Genesis and Tectonic Significance of Miocene Tephrite in Laohushan Volcanic Area, Jilin Province
-
摘要: 老虎山单成因火山位于吉林省大口钦地区.为了探讨火山区中新世碱玄岩的地球化学特征、成因及其与区域断裂构造演化的耦合性,对其开展了全岩地球化学和Pb同位素研究.碱玄岩中Na2O/K2O=1.30~1.38,A/CNK值(0.97~1.09)偏低,Mg#值(58.05~61.11)偏高,富集Th、U、Nb等高场强元素(HFSEs),相对弱富集Rb、Ba、K等大离子亲石元素(LILEs),LREE/HREE=10.66~11.32,206Pb/204Pb、207Pb/204Pb和208Pb/204Pb值范围分别为17.661~17.675、15.451~15.457和37.652~37.692.成岩岩浆主要来源于软流圈地幔,混有少量俯冲洋壳物质,显示出OIB或板内交代富集型地幔源的属性,岩浆形成深度范围约在93~105 km,伊通-舒兰断裂的存在为火山深部岩浆的上升与裂隙式喷发提供了通道和空间,玄武质岩浆的形成及其对应的火山活动发生于伸展构造环境中.Abstract: The Laohushan monogenic volcano is located in Dakouqin area, southern Jilin Province. In order to explore the geochemistry characteristics and genesis of the Miocene tephrite in this volcanic area, together with the coupling between it and the evolution of regional fault structure, the whole rock geochemistry and Pb isotope study on it were carried out. Na2O/K2O values of the tephrites are range from 1.30 to 1.38, with low A/CNK (0.97-1.09) and high Mg# (58.05-61.11) values. The tephrites are enriched in high field strength elements (HFSEs), such as Th, U and Nb, and relatively weakly enriched in large ion lithophile elements (LILEs), such as Rb, Ba and K, with LREE/HREE=10.66-11.32. The values of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are range from 17.661 to 17.675, 15.451 to 15.457 and 37.652 to 37.692, respectively. The parental magma is mainly from the asthenosphere mantle, with a small amount of subducted oceanic crust components, which shows the attribute characteristics of OIB (oceanic island basalt) or intraplate metasomatic enriched mantle source. The depth range of magma formation is about 93-105 km, and the existence of the Yitong-Shulan fault provides conduit and space for magma upwelling and fissure eruption. In addition, the formation of basaltic magma and its associated volcanic activity occurred in an extensional tectonic environment.
-
Key words:
- element geochemistry /
- lead isotope /
- tephrite /
- Laohushan volcano /
- Jilin Province /
- geochemistry /
- petrology
-
图 1 吉林省伊通-舒兰断裂带火山群位置简图(a)、中国东北部地区中-新生代地质构造简图(b)和大口钦老虎山火山区地质简图(c)
图a据Sun et al.(2022)修改;图b据Sun et al.(2022)修改;图c据吉林省地质矿产局(1988)修改
Fig. 1. Overview of the location of volcanic groups in Yitong-Shulan fault zone, Jilin Province (a), Mesozoic-Cenozoic geotectonic map of Northeast China (b) and geological map of the Laohushan volcanic area in Dakouqin (c)
图 2 老虎山火山野外图像(a)、碱玄岩的野外产状图像(b)、碱玄岩的手标本图像(c)、碱玄岩镜下矿物组成(d~e)
Chal.玉髓;Pl.斜长石;Ol.橄榄石;Opx.斜方辉石
Fig. 2. Field occurrence image of the Laohushan volcano in the study area (a), field occurrence image of tephrite (b), hand specimen image of tephrite (c), main rock-forming minerals of tephrite under microscope (d-e)
图 5 老虎山碱玄岩全岩中207Pb/204Pb与206Pb/204Pb铅同位素图解(a)和206Pb/204Pb与208Pb/204Pb铅同位素图解(b)
底图据Zartman and Doe(1981)修改
Fig. 5. 207Pb / 204Pb and 206Pb / 204Pb isotopic diagram (a) and 206Pb / 204Pb and 208Pb / 204Pb isotopic diagram (b) in the whole rock of tephrites in the Laohushan volcanic area
图 6 长白山火山区及邻区晚新生代火山岩年龄频次
年龄为汇总的长白山火山区及邻区晚新生代火山岩的K-Ar、40Ar-39Ar、14C和锆石U-Pb测年结果,阴影区域为不同年龄的分布数量,曲线为频次趋势线.底图据Li et al.(2021)修改
Fig. 6. Age frequency of Late Cenozoic volcanic rocks in Changbai Mountain volcanic area and its adjacent areas
