• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    库岸古滑坡复活变形特征及双滑带稳定性响应

    杨雨亭 代贞伟 陆愈实 张晨阳 闫慧 侯雪峰 唐俊刚

    杨雨亭, 代贞伟, 陆愈实, 张晨阳, 闫慧, 侯雪峰, 唐俊刚, 2024. 库岸古滑坡复活变形特征及双滑带稳定性响应. 地球科学, 49(4): 1498-1514. doi: 10.3799/dqkx.2022.283
    引用本文: 杨雨亭, 代贞伟, 陆愈实, 张晨阳, 闫慧, 侯雪峰, 唐俊刚, 2024. 库岸古滑坡复活变形特征及双滑带稳定性响应. 地球科学, 49(4): 1498-1514. doi: 10.3799/dqkx.2022.283
    Yang Yuting, Dai Zhenwei, Lu Yushi, Zhang Chenyang, Yan Hui, Hou Xuefeng, Tang Jungang, 2024. Deformation Characteristics and Stability Changes Characteristics of Reservoir Landslides with Double-Sliding Zones. Earth Science, 49(4): 1498-1514. doi: 10.3799/dqkx.2022.283
    Citation: Yang Yuting, Dai Zhenwei, Lu Yushi, Zhang Chenyang, Yan Hui, Hou Xuefeng, Tang Jungang, 2024. Deformation Characteristics and Stability Changes Characteristics of Reservoir Landslides with Double-Sliding Zones. Earth Science, 49(4): 1498-1514. doi: 10.3799/dqkx.2022.283

    库岸古滑坡复活变形特征及双滑带稳定性响应

    doi: 10.3799/dqkx.2022.283
    基金项目: 

    重庆市自然科学基金重点项目 cstc2020jcyj-zdxmX0019

    详细信息
      作者简介:

      杨雨亭(1992-),女,博士研究生,从事地质灾害与安全工程方面的研究.ORCID:0000-0002-7040-5885. E-mail:yangyt@cug.edu.cn

      通讯作者:

      代贞伟(1986-), 男,高级工程师,工学博士,主要从事地质灾害成灾机理与防灾减灾研究. E-mail: daizhenwei@163.com

    • 中图分类号: P642

    Deformation Characteristics and Stability Changes Characteristics of Reservoir Landslides with Double-Sliding Zones

    • 摘要: 三峡库区存在大量的双滑带及多滑带古滑坡,目前对库岸双滑带滑坡变形复活特征及稳定性响应特征的研究较少.以塔坪滑坡为例,通过工程地质勘察和监测资料分析,揭示了该滑坡变形复活特征.并进一步开展了库水位和降雨联合作用下塔坪滑坡的渗流场和稳定性数值模拟计算,揭示了不同滑带对库水位波动和降雨的响应特征.结果表明,塔坪滑坡为阶梯式变形模式,每年的雨季和库水位下降期,滑坡变形速度增大.滑坡表现为显著的前缘牵引式渐进破坏模式.降雨主要对浅层滑带的稳定性产生较大的影响,对深层滑带的影响较小.库水位抬升,浅层滑带的稳定性降低,深层滑带的稳定性增大;库水位下降,浅层滑带的稳定性增大,深层滑带稳定性减小.

       

    • 图  1  塔坪滑坡全貌

      Fig.  1.  Overview of the Taping landslide

      图  2  塔坪滑坡剖面

      Fig.  2.  Cross-section of the Taping landslide

      图  3  滑体全孔壁摄像

      Fig.  3.  Borehole photography

      图  4  塔坪滑坡变形破坏迹象

      滑坡平面图所示等高线单位为m

      Fig.  4.  Deformation and failure signs of the Taping landslide

      图  5  塔坪滑坡变形云图

      Fig.  5.  Planar deformation contours of the Taping landslide

      图  6  塔坪滑坡位移时间序列变形曲线

      Fig.  6.  Time history of displacement curves of the Taping landslide

      图  7  钻孔和探槽照片

      Fig.  7.  Borehole and trenching photos

      图  8  深部测斜数据

      Fig.  8.  Inclinometer data

      a.In07; b.In08

      图  9  巫山塔坪滑坡175 m库水位和145 m库水位时地下水位线等势图(单位:m)

      Fig.  9.  Isoline maps of groundwater level at 175 m and 145 m reservoir water levels in the Taping landslide

