U-Pb Geochronology and Trace Element Analysis of Titanite from the Diaoquan Porphyry-Skarn Polymetallic Deposit, North China: Implication for Cu-Ag-Mo Mineralization
-
摘要: 山西刁泉矿床是五台山-恒山矿集区内最为典型的斑岩-矽卡岩型多金属矿床,然而人们对该矿床斑岩和矽卡岩型矿化之间的成因联系及其成矿流体演化的认识还存在较大的争论.利用LA-ICPMS原位微区分析技术开展了对花岗斑岩和含矿矽卡岩中榍石的U-Pb同位素和微量元素分析,并测定了矿区侵入岩中锆石的U-Pb年龄.黑云母石英二长岩和花岗斑岩的锆石U-Pb定年结果表明其侵位时间分别为137.3±1.2 Ma和133.5±2.0 Ma,其中花岗斑岩的年龄与热液榍石的U-Pb年龄(133.6±2.2 Ma和132.8±2.5 Ma)在误差范围内完全一致,表明花岗斑岩与矽卡岩型铜银矿化关系密切.榍石中Sn元素的含量变化表明刁泉铜银多金属矿床成矿过程中氧逸度经历了一个升高的过程,然后又逐渐下降.Abstract: The Diaoquan deposit is a typical porphyry-skarn polymetallic deposit in the Wutaishan-Hengshan metallogenic district, North China. However, the relationship between porphyry and skarn mineralization processes have been the subject of intense debate. In this paper, in-situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to U-Pb isotope and trace elements analysis of the zircon and titanite from granitic porphyry, biotite-quartz monzonite, and mineralized skarn. Zircons from biotite-quartz monzonite and granitic porphyry have weighted mean U-Pb ages of 137.3± 1.2 Ma and 133.5±2.0 Ma, respectively. The age of granitic porphyry is consistent with the hydrothermal titanite U-Pb ages (133.6±2.2 Ma and 132.8±2.5 Ma) of the mineralized skarn, suggesting the Cu-Ag skarn mineralization at the Diaoquan deposit was caused by coeval magmatism that related to the emplacement of granitic porphyry. The variation of Sn contents in titanite from the Diaoquan deposit suggest the oxygen fugacity of hydrothermal mineralization fluids significantly increase at prograde skarn stage, and then slightly decreased at retrograde skarn stage.
-
图 1 华北克拉通构造概要图(a);五台山‒恒山地区地质图(b)
a.据Zhao et al.(2005)修改;b. 据山西省地质矿产局(1989)修改
Fig. 1. A sketch map showing tectonic divisions of the North China Craton (a); geological map of the Wutaishan-Hengshan region (b)
图 2 刁泉银铜矿区地质略图(a); 55号线矿体剖面图(b)
a. 据周利霞和唐耀林(1997)修改;b. 据刁泉矿业公司内部资料修改
Fig. 2. Geological map of the Diaoquan Cu-Ag deposit (a); typical cross-section of Line 55 (b)
图 4 花岗斑岩和矽卡岩中榍石的矿物共生组合、结构和流体包裹体特征
a. 花岗斑岩中钾长石斑晶包裹榍石;b. 花岗斑岩中榍石背散射图像(BSE)显示具有均匀的化学成分特征;c. 矽卡岩中榍石与石榴石‒透辉石共生;d. 湿矽卡岩阶段榍石‒绿泥石‒方解石充填于石榴石矽卡岩;e. 辉铜矿充填于石榴石、榍石,与方解石共生;f. 矽卡岩中榍石发育气液两相流体包裹体;Cal. 方解石;Chc. 辉铜矿;Chl. 绿泥石;Di. 透辉石;Kf. 钾长石;Grt. 石榴石;Mag. 磁铁矿;Tnt. 榍石;Fl. 流体包裹体
Fig. 4. Microphotographs showing the texture, mineral associations, fluid inclusions of titanite from granitic porphyry and skarn
图 5 矽卡岩中两种类型榍石的背散射图(a, c)和锡元素分布(b, d)
a. Type 1榍石BSE图像显示核部(Type 1a)为较暗的榍石,且包裹石榴石、磷灰石等热液矿物,而边部(Type 1b)较为明亮,且具有环带结构;b. Type 1榍石的锡元素分布图;c. Type 2榍石BSE图像显示核部(Type 2a)较为明亮,边部(Type 2b)较暗;d. Type 2榍石中锡元素分布图;Grt. 石榴石;Ap. 磷灰石
Fig. 5. BSE images (a, c) and Sn distribution maps (b, d) of the two type titanite in skarn
图 8 刁泉多金属矿床中榍石的球粒陨石标准化REE模式
球粒陨石标准化值来自Sun and McDonough(1989)
Fig. 8. Chondrite-normalized REE patterns of titanite from the Diaoquan polymetallic deposit
-
Aleinikoff, J. N., Wintsch, R. P., Fanning, C. M., et al., 2002. U-Pb Geochronology of Zircon and Polygenetic Titanite from the Glastonbury Complex, Connecticut, USA: An Integrated SEM, EMPA, TIMS, and SHRIMP Study. Chemical Geology, 188(1-2): 125-147. https://doi.org/10.1016/s0009-2541(2)00076-1 Audétat, A., 2015. Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado. Journal of Petrology, 56(8): 1519-1546. https://doi.org/10.1093/petrology/egv044 Chang, S., Su, J. H., Qin, Z. J., et al., 2022. Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province. Earth Science, 47(4): 1316-1332 (in Chinese with English abstract). Che, X. D., Linnen, R. L., Wang, R. C., et al., 2013. Distribution of Trace and Rare Earth Elements in Titanite from Tungsten and Molybdenum Deposits in Yukon and British Columbia, Canada. The Canadian Mineralogist, 51: 415-438. https://doi.org/10.3749/canmin.51.3.415 Chelle-Michou, C., Chiaradia, M., Selby, D., et al., 2015. High-Resolution Geochronology of the Coroccohuayco Porphyry-Skarn Deposit, Peru: A Rapid Product of the Incaic Orogeny. Economic Geology, 110(2): 423-443. https://doi.org/10.2113/econgeo.110.2.423 Clemens, J. D., Holloway, J. R., White, A. J. R., 1986. Origin of an A-Type Granite-Experimental Constraints. American Mineralogist, 71(3-4): 317-324. Corfu, F., Grunsky, E. C., 1987. Igneous and Tectonic Evolution of the Batchawana Greenstone Belt, Superior Province: A U-Pb Zircon and Titanite Study. The Journal of Geology, 95(1): 87-105. https://doi.org/10.1086/629108 Deer, W. A., Howie, R. A., Zussman, J., 1982. Rock-Forming Minerals, Orthosilicates. Longman, London and New York, 444-465. Deng, X. D., Li, J. W., Zhou, M. F., et al., 2015. In-Situ LA-ICPMS Trace Elements and U-Pb Analysis of Titanite from the Mesozoic Ruanjiawan W-Cu-Mo Skarn Deposit, