eco-environmental protection and the control and management of water resources, and can also provide a theoretical basis for the better development and utilization of water resources in the middle reach of the Yangtze River and eco-environmental protection in the future.
-
Key words:
- groundwater discharge /
- radon /
- water balance /
- Jingjiang River /
- middle reach of the Yangtze River /
- hydrogeology
-
表 1 222Rn质量平衡参数值
Table 1. Parameter values for the 222Rn mass balance model
参数 值 数据来源 河水222Rn活度(Cw) 283.56 Bq/m3 野外测量 大气222Rn活度(Ca) 8.11 Bq/m3 野外测量 沉积物孔隙水222Rn活度(Cg) 1 020.50 Bq/m3 沉积物平衡培养实验 平均水温(T) 13.45℃ 野外测量 平均风速($ \mu $) 2.38 m/s 中国气象网 施密特数(Sc) 1456.75 公式(6) 气体分布系数(α) 0.311 公式(4) 孔隙度(n) 0.45 室内实验 宜昌站流量(m3/d) 6.25×108 湖北省常用水情网 枝城站流量(m3/d) 6.50×108 湖北省常用水情网 沙市站流量(m3/d) 7.13×108 湖北省常用水情网 监利站流量(m3/d) 7.19×108 湖北省常用水情网 螺山站流量(m3/d) 9.49×108 湖北省常用水情网 洞庭湖来水流量(m3/d) 2.54×108 湖北省常用水情网 清江来水流量(m3/d) 3.07×107 湖北省常用水情网 松滋河去水流量(m3/d) 1.49×107 湖北省常用水情网 上游及支流来水222Rn通量(Bq/m2d) 193.754 上游及支流来水流量乘以其中平均222Rn活度除以河段面积 下游及支流流出222Rn通量(Bq/m2d) 171.516 下游及支流流出流量乘以其中平均222Rn活度除以河段面积 大气扩散222Rn通量(Fatm)(Bq/m2d) 280.33 公式(3) 沉积物扩散222Rn通量(Fdiff)(Bq/m2d) 1.15 公式(7) 自身衰变222Rn通量(Bq/m2d) 421.94 公式(1) 地下水排泄222Rn通量(Fgw)(Bq/m2d) 678.86 公式(1) 表 2 不同端元的EC值
Table 2. Results of the EC values in different end members
河水 地下水 清江 松滋河 洞庭湖 上游来水 下游去水 EC(μs/cm) 353.1 684.4 265 355 263 376 359 表 3 水量平衡模型的参数值(m3/d)
Table 3. Parameter values for the water balance model (m3/d)
河段体积变化 上游来水及支流流入 下游去水及支流流出 蒸发量 降雨量 -5.77×107 9.42×108 9.79×108 1.23×106 1.36×106 表 4 含水层富水性及地下水位分段
Table 4. Segmental data of aquifer water content and groundwater lever
河段 含水层富水性
(L/sm)地下水位(m) 地下水排泄速率
V(mm/d)宜昌-
枝城中等
(0.1 < q < 1)高
(> 100)较强
(150 < V < 200)枝城-
沙市中等-强
(0.1 < q < 5)中等
(~40)强
(200 < V)沙市-
监利中等-强
(0.1 < q < 5)中等偏低
(~30)中等
(100 < V < 150)监利-
螺山中等-弱
(0 < q < 1)低
(~25)弱
(100 < V)注:q为钻孔单位涌水量. -
Batlle-Aguilar, J., Harrington, G. A., Leblanc, M., et al., 2014. Chemistry of Groundwater Discharge Inferred from Longitudinal River Sampling. Water Resources Research, 50(2): 1550-1568. https://doi.org/10.1002/2013wr013591 Bauer, P., Held, R. J., Zimmermann, S., et al., 2006. Coupled Flow and Salinity Transport Modelling in Semi-Arid Environments: The Shashe River Valley, Botswana. Journal of Hydrology, 316(1/2/3/4): 163-183. https://doi.org/10.1016/j.jhydrol.2005.04.018 Boudreau, B. P., 1996. The Diffusive Tortuosity of Fine-Grained Unlithified Sediments. Geochimica et Cosmochimica Acta, 60(16): 3139-3142. https://doi.org/10.1016/0016-7037(96)00158-5 Burnett, W. C., Peterson, R. N., Chanyotha, S., et al., 2013. Using High-Resolution In Situ Radon Measurements to Determine Groundwater Discharge at a Remote Location: Tonle Sap Lake, Cambodia. Journal of Radioanalytical and Nuclear Chemistry, 296(1): 97-103. https://doi.org/10.1007/s10967-012-1914-8 Burnett, W. C., Peterson, R. N., Santos, I. R., et al., 2010. Use of Automated Radon Measurements for Rapid Assessment of Groundwater Flow into Florida Streams. Journal of Hydrology, 380(3-4): 298-304. https://doi.org/10.1016/j.jhydrol.2009.11.005 Che, Q. H., Su, X. S., Zheng, S. D., et al., 2021. Interaction between Surface Water and Groundwater in the