      图  10  塔坪滑坡地下水变化曲线

      Fig.  10.  Groundwater level curves in the Taping landslide

      图  11  塔坪滑坡二维数值模型

      Fig.  11.  2D numerical model of the Taping landslide

      图  12  数值模拟中施加的库水位和降雨

      Fig.  12.  Reservoir water level and precipitation applied in numerical simulation

      图  13  库水位波动和降雨联合作用下塔坪滑坡浸润线

      Fig.  13.  Seepage lines of the Taping landslide under combined action of reservoir water level and precipitation

      图  14  双滑带孔隙水压力波动

      a. 浅层滑带; b. 深层滑带

      Fig.  14.  Porewater pressure variation in the double sliding zones

      图  15  2014—2015塔坪滑坡双滑带稳定性变化曲线

      Fig.  15.  FOS variation curves of the Taping landslide during 2014—2015

      图  16  滑坡整体稳定性与地表监测数据对比曲线

      Fig.  16.  Comparison between FOS curves and displacement curves of the Taping landslide

      图  17  滑坡稳定性系数变化率与库水位高程及降雨强度的关系

      a. 浅层滑带;b. 深层滑带

      Fig.  17.  Relationship between the change rate of FOS and the reservoir water level and precipitation

      图  18  库水位升降速率与稳定性变化率之间的关系

      Fig.  18.  Relationship between fluctuation rate of reservoir water level and change rate of FOS