图 7 Na2O+K2O-δEu图解(a)、Ba/La-Ba/Nb图解(b)、La/Ba-La/Nb图解(c)、Ba/Th-La/Sm图解(d)、Th/Hf -Ta/Hf图解(e)、Th/Yb-Ta/Yb图解(f)
图e中:I.板块发散边缘N-MORB区; II.板块汇聚边缘; III.大洋板内洋岛及大洋中脊玄武岩区; IV1.陆内裂谷及陆缘裂谷拉斑玄武岩区; IV2.陆内裂谷碱性玄武岩区; IV3.大陆拉张带玄武岩区; V.地幔热柱玄武岩区; 图f:中ICA.岛弧钙碱性系列; SHO.橄榄玄武粗面质; TH.拉斑系列; E-MORB.富集大洋玄武岩; N-MORB.正常大洋玄武岩; OIB.洋岛玄武岩.底图据赵振华(2016)修改
Fig. 7. Na2O+K2O versus δEu diagram (a), Ba/La versus Ba/Nb diagram (b), La/Ba versus La/Nb diagram (c), Ba/Th versus La/Sm diagram (d), Th/Hf versus Ta/Hf diagram (e), Th/Yb versus Ta/Yb diagram (f)
图 9 伊通-舒兰断裂带31~9 Ma岩石圈深部壳幔结构图(a)和(b)Na/Ti-Sm/Yb图解(b)
图a底图据张辉煌等(2006)修改;图b底图据赵振华(2016)修改
Fig. 9. Deep crust mantle structure of 31-9 Ma lithosphere of Yitong-Shulan fault (a) and Na/Ti versus Sm/Yb diagram (b)
表 1 老虎山碱玄岩全岩Pb同位素组成
Table 1. Lead isotopic composition of tephrite in the Laohushan volcano
样品编号 岩性 206Pb/204Pb 2σ 208Pb/204Pb 2σ 207Pb/204Pb 2σ Δβ Δγ Jhly05a 碱玄岩 17.675 0.003 37.692 0.007 15.457 0.003 8.1 6.5 Jhly05b 碱玄岩 17.661 0.004 37.654 0.010 15.454 0.004 7.9 5.5 Jhly05c 碱玄岩 17.665 0.005 37.652 0.011 15.451 0.004 7.7 5.4 注:Δβ和Δγ的具体含义和计算方法据朱炳泉(1998),分别表示样品的207Pb/204Pb和208Pb/204Pb相对于同时代地幔的偏差值.Δβ= [βs(t)/βm(t)-1]×1 000,Δγ= [γs(t)/γm(t)-1]×1 000,β= 207Pb/204Pb,γ= 208Pb/204Pb,s表示样品,m表示地幔,t为样品形成时代.关于不同时代地幔Pb同位素组成计算采用地幔增长线公式,即取地幔μ值为7.8,232Th/238U = 4.04,地球年龄取4.57 Ga,原始Pb同位素组成取206Pb/204Pb = 9.307,207Pb/204Pb = 10.294,208Pb/204Pb = 29.476. -
Bai, H. L., Pan, X. D., Li, Q. H., et al., 2010. Research on Yishu Faults Activity and Its Effect on the Planned Changchun-Liaoyuan Railway. Journal of Disaster Prevention and Reduction, 26(3): 29-35(in Chinese with English abstract). Bureau of Geology and Mineral Resources of Jilin Province, 1988. Regional Geological Records of Jilin Province. Geological Publishing House, Beijing, 260-280(in Chinese). Deng, C. L., Dong, F. X., Chang, L. J., et al., 2018. The Characteristics and Genetic Analysis of Basalt in Yitong Internship Base. Jilin Geology, 37(1): 21-27(in Chinese with English abstract). Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0 Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1/2): 33-45. https://doi.org/10.1016/0012-821X(86)90038-5 Kinzler, R. J., 1997. Melting of Mantle Peridotite at Pressures Approaching the Spinel to Garnet Transition: Application to Mid-Ocean Ridge Basalt Petrogenesis. Journal of Geophysical Research: Solid Earth, 102(B1): 853-874. https://doi.org/10.1029/96jb00988 Li, M. M., Xu, Z. T., Ventura, G., et al., 2021. Geochronology and Petrogenesis of Early Pleistocene Dikes in the Changbai Mountain Volcanic Field (NE China) Based on Geochemistry and Sr-Nd-Pb-Hf Isotopic Compositions. Frontiers in Earth Science, 9: 898. https://doi.org/10.3389/feart.2021.729905 Li, S. W., Weng, A. H., Li, J. P., et al., 2020. Deep Origin of Cenozoic Volcanoes in Northeast China Revealed by 3-D Electrical Structure. Science China Earth Sciences, 63(4): 533-547. https://doi.org/10.1007/s11430-018-9537-2 Li, Z. S., He, M., Fu, M., et al., 2015. Geochemical Characteristics and Structural Background Analysis of Cenozoic Basalts in Xintunzi Region, Jilin Province. Jilin Geology, 34(4): 7-13, 20(in Chinese with English abstract). doi: 10.3969/j.issn.1001-2427.2015.04.002 Liu, C. Q., Masuda, A., Xie, G. H., 1994. Major- and Trace-Element Compositions of Cenozoic Basalts in Eastern China: Petrogenesis and Mantle