Alluvial Plain (Anqing Section) of the Lower Yangtze River Basin: Environmental Isotope Evidence. Journal of Radioanalytical and Nuclear Chemistry, 329(3): 1331-1343. https://doi.org/10.1007/s10967-021-07889-4 Chen, X., 2007. Hydrologic Connections of a Stream-Aquifer-Vegetation Zone in South-Central Platte River Valley, Nebraska. Journal of Hydrology, 333(2/3/4): 554-568. https://doi.org/10.1016/j.jhydrol.2006.09.020 Corbett, D. R., Burnett, W. C., Cable, P. H., et al., 1998. A Multiple Approach to the Determination of Radon Fluxes from Sediments. Journal of Radioanalytical and Nuclear Chemistry, 236(1/2): 247-253. https://doi.org/10.1007/BF02386351 Dai, W. Y., 2021. Analysis of Riverbed Evolution of the Waigaoqiao Branch Channel of the Yangtze Estuary in Flood Period under New Water and Sediment Conditions. American Journal of Water Science and Engineering, 7(2): 48-56. https://doi.org/10.11648/j.ajwse.20210702.13 Deng, Q. J., Tang, Z. H., Wu, Q., et al., 2014. Characteristics of Groundwater and Its Influencing Factors in Jingzhou City. Resources and Environment in the Yangtze Basin, 23(9): 1215-1221 (in Chinese with English abstract). Dimova, N. T., Burnett, W. C., 2011. Evaluation of Groundwater Discharge into Small Lakes Based on the Temporal Distribution of Radon-222. Limnology and Oceanography, 56(2): 486-494. https://doi.org/10.4319/lo.2011.56.2.0486 Fan, X. J., Wang, L., Li, C., et al., 2021. Occurrence Characteristics of Shallow Groundwater in Urban District in Yichang. Resources Environment & Engineering, 35(2): 211-215, 231 (in Chinese with English abstract). Freeze, R. A., Witherspoon, P. A., 1967. Theoretical Analysis of Regional Groundwater Flow: 2. Effect of Water-Table Configuration and Subsurface Permeability Variation. Water Resources Research, 3(2): 623-634. https://doi.org/10.1029/wr003i002p00623 Gao, Y., Chen, L., Zhang, W., et al., 2021. Spatiotemporal Variations in Characteristic Discharge in the Yangtze River Downstream of the Three Gorges Dam. Science of the Total Environment, 785(3-4): 147343. https://doi.org/10.1016/j.scitotenv.2021.147343 Han, J. B., Xu, J. X., Yi, L., et al., 2022. Seasonal Interaction of River Water-Groundwater-Salt Lake Brine and Its Influence on Water-Salt Balance in the Nalenggele River Catchment in Qaidam Basin, NW China. Journal of Earth Science, 33(5): 1298-1308. https://doi.org/10.1007/s12583-022-1731-0 Han, J. Q., Wang, Y., Sun, Z. H., 2021. Changes of Water Stage in the Middle Yangtze River Influenced by Human Activities in the Past 70 Years. Frontiers of Earth Science, 15(1): 121-132. https://doi.org/10.1007/s11707-020-0855-8 Huang, C. S., Zhou, Y., Zhang, S. N., et al., 2021. Groundwater Resources in the Yangtze River Basin and Its Current Development and Utilization. Geology in China, 48(4): 979-1000 (in Chinese with English abstract). Kluge, T., Ilmberger, J., von Rohden, C., et al., 2007. Tracing and Quantifying Groundwater Inflow into Lakes Using a Simple Method for Radon-222 Analysis. Hydrology and Earth System Sciences, 11(5): 1621-1631. https://doi.org/10.5194/hess-11-1621-2007 Li, M. T., 2005. Study on the Coupling Effect of Main Water and Sediment in the