      图  19  降雨与稳定性变化率之间的关系

      Fig.  19.  Relationship between precipitation and change rate of FOS

      图  20  塔坪滑坡坡面水压力和水力梯度曲线

      Fig.  20.  Surface water pressure and hydraulic gradient of the Taping landslide

      表  1  数值模型中材料的物理力学参数

      Table  1.   Physico-mechanical parameters applied in numerical modeling

      材料 容重(kN/m3) 粘聚力(kPa) 内摩擦角(°) 饱和渗透系数(m/d)
      碎石土 20.62 25.21 23.5 5
      碎裂岩体 24.62 43.50 35.2 3
      滑带一 17.90 32.00 18.8 2
      滑带二 17.90 32.00 20.9 2
      石英砂岩 基岩 0.2
      下载: 导出CSV
    • Dai, Z. W., Yin, Y. P., Wei, Y. J., et al., 2015. Characteristics, Origin and Formation Mechanism of the Outang Landslide in the Three Gorges Reservoir Area. Hydrogeology and Engineering Geology, 42(6): 145-153 (in Chinese with English abstract).
      Dai, Z. W., Yin, Y. P., Wei, Y. J., et al., 2016. Deformation and Failure Mechanism of Outang Landslide in Three Gorges Reservoir Area. Journal of Engineering Geology, 24(1): 44-55 (in Chinese with English abstract).
      Deng, Q. L., Wang, X. P., 2000. Growth History of Huangtupo Landslide: Down-Slope Overlapping-Landsliding-Modification. Earth Science, 25(1): 44-50 (in Chinese with English abstract).
      Huang, D., Gu, D. M., Song, Y. X., et al., 2018. Towards a Complete Understanding of the Triggering Mechanism of a Large Reactivated Landslide in the Three Gorges Reservoir. Engineering Geology, 238: 36-51. https://doi.org/10.1016/j.enggeo.2018.03.008
      Kamran, M., Hu, X. W., Hussain, M. A., et al., 2023. Dynamic Response and Deformation Behavior of Kadui-2 Landslide Influenced by Reservoir Impoundment and Rainfall, Baoxing, China. Journal of Earth Science, 34(3): 911-923. https://doi.org/10.1007/s12583-022-1649-6
      Lane, P. A., Griffiths, D. V., 2000. Assessment of Stability of Slopes under Drawdown Conditions. Journal of Geotechnical and Geoenvironmental Engineering, 126(5): 443-450. https://doi.org/10.1061/(asce)1090-0241(2000)126:5(443)
      Lu, S. Q., Yi, Q. L., Yi, W., et al., 2014a. Analysis of Deformation and Failure Mechanism of Shuping Landslide in Three Gorges Reservoir Area. Rock and Soil Mechanics, 35(4): 1123-1130, 1202 (in Chinese with English abstract).
      Lu, S. Q., Yi, Q. L., Yi, W., et al., 2014b. Study on Dynamic Deformation Mechanism of Landslide in Drawdown of Reservoir Water Level—Take Baishuihe Landslide in Three Gorges Reservoir Area for Example. Journal of Engineering Geology, 22(5): 869-875 (in Chinese with English abstract).
      Müller, L., 1964. The Rock Slide in the Vajont Valley. Rock Mechanics and Engineering Geology, 2(3): 148-212.
      Paronuzzi, P., Rigo, E., Bolla, A., 2013. Influence of Filling-Drawdown Cycles of the Vajont Reservoir on Mt. Toc Slope Stability. Geomorphology, 191: 75-93. https://doi.org/10.1016/j.geomorph.2013.03.004
      Shi, X. G., Xu, J. H., Jiang, H. J., et al., 2019. Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis. Earth Science, 44(12): 4284-4292(in Chinese with English abstract).
      Song, K., Yan, E. C., Zhu, D. P., et al., 2011. Base on Permeability of Landslide and Reservoir Water Change to Research Variational Regularity of Landslide Stability. Rock and Soil Mechanics, 32(9): 2798-2802 (in Chinese with English abstract).
      Song, K., Chen, L. Y., Liu, Y. L., et al., 2022. Dynamic Mechanism of Rain Infiltration in Deep-Seated Landslide Reactivate Deformation. Earth Science, 47(10): 3665-3676(in Chinese with English abstract).
      Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China—Lessons Learned from Decades of Research. Engineering Geology, 261: 105267. https://doi.org/10.1016/j.enggeo.2019.105267
      Tao, Z. G., Luo, S. L., Zhu, C., et al., 2022. Dynamic Mechanical Monitoring of Landslide and Case Analysis of Failure Process. Journal of Engineering Geology, 30(1): 177-186(in Chinese with English abstract).
      Terzaghi, K., 1950. Mechanism of Landslides. In: Paige, S., ed., Application of Geology to Engineering Practice. Geotechnical Society of America, Berkeley, 83-123. https://doi.org/10.1130/Berkey.1950.83
      Wang, F. W., Zhang, Y. M., Wang, G. H., et al., 2007. Deformation Features of Shuping Landslide Caused by Water Level Changes in Three Gorges Reservoir Area, China. Chinese Journal of Rock Mechanics and Engineering, 26(3): 509-517 (in Chinese with English abstract).
      Wei, T. Y., Yin, Y. P., Gao, Y., et al., 2020. Deformation Mechanism of the Taping H1 Landslide in Wushan County in the Three Gorges Reservoir Area. Hydrogeology and Engineering Geology, 47(4): 73-81 (in Chinese with English abstract).
      Xiao, J. F., Li, Y. A., Cai, J. M., 2020. Model Test Research on Response Characteristics of Outang Landslide under Water Level Fluctuation. Journal of Engineering Geology, 28(5): 1049-1056(in Chinese with English abstract).