Source. Chemical Geology, 114(1-2): 19-42. https://doi.org/10.1016/0009-2541(94)90039-6 Liu, J. Q., 1987. Study on Geochronology of the Cenozoic Volcanic Rocks in Northeast China. Acta Petrologica Sinica, 3(4): 21-31(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.1987.04.003 Liu, R. X., 2000. Active Volcanoes in China. Seismological Press, Beijing (in Chinese). Ma, C. Q., Liu, B., Zou, B. W., et al., 2022. How to Explore the Mechanism of Volcanic Eruption from Magma Intrusion? Earth Science, 47(10): 3800-3803(in Chinese with English abstract). Meng, T., Xing, L. X., Pan, J., et al., 2008. Value of Science Investigation and Tour on Geology Trace of Yitong Volcanic Groups. Jilin Geology, 27(3): 80-83 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-2427.2008.03.017 Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman, London, New York, 266. https://doi.org/10.1017/S0016756800026716 doi: 10.1016/0009-2541(94)90039-6 Min, W., Jiao, D. C., Zhou, B. G., et al., 2011. The Significance of Discovery on Holocene Activity on the Yilan-Yitong Fault in Northeast China. Seismology and Geology, 33(1): 141-150 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2011.01.014 Pan, X. D., Li, T., Liu, Y. N., et al., 2017. Preliminary Study on Gas Geochemical Characteristics in Shulan Section of Yitong-Shulan Fault Zone. Recent Developments in World Seismology, 47(8): 71-72 (in Chinese). doi: 10.3969/j.issn.0253-4975.2017.08.052 Putirka, K., 1999. Melting Depths and Mantle Heterogeneity beneath Hawaii and the East Pacific Rise: Constraints from Na/Ti and Rare Earth Element Ratios. Journal of Geophysical Research: Solid Earth, 104(B2): 2817-2829. https://doi.org/10.1029/1998jb900048 Song, H. F., Liu, Z. H., Xu, Z. Y., et al., 2008. The Discovery of Alkaline Basaltic Pyroclastic Rocks in Original Heilongjiang Group of Yilan Area and Its Geodynamic Significance. Acta Petrologica et Mineralogica, 27(3): 205-211 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2008.03.005 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Sun, Y. G., Li, B. L., Zhao, Z. H., et al., 2022. Age and Petrogenesis of Late Mesozoic Intrusions in the Huoluotai Porphyry Cu-(Mo) Deposit, Northeast China: Implications for Regional Tectonic Evolution. Geoscience Frontiers, 13(2): 101344. https://doi.org/10.1016/j.gsf.2021.101344 Tao, K., Grand, S. P., Niu, F. L., 2018. Seismic Structure of the Upper Mantle beneath Eastern Asia from Full Waveform Seismic Tomography. Geochemistry, Geophysics, Geosystems, 19(8): 2732-2763. https://doi.org/10.1029/2018GC007460 Tsuchiya, N., Suzuki, S., Kimura, J. I., et al., 2005. Evidence for Slab Melt/Mantle Reaction: Petrogenesis of Early Cretaceous and Eocene High-Mg Andesites from the Kitakami Mountains, Japan. Lithos, 79(1-2): 179-206. https://doi.org/10.1016/j.lithos.2004.04.053 Wang, M., Li, Q., Wang, F., et al., 2011. Far-Field Coseismic Displacements Associated with the 2011 Tohoku-Oki Earthquake in Japan Observed by Global Positioning System. Chinese Science Bulletin, 56(23): 2419-2424. https://doi.org/10.1007/s11434-011-4588-7 Wu, D. Y., 1989. Magma Origin of Cenozoic Basalts in Yi Tong County, Jilin Province. Acta Petrologica Sinica, 5(2): 65-75 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.1989.02.007 