Middle and Lower Reaches of the Yangtze River and Modern Riverbed Geomorphology(Dissertation). East China Normal University, Shanghai (in Chinese with English abstract). Liao, F., Wang, G. C., Shi, Z. M., et al., 2018. Estimation of Groundwater Discharge and Associated Chemical Fluxes into Poyang Lake, China: Approaches Using Stable Isotopes (δD and δ18O) and Radon. Hydrogeology Journal, 26(5): 1625-1638. https://doi.org/10.1007/s10040-018-1793-3 Liu, J., Tian, Y., Huang, K., et al., 2021. Spatial-Temporal Differentiation of the Coupling Coordinated Development of Regional Energy-Economy-Ecology System: A Case Study of the Yangtze River Economic Belt. Ecological Indicators, 124(2): 107394. https://doi.org/10.1016/j.ecolind.2021.107394 Liu, S., Zhu, J. Q., Tian, H., 2012. Main Water Issues and Countermeasures in Middle and Lower Reaches of Yangtze River. Journal of Yangtze University (Natural Science Edition), 9(1): 42-46, 5 (in Chinese with English abstract). Luo, X., Jiao, J. J., Wang, X. S., et al., 2016. Temporal 222Rn Distributions to Reveal Groundwater Discharge into Desert Lakes: Implication of Water Balance in the Badain Jaran Desert, China. Journal of Hydrology, 534: 87-103. https://doi.org/10.1016/j.jhydrol.2015.12.051 Mao, L. F., Fu, S., Liu, H., et al., 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493(in Chinese with English abstract). Martinez, J. L., Raiber, M., Cox, M. E., 2015. Assessment of Groundwater-Surface Water Interaction Using Long-Term Hydrochemical Data and Isotope Hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia. Science of the Total Environment, 536: 499-516. https://doi.org/10.1016/j.scitotenv.2015.07.031 Ortega, L., Manzano, M., Custodio, E., et al., 2015. Using 222Rn to Identify and Quantify Groundwater Inflows to the Mundo River (SE Spain). Chemical Geology, 395: 67-79. https://doi.org/10.1016/j.chemgeo.2014.12.002 Pan, B. Z., Liu, X. Y., 2021. A Review of Water Ecology Problems and Restoration in the Yangtze River Basin. Journal of Yangtze River Scientific Research Institute, 38(3): 1-8 (in Chinese with English abstract). Qi, L. Y., Huang, J. C., Gao, J. F., et al., 2017. Temporal and Spatial Simulation of Water Level and Velocity during Low Water Level Statistical Year in Lake Poyang. Resources and Environment in the Yangtze Basin, 26(4): 572-584 (in Chinese with English abstract). Rosenberry, D. O., Lewandowski, J., Meinikmann, K., et al., 2015. Groundwater—The Disregarded Component in Lake Water and Nutrient Budgets. Part 1: Effects of Groundwater on Hydrology. Hydrological Processes, 29(13): 2895-2921. https://doi.org/10.1002/hyp.10403 Tóth, J., 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research, 68(16): 4795-4812. https://doi.org/10.1029/jz068i016p04795 Wang, S. Y., He, X. B., Ding, Y. J., et al., 2020. Characteristics and Influencing Factors of Stable Hydrogen and Oxygen Isotopes in Groundwater in the Permafrost Region of the Source Region of the Yangtze River. Environmental Science, 41(1): 166-172 (in Chinese with English abstract). Wang, Y. S., Chen, X. X., Zhang, M. N., et al., 2017. Using Multiple Tracers to Quantify Groundwater Discharge to Yellow River in