      Xiao, S. R., Lu, S. S., Guan, H. F., et al., 2013. Study of Geomechanical Model of Liangshuijing Landslide in Three Gorges Reservoir Area. Rock and Soil Mechanics, 34(12): 3534-3542(in Chinese with English abstract).
      Yang, J., Jian, W. X., Yang, H. F., et al., 2012. Dynamic Variation Rule of Phreatic Line in Huangtupo Landslide in Three Gorges Reservoir Area. Rock and Soil Mechanics, 33(3): 853-858 (in Chinese with English abstract).
      Yin, Y. P., 2003. Seepage Pressure Effect on Landslide Stability at the Three Gorges Reservoir Area. The Chinese Journal of Geological Hazard and Control, 14(3): 1-8(in Chinese with English abstract).
      Yin, Y. P., Zhang, C. Y., Yan, H., et al., 2022. Study on Seepage Stability and Prevention Design of Landslide in Three Gorges Reservoir Water Storage Operation. Chinese Journal of Rock Mechanics and Engineering, 41(4): 649-659(in Chinese with English abstract).
      Zangerl, C., Eberhardt, E., Perzlmaier, S., 2010. Kinematic Behaviour and Velocity Characteristics of a Complex Deep-Seated Crystalline Rockslide System in Relation to Its Interaction with a Dam Reservoir. Engineering Geology, 112(1-4): 53-67. https://doi.org/10.1016/j.enggeo.2010.01.001
      Zhang, C. Y., Yin, Y. P., Yan, H., et al., 2021. Reactivation Characteristics and Hydrological Inducing Factors of a Massive Ancient Landslide in the Three Gorges Reservoir, China. Engineering Geology, 292: 106273. https://doi.org/10.1016/j.enggeo.2021.106273
      Zhang, C. Y., Yin, Y. P., Yan, H., et al., 2023. Centrifuge Modeling of Unreinforced and Multi-Row Stabilizing Piles Reinforced Landslides Subjected to Reservoir Water Level Fluctuation. Journal of Rock Mechanics and Geotechnical Engineering, 20(3): 559-577. https://doi.org/10.1016/j.jrmge.2023.09.025
      Zhang, C. Y., Zhang, T. L., Zhang, M., et al., 2019. Rainfall Infiltration Characteristics and Numerical Simulation of Slope Instability in the Basalt Residual Soil in the Coastal Area of Southeast China. Hydrogeology and Engineering Geology, 46(4): 42-50(in Chinese with English abstract).
      Zhao, R. X., Yin, Y. P., Li, B., et al., 2017. Research on the Colluvial Landslide Stability during Reservoir Water Level Fluctuation. Journal of Hydraulic Engineering, 48(4): 435-445(in Chinese with English abstract).
      代贞伟, 殷跃平, 魏云杰, 等, 2015. 三峡库区藕塘滑坡特征、成因及形成机制研究. 水文地质工程地质, 42(6): 145-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201506024.htm
      代贞伟, 殷跃平, 魏云杰, 等, 2016. 三峡库区藕塘滑坡变形失稳机制研究. 工程地质学报, 24(1): 44-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601008.htm
      邓清禄, 王学平, 2000. 黄土坡滑坡的发育历史: 坠覆-滑坡-改造. 地球科学, 25(1): 44-50. http://www.earth-science.net/article/id/896
      卢书强, 易庆林, 易武, 等, 2014a. 三峡库区树坪滑坡变形失稳机制分析. 岩土力学, 35(4): 1123-1130, 1202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404029.htm
      卢书强, 易庆林, 易武, 等, 2014b. 库水下降作用下滑坡动态变形机理分析: 以三峡库区白水河滑坡为例. 工程地质学报, 22(5): 869-875. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405016.htm
      史绪国, 徐金虎, 蒋厚军, 等, 2019. 时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新. 地球科学, 44(12): 4284-4292. doi: 10.3799/dqkx.2019.180
      宋琨, 晏鄂川, 朱大鹏, 等, 2011. 基于滑体渗透性与库水变动的滑坡稳定性变化规律研究. 岩土力学, 32(9): 2798-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109043.htm
      宋琨, 陈伦怡, 刘艺梁, 等, 2022. 降雨诱发深层老滑坡复活变形的动态作用机制. 地球科学, 47(10): 3665-3676. doi: 10.3799/dqkx.2022.184
      陶志刚, 罗森林, 朱淳, 等, 2022. 滑坡动态力学监测及破坏过程案例分析. 工程地质学报, 30(1): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201015.htm
      汪发武, 张业明, 王功辉, 等, 2007. 三峡库区树坪滑坡受库水位变化产生的变形特征. 岩石力学与工程学报, 26(3): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703009.htm
      卫童瑶, 殷跃平, 高杨, 等, 2020. 三峡库区巫山县塔坪H1滑坡变形机制. 水文地质工程地质, 47(4): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004009.htm
      肖捷夫, 李云安, 蔡浚明, 2020. 水位涨落作用下藕塘滑坡响应特征模型试验研究. 工程地质学报, 28(5): 1049-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005014.htm
      肖诗荣, 卢树盛, 管宏飞, 等, 2013. 三峡库区凉水井滑坡地质力学模型研究. 岩土力学, 34(12): 3534-3542. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312029.htm
      杨金, 简文星, 杨虎锋, 等, 2012. 三峡库区黄土坡滑坡浸润线动态变化规律研究. 岩土力学, 33(3): 853-858. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201203033.htm
      殷跃平, 2003. 三峡库区地下水渗透压力对滑坡稳定性影响研究. 中国地质灾害与防治学报, 14(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200303001.htm
      殷跃平, 张晨阳, 闫慧, 等, 2022. 三峡水库蓄水运行滑坡渗流稳定和防治设计研究. 岩石力学与工程学报, 41(4): 649-659. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202204001.htm
      张晨阳, 张泰丽, 张明, 等, 2019. 东南沿海地区玄武岩残积土雨水运移特征及滑坡失稳数值模拟. 水文地质工程地质, 46(4): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904007.htm
      赵瑞欣, 殷跃平, 李滨, 等, 2017. 库水波动下堆积层滑坡稳定性研究. 水利学报, 48(4): 435-445. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201704007.htm
    • 加载中
    图(20) / 表(1)
    计量
    • 文章访问数:  124
    • HTML全文浏览量:  49
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-11
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回