Infrared Spectral Analysis and Prospecting of Alteration Minerals of Baijian Skarn-Type Iron Deposit in Han-Xing Area
-
摘要: 邯邢地区是我国重要的富铁矿矿集区之一,随着找矿深度的增加,传统的勘查手段找矿效果并不理想,亟需新的方法和理念来指导进一步的矿产勘查工作.利用红外光谱技术(SWIR+TIR)快速厘定岩心内矿物类型、相对丰度和空间分布特征,揭示主要蚀变矿物波谱参数变化规律,确定与成矿相关的信息. 通过红外光谱测试,解译出二十余种矿物并划分出5个蚀变带,自岩体向围岩依次为绢云母-贫铁/铁镁绿泥石-方解石-钠长石带(蚀变带Ⅰ),贫铁绿泥石-蛇纹石-透闪石-阳起石-透辉石-金云母带(蚀变带Ⅱ),方解石-铁/白云石-菱铁矿带(蚀变带Ⅲ),绢云母-伊利石-方解石-白云石-菱铁矿带(蚀变带Ⅳ),绢云母-伊利石-高岭石-蒙脱石带(蚀变带Ⅴ). 研究发现,越靠近矿化富集区域,绿泥石Fe-OH2250Pos、白云石6.45 μmPos和11.2 μmPos呈现降低的趋势;绢云母族矿物Al-OH2200FWHM的降低和高岭石族矿物Al-OH2170-IC的增大均指向更高温的流体环境.低Fe-OH2250Pos的绿泥石(< 2 245 nm)、低6.45 μmPos(< 6 440 nm)且低11.2 μmPos(< 11 250 nm)的白云石是白涧矿区有效的找矿标志;绢云母Al-OH2200FWHM的降低(30→22)和高岭石Al-OH2170-IC的增大(0.2→2.8)能判断深部是否存在矿化系统.以上成果为白涧矿区矿产勘查工作提供科学依据,同时也为邯邢地区同类型矿床找矿工作提供新方法.Abstract: The Handan-Xingtai area is one of the important iron ore concentration areas in China. With the development of prospecting work, the prospecting effect of the traditional exploration technology is not ideal, new exploration methods and prospecting concepts are urgently needed. Infrared spectroscopy (SWIR+TIR) can be used to rapidly determine the types and spatial distribution of altered minerals, the changing law of spectral characteristic parameters of altered minerals is revealed, and the information related to mineralization further determined. Through infrared spectroscopy tests, it deciphered more than 20 minerals and determined five mineral zonation, from rock mass to surrounding rock is sericite-chlorite-calcite-albite zone (alteration zone Ⅰ), chlorite-serpentine-tremolite-actinite-diopside-chrysolite zone (alteration zone Ⅱ), calcite-dolomite-siderite zone (alteration zone Ⅲ), sericite-illite-calcite-dolomite-siderite zone (alteration zone Ⅳ), sericite-illite-kaolinite-montmorillonite zone (alteration zone Ⅴ). The study shows that it is closer to the mineralization areas, the lower the chlorite Fe-OH2250Pos, the lower the dolomite 6.45 μmPos and 11.2 μmPos reflection peak. Reduction of Al-OH2200FWHM of sericite minerals and the increase of Al-OH2170-IC of kaolinite minerals reflects the hotter fluid environment. Chlorite of low Fe-OH2250pos value (< 2 245 nm), dolomite of low 6.45μmPos value (< 6 440 nm) and dolomite of low 11.2 μmPos value (< 11 250 nm) are effective prospecting sign in Baijian. The decrease of sericite Al-OH2200FWHM value(30→22)and the increase of kaolinite Al-OH2170-IC value(0.2→2.8) both can determine whether there is a mineralization system in deep. These research results provide a scientific basis for mineral exploration in the Baijian mining area, and also provide new ideas and methods for prospecting for the same type of deposits in Han-Xing area.
-
Key words:
- infrared spectroscopy /
- skarn-type iron deposit /
- altered mineral /
- Han-Xing area /
- geophysics
-
图 1 邯邢地区地层、岩浆岩及矿床分布(据Zhang et al.,2015修改)
a.华北克拉通中生代火成岩分布图;b.邯邢地区地质图
Fig. 1. Strata, igneous rocks and deposits of the Han-Xing region (modified after Zhang et al., 2015)
图 2 白涧矿区地质简图(据郝俊杰等,2011修改)
Fig. 2. Geological map of the Baijian region(modified after Hao et al., 2011)
图 5 白涧蚀变矿物镜下照片
Ser.绢云母;Chl.绿泥石;Di.透辉石;Phl.金云母;Tr.透闪石;Ab.钠长石;Amp.角闪石;Cc.方解石;Dol.白云石;Mnt.蒙脱石;Ill.伊利石;Mt.磁铁矿;Hem.赤铁矿;Py.黄铁矿. a.斜长石发生绢云母化,角闪石发生绿泥石化;b.内矽卡岩带透辉石;c.磁铁矿与金云母和透闪石共生;d.碳酸盐化;e.绢云母化+蒙脱石化+伊利石化;f.绿泥石化;g~h.斜长石和角闪石发生钠长石化,析出磁铁矿;i.内矽卡岩带透辉石和磁铁矿;j~k.磁铁矿和蛇纹石、透闪石共生;l.磁铁矿被赤铁矿和方解石交代
Fig. 5. Photographs of alteration minerals in Baijian
-
Chen, H.Y., Zhang, S.T., Chu, G.B., et al., 2019. The Short Wave Infrared (SWIR) Spectral Characteristics of Alteration Minerals and Applications for Ore Exploration in the Typical Skarn-Porphyry Deposits, Edong Ore District, Eastern China. Acta Petrologica Sinica, 35(12): 3629-3643(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.04 Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research, 95(B8): 12653. https://doi.org/10.1029/jb095ib08p12653 Cloutier, J., Piercey, S. J., Huntington, J., 2021. Mineralogy, Mineral Chemistry and SWIR Spectral Reflectance of Chlorite and White Mica. Minerals, 11(5): 471. https://doi.org/10.3390/min11050471 Dai, J.J., Zhao, L.X., Jiang, Q., et al., 2020. Review of Thermal-Infrared Spectroscopy Applied in Geological Ore Exploration. Acta Geologica Sinica, 94(8): 2520-2533(in Chinese with English abstract). Duba, D., Williams-Jones, A. E., 1983. The Application of Illite Crystallinity, Organic Matter Reflectance, and Isotopic Techniques to Mineral Exploration: A Case Study in Southwestern Gaspe, Quebec. Economic Geology, 78(7): 1350-1363. https://doi.org/10.2113/gsecongeo.78.7.1350 Duke, E. F., 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing. Geology, 22(7): 621-624. https://doi.org/10.1130/0091-7613(1994)0220621:nisomt>2.3.co;2 doi: 10.1130/0091-7613(1994)0220621:nisomt>2.3.co;2 Guo, N., Guo, W. B., Shi, W. X., et al., 2020. Characterization of Illite Clays Associated with the Sinongduo Low Sulfidation Epithermal Deposit, Central Tibet Using Field SWIR Spectrometry. Ore Geology Reviews, 120: 103228. https://doi.org/10.1016/j.oregeorev.2019.103228 Hao, J.J., Shen, J.H., Zhao, X.W., et al., 2011. REE Geochemistry of Baijian Iron Deposit in Shahe City, Hebei Province. Geoscience, 25(3): 545-552 (in Chinese with English abstract). Hauff, P., Cocks, T., 1992. Short Wave Infrared Spectroscopy Techniques Applied to Exploration: Emphasis on Alteration Mineralogy. Contributions of the Economic Geology Research Unit, 44: 72-74. https://doi.org/10.1016/j.oregeorev.2020.103516 Herrmann, W., Blake, M., Doyle, M., et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939-955. https://doi.org/10.2113/96.5.939 Huang, Y. R., Guo, N., Tang, J. X., et al., 2020. Garnet Characteristics Associated with Jiama Porphyry-Skarn Cu Deposit 1# Skarn Orebody, Tibet, Using Thermal Infrared Spectroscopy. Minerals, 11(1): 5. https://doi.org/10.3390/min11010005 Hunt, G. R., 1977. Spectral Signatures of Particulate Minerals in the Visible and near Infrared. Geophysics, 42(3): 501-513. https://doi.org/10.1190/1.1440721 Jones, S., Herrmann, W., Gemmell, J. B., 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2): 273-294. https://doi.org/10.2113/gsecongeo.100.2.273 Laakso, K., Peter, J. M., Rivard, B., et al., 2016. Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring. Economic Geology, 111(5): 1223-1239. https://doi.org/10.2113/econgeo.111.5.1223 Lampinen, H. M., Laukamp, C., Occhipinti, S. A., et al., 2018. Mineral Footprints of the Paleoproterozoic Sediment-Hosted Abra Pb-Zn-Cu-Au Deposit Capricorn Orogen, Western Australia. Ore Geology Reviews, 104: 436-461. https://doi.org/10.1016/j.oregeorev.2018.11.004 Laukamp, C., LeGras, M., Montenegro, V., et al., 2022. Grandite-Based Resource Characterization of the Skarn-Hosted Cu-Zn-Mo Deposit of Antamina, Peru. Mineralium Deposita, 57(1): 107-128. https://doi.org/10.1007/s00126-021-01047-2 Li, L.M., 1986. On the Controlling Factors of Ore-Forming Structure of Hanxing Iron Deposit. Geology and Prospecting, 22(4): 1-11 (in Chinese with English abstract). Lu, Y., Yang, K., Xiu, L.C., 2017. Identification of Hydrocarbon and Clay Minerals Based on Near-Infrared Spectroscopy and Its Geological Significance. Geological Bulletin of China, 36(10): 1884-1891(in Chinese with English abstract). Luo, Z. H., Deng, J. F., Han, X. Q., 1999. Characteristics of Magmatic Activity and Orogenic Process of Taihang Intraplate Orogenic. Geological Publishing House, Beijing (in Chinese with English abstract). Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology 100th Anniversary Volume, 299-336. https://doi.org/10.5382/AV100.11 Meng, G.X., Yan, J.Y., Lü, Q.T., et al., 2009. Application of Deep Detecting Technology in Hanxing Subtype Iron Deposits and an Integrated Prospecting Model: A Case Study of Baijian Iron Deposit. Mineral Deposits, 28(4): 493-502(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.04.011 Ren, H., Zheng, Y.Y., Wu, S., et al., 2020. Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet. Earth Science, 45(3): 930-944(in Chinese with English abstract). Shen, B.F., Zhai, A.M., Li, Z.H., et al., 1981. The Analysis of Geological Conditions for Mineralization of the Iron Deposits of Han-Xing Subtype in Southern Hepei. Acta Geologica Sinica, 55(2): 127-138, 164(in Chinese with English abstract). Tappert, M., Rivard, B., Giles, D., et al., 2011. Automated Drill Core Logging Using Visible and near-Infrared Reflectance Spectroscopy: A Case Study from the Olympic Dam Iocg Deposit, South Australia. Economic Geology, 106(2): 289-296. https://doi.org/10.2113/econgeo.106.2.289 Thompson, A. J. B., Hauff, P. L., Robitaille, A. J., 1999. Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy. SEG Discovery, (39): 1-27. https://doi.org/10.5382/segnews.1999-39.fea Tian, F., Leng, C.B., Zhang, X.C., et al., 2019. Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet. Earth Science, 44(6): 2143-2154(in Chinese with English abstract). Uribe-Mogollon, C., Maher, K., 2018. White Mica Geochemistry of the Copper Cliff Porphyry Cu Deposit: Insights from a Vectoring Tool Applied to Exploration. Economic Geology, 113(6): 1269-1295. https://doi.org/10.5382/econgeo.2018.4591 Vuleta, S., LeGras, M., Smith, R. E., et al., 2019. Characterising Lithium Host Minerals within the Lateritic Duricrust, Greenbushes, Western Australia. ASEG Extended Abstracts, (1): 1-2. https://doi.org/10.1080/22020586.2019.12073086 Wang, R., Cudahy, T., Laukamp, C., et al., 2017. White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia. Economic Geology, 112(5): 1153-1176. https://doi.org/10.5382/econgeo.2017.4505 Wen, G., 2017. The Mechanisms and Key Factors in Forming High-Grade Iron Skarn Deposits in Handan-Xingtai District, North China Craton (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). Xiu, L.C., Zheng, Z.Z., Yu, Z.K., et al., 2007. Mineral Analysis Technology Application with near Infrared Spectroscopy in Identifying Alteration Mineral. Acta Geologica Sinica, 81(11): 1584-1590(in Chinese with English abstract). Xu, W.L., Lin, J.Q., 1990. The Magmatic Evolution of Hb-Diorite Series of Yanshan Stage in Han-Xing District, China—The Amphibole-Dominated Fractional Crystallization. Journal of Jilin University (Earth Science Edition), 20(3): 259-264(in Chinese with English abstract). Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012. Application of Short Wavelength Infrared(SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District: A Case Study of Niancun Ore District, Tibet. Mineral Deposits, 31(4): 699-717(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.04.004 Zhang, J. Q., Li, S. R., Santosh, M., et al., 2015. Mineral Chemistry of High-Mg Diorites and Skarn in the Han-Xing Iron Deposits of South Taihang Mountains, China: Constraints on Mineralization Process. Ore Geology Reviews, 64: 200-214. https://doi.org/10.1016/j.oregeorev.2014.07.007 Zhang, J.Q., Liang, X., Yan, L.N., et al., 2020. The Mineralogical Records of Magmatic Process: Cases from Mesozoic Intrusive Rocks in the Handan-Xingtai Region. Earth Science Frontiers, 27(5): 70-87(in Chinese with English abstract). Zhang, S.T., Chen, H.Y., Zhang, X.B., et al., 2017. Application of Short Wavelength Infrared (SWIR) Technique to Exploration of Skarn Deposit: A Case Study of Tonglüshan Cu-Fe-Au Deposit, Edongnan (Southeast Hubei) Ore Concentration Area. Mineral Deposits, 36(6): 1263-1288(in Chinese with English abstract). Zhang, S. T., Chu, G. B., Cheng, J. M., et al., 2020. Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu-Au-Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies. Ore Geology Reviews, 122: 103516. https://doi.org/10.1016/j.oregeorev.2020.103516 Zhao, Y. M., 2013. Main Genetic Types and Geological Characteristics of Iron-Rich Ore Deposits in China. Mineral Deposits, 32(4): 686-705 (in Chinese with English abstract). Zhao, Y.M., Lin, W.W., Bi, C.S., et al., 1986. Basic Geological Characteristics of Skarn Deposits of China. Acta Geoscientica Sinica, 7(3): 59-87(in Chinese with English abstract). Zheng, J.M., Xie, G.Q., Chen, M.H., et al., 2007. Pluton Emplacement Mechanism Constraint on Skarn Deposit: A Case Study of Skarn Fe Deposits in Handan-Xingtai Area. Mineral Deposits, 26(4): 481-486(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2007.04.012 陈华勇, 张世涛, 初高彬, 等, 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用. 岩石学报, 35(12): 3629-3643. doi: 10.18654/1000-0569/2019.12.04 代晶晶, 赵龙贤, 姜琪, 等, 2020. 热红外高光谱技术在地质找矿中的应用综述. 地质学报, 94(8): 2520-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202008026.htm 郝俊杰, 莘建宏, 赵新卫, 等, 2011. 河北省沙河市白涧铁矿床稀土元素地球化学特征. 现代地质, 25(3): 545-552. doi: 10.3969/j.issn.1000-8527.2011.03.016 李黎明, 1986. 论邯邢式铁矿成矿构造控制因素. 地质与勘探, 22(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198604000.htm 卢燕, 杨凯, 修连存, 2017. 基于近红外光谱技术的烃类与粘土矿物识别及其地质意义. 地质通报, 36(10): 1884-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201710020.htm 罗照华, 邓晋福, 韩秀卿, 1999. 太行山造山带岩浆活动及其造山过程反演. 北京: 地质出版社. 孟贵祥, 严加永, 吕庆田, 等, 2009. 邯邢式铁矿深部探测技术及综合找矿模式研究: 以河北省沙河市白涧铁矿床为例. 矿床地质, 28(4): 493-502. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904010.htm 任欢, 郑有业, 吴松, 等, 2020. 西藏德明顶铜钼矿床短波红外光谱特征及勘查指示意义. 地球科学, 45(3): 930-944. doi: 10.3799/dqkx.2019.983 沈保丰, 翟安民, 李增慧, 等, 1981. 冀南邯邢式铁矿成矿地质条件分析. 地质学报, 55(2): 127-138, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198102004.htm 田丰, 冷成彪, 张兴春, 等, 2019. 短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用. 地球科学, 44(6): 2143-2154. doi: 10.3799/dqkx.2018.373 文广, 2017. 邯邢地区矽卡岩富铁矿床形成机理及关键控制因素(博士学位论文). 武汉: 中国地质大学. 修连存, 郑志忠, 俞正奎, 等, 2007. 近红外光谱分析技术在蚀变矿物鉴定中的应用. 地质学报, 81(11): 1584-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711014.htm 许文良, 林景仟, 1990. 邯邢地区燕山期角闪闪长岩系的岩浆演化: 角闪石占主导的矿物分离结晶作用. 长春地质学院学报, 20(3): 259-264. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199003002.htm 杨志明, 侯增谦, 杨竹森, 等, 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用: 以西藏念村矿区为例. 矿床地质, 31(4): 699-717. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204005.htm 张聚全, 梁贤, 闫丽娜, 等, 2020. 岩浆作用过程的矿物记录: 以邯邢地区中生代侵入岩为例. 地学前缘, 27(5): 70-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005009.htm 张世涛, 陈华勇, 张小波, 等, 2017. 短波红外光谱技术在矽卡岩型矿床中的应用: 以鄂东南铜绿山铜铁金矿床为例. 矿床地质, 36(6): 1263-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201706002.htm 赵一鸣, 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 686-705. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304006.htm 赵一鸣, 林文蔚, 毕承思, 等, 1986. 中国矽卡岩矿床基本地质特征. 中国地质科学院院报, 7(3): 59-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198603004.htm 郑建民, 谢桂青, 陈懋弘, 等, 2007. 岩体侵位机制对矽卡岩型矿床的制约: 以邯邢地区矽卡岩铁矿为例. 矿床地质, 26(4): 481-486. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200704013.htm