Weining Plain. IOP Conference Series: Earth and Environmental Science, 59(1): 012023. https://doi.org/10.1088/1755-1315/59/1/012023 Xie, Q. C., Yang, J., Staffan Lundström, T., 2021. Sediment and Morphological Changes along Yangtze River's 500 km between Datong and Xuliujing before and after Three Gorges Dam Commissioning. Scientific Reports, 11(1): 13662. https://doi.org/10.1038/s41598-021-93004-2 Xie, Y. Q., Cook, P. G., Shanafield, M., et al., 2016. Uncertainty of Natural Tracer Methods for Quantifying River-Aquifer Interaction in a Large River. Journal of Hydrology, 535: 135–147. https://doi.org/10.1016/j.jhydrol.2016.01.071 Xu, J., Wang, Y. G., Chen, Y., et al., 2020. Characteristics on Spatiotemporal Variations of Surface Water Environmental Quality in Tuojiang River in Upper Reaches of Yangtze River Basin. Earth Science, 45(6): 1937-1947 (in Chinese with English abstract). Yang, B., Zhang, Y. H., 2020. Properties of Vertical Distribution of Velocity in Dongtinghu Lake. Water Resources and Power, 38(8): 33-36 (in Chinese with English abstract). Yang, J., Yu, Z. B., Yi, P., et al., 2020. Evaluation of Surface Water and Groundwater Interactions in the Upstream of Kui River and Yunlong Lake, Xuzhou, China. Journal of Hydrology, 583(15): 124549. https://doi.org/10.1016/j.jhydrol.2020.124549 Yang, X. L., Yu, X. H., Wang, Y. Q., et al., 2019. Estimating the Response of Hydrological Regimes to Future Projections of Precipitation and Temperature over the Upper Yangtze River. Atmospheric Research, 230: 104627. https://doi.org/10.1016/j.atmosres.2019.104627 Zhou, Y., Wenninger, J., Yang, Z., et al., 2013. Groundwater-Surface Water Interactions, Vegetation Dependencies and Implications for Water Resources Management in the Semi-Arid Hailiutu River Catchment, China: A Synthesis. Hydrology and Earth System Sciences, 17(7): 2435-2447. https://doi.org/10.5194/hess-17-2435-2013 邓青军, 唐仲华, 吴琦, 等, 2014. 荆州市地下水动态特征及影响因素分析. 长江流域资源与环境, 23(9): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201409005.htm 范小军, 汪力, 李超, 等, 2021. 宜昌市主城区浅层地下水的赋存特征初探. 资源环境与工程, 35(2): 211-215, 231. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202102015.htm 黄长生, 周耘, 张胜男, 等, 2021. 长江流域地下水资源特征与开发利用现状. 中国地质, 48(4): 979-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104002.htm 李茂田, 2005. 长江中下游干流水沙与现代河床地貌耦合作用研究(博士学位论文). 上海: 华东师范大学. 刘松, 朱建强, 田皓, 2012. 长江中下游地区的主要水问题与对策. 长江大学学报(自然科学版), 9(1): 42-46, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201201014.htm 毛龙富, 付舒, 刘宏, 等, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149 潘保柱, 刘心愿, 2021. 长江流域水生态问题与修复述评. 长江科学院院报, 38(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202103002.htm 齐凌艳, 黄佳聪, 高俊峰, 等, 2017. 鄱阳湖枯水水位及流速时空分布模拟. 长江流域资源与环境, 26(4): 572-584. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201704010.htm 汪少勇, 何晓波, 丁永建, 等, 2020. 长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素. 环境科学, 41(1): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001020.htm 许静, 王永桂, 陈岩, 等, 2020. 长江上游沱江流域地表水环境质量时空变化特征. 地球科学, 45(6): 1937-1947. doi: 10.3799/dqkx.2020.012 杨斌, 张英豪, 2020. 洞庭湖流速垂向分布特性. 水电能源科学, 38(8): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202008009.htm -
dqkxzx-49-4-1448-附图1-2.docx