Xu, W. L., Pei, F. P., Gao, F. H., et al., 2008. Zircon U-Pb Age from Basement Granites in Yishu Graben and Its Tectonic Implications. Earth Science, 33(2): 145-150 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2008.02.001 Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Scientia Sinica (Terrae), 48(7): 825-843 (in Chinese). doi: 10.1360/N072017-00240 Xu, Y. G., Menzies, M. A., Lin, C. Y., et al., 1997. Trace Element Composition of Mantle-Derived Inclusions in Yitong, Jilin Province and Its Petrogenetic Significance. Acta Petrologica Sinica, 13(1): 14-26 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.1997.01.002 Xu, Z. T., Yang, Q. F., Sun, J. G., et al., 2020. Origin of Late Jurassic High-K Felsic Volcanic Rocks and Related Au Mineralization in the Dongyang Deposit, Central-Eastern Fujian, SE China, and Its Tectonic Implications. Geological Journal, 56(1): 572-598. https://doi.org/10.1002/gj.3958 Xu, Z., Zheng, Y. F., 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143 (in Chinese with English abstract). Ye, X. Q., Xu, Z. T., Li, M. M., et al., 2022a. Zircon U-Pb Geochronology and Geochemistry of the Late Jurassic Granite Porphyries from Central-Eastern Jilin Province, NE China: Petrogenesis and Tectonic Implications. Island Arc, 31(1): e12464. https://doi.org/10.1111/iar.12464 Ye, X. Q., Sun, L. Y., Xu, Z. T., et al., 2022b. Geochemistry and Zircon U-Pb Dating of Early Jurassic Syenogranite in the Kaoshan Area, Southern Part of the Zhangguangcai Range, NE China, and Tectonic Implications. Geological Journal, 57(1): 440-461. https://doi.org/10.1002/gj.4308 Ye, X. Q., Sun, L. Y., Xu, Z. T., et al., 2023. Zircon U-Pb Geochronology, Geochemical Characteristics and Geodynamic Significance of the Early Jurassic Syenogranite in Kaoshan Area of Central Jilin Province. Journal of Jilin University (Earth Science Edition), 53(3): 964-983 (in Chinese with English abstract). Yi, D., Zhao, J., Li, C. H., et al., 2022. Crustal Contaminations Responsible for the Petrogenesis of Basalts from the Emeishan Large Igneous Province, NW China: New Evidence from Ba Isotopes. Journal of Earth Science, 33(1): 109-120. https://doi.org/10.1007/s12583-021-1513-0 Yin, W., Fan, Z. F., Zheng, J. Z., et al., 2012. Characteristics of Strike-Slip Inversion Structures of the Karatau Fault and Their Petroleum Geological Significances in the South Turgay Basin, Kazakhstan. Petroleum Science, 9(4): 444-454. https://doi.org/10.1007/s12182-012-0228-3 Zartman, R. E., Doe, B. R., 1981. Plumbotectonics—The Model. Tectonophysics, 75(1-2): 135-162. https://doi.org/10.1016/0040-1951(81)90213-4 Zhang, H. H., Xu, Y. G., Ge, W. C., et al., 2006. Geochemistry of Late Mesozoic-Cenozoic Basalts in Yitong-Datun Area, Jilin Province and Its Implication. Acta Petrologica Sinica, 22(6): 1579-1596 (in Chinese with English abstract). Zhao, Y. W., Fan, Q. C., Zou, H. B., et al., 2014. Geochemistry of Quaternary Basaltic Lavas from the Nuomin Volcanic Field, Inner Mongolia: Implications for the Origin of Potassic Volcanic Rocks in Northeastern China. Lithos, 196/197: 169-180. https://doi.org/10.1016/j.lithos.2014.03.011 Zhao, Z. H., 2016. Geochemical Principles of Trace Elements(2nd ed. ). Science Press, Beijing (in Chinese). Zhou, Q., Wu, F. Y., Chu, Z. Y., et al., 2010. Isotopic Compositions of Mantle Xenoliths and Age of the Lithospheric Mantle in Yitong, Jilin Province. Acta Petrologica Sinica, 26(4): 1241-1264 (in Chinese with English abstract). Zhu, B. Q., 1998. Theory and Application of Isotope System in Earth Science: Also on the Evolution of Crust and Mantle in Chinese Mainland. Science Press, Beijing (in Chinese). Zhu, J. P., 2020. Geochemical Characteristics of Rhyolites in Yingcheng Formation from Dakouqin Area in Central Jilin Province. Jilin Geology, 39(1): 49-54, 65 (in Chinese with English abstract). Zhu, R. X., Chen, L., Wu, F. Y., et al., 2011. Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 54(6): 789-797. https://doi.org/10.1007/s11430-011-4203-4 白海龙, 盘晓东, 李庆海, 等, 2010. 伊舒断裂的活动特征及其对拟建长春-辽源铁路的影响研究. 防灾减灾学报, 26(3): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ201003007.htm 邓承来, 董福湘, 常梁杰, 等, 2018. 伊通实习基地玄武岩的特征及其成因分析. 吉林地质, 37(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201801005.htm 吉林省地质矿产局, 1988. 吉林省区域地质志. 北京: 地质出版社, 260-280. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ202301006.htm 李忠水, 何明, 付猛, 等, 2015. 吉林抚松新屯子地区新生代玄武岩地球化学特征及构造背景分析. 吉林地质, 34(4): 7-13, 20. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201504002.htm 刘嘉麒, 1987. 中国东北地区新生代火山岩的年代学研究. 岩石学报, 3(4): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198704002.htm 刘若新, 2000. 中国的活火山. 北京: 地震出版社. 马昌前, 刘彬, 邹博文, 等, 2022. 如何从岩浆侵入体探究火山喷发机制? 地球科学, 47(10): 3800-3803. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202210033.htm 孟涛, 邢立新, 潘军, 等, 2008. 伊通火山群地质遗迹的科考与旅游价值. 吉林地质, 27(3): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200803018.htm 闵伟, 焦德成, 周本刚, 等, 2011. 依兰-伊通断裂全新世活动的新发现及其意义. 地震地质, 33(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201101016.htm 盘晓东, 李婷, 刘轶男, 等, 2017. 伊通-舒兰断裂带舒兰段气体地球化学特征初步研究. 国际地震动态, 47(8): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201708052.htm 宋海峰, 刘正宏, 徐仲元, 等, 2008. 依兰地区原黑龙江群碱性玄武质火山碎屑岩的发现及地球动力学意义探讨. 岩石矿物学杂志, 27(3): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200803005.htm 武殿英, 1989. 吉林伊通新生代玄武岩的岩浆起源. 岩石学报, 5(2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198902007.htm 许文良, 裴福萍, 高福红, 等, 2008. 伊舒地堑基底花岗岩的锆石U-Pb年代学及其构造意义. 地球科学, 33(2): 145-150. http://www.earth-science.net/article/id/1745 徐义刚, 李洪颜, 洪路兵, 等, 2018. 东亚大地幔楔与中国东部新生代板内玄武岩成因. 中国科学: 地球科学, 48(7): 825-843. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807003.htm 徐义刚, Menzies, M. A., 林传勇, 等, 1997. 吉林伊通幔源包体的微量元素组成及其成因岩石学意义. 岩石学报, 13(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB701.001.htm 徐峥, 郑永飞, 2019. 中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用. 地球科学, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273 叶希青, 孙立影, 徐智涛, 等, 2023. 吉林中部靠山地区早侏罗世正长花岗岩诰石U-Pb年代学、地球化学及其动力学意义. 吉林大学学报(地球科学版), 53(3): 964-983. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202303017.htm 张辉煌, 徐义刚, 葛文春, 等, 2006. 吉林伊通-大屯地区晚中生代-新生代玄武岩的地球化学特征及其意义. 岩石学报, 22(6): 1579-1596. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606015.htm 赵振华, 2016. 微量元素地球化学原理(2版). 北京: 科学出版社. 周琴, 吴福元, 储著银, 等, 2010. 吉林省伊通地区橄榄岩包体的同位素特征与岩石圈地幔时代. 岩石学报, 26(4): 1241-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004021.htm 朱炳泉, 1998. 地球科学中同位素体系理论与应用: 兼论中国大陆壳幔演化. 北京: 科学出版社. 朱建鹏, 2020. 吉林省中部大口钦地区营城组流纹岩地球化学特征. 吉林地质, 39(1): 49-54, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ202001009.htm -
dqkxzx-49-4-1352-附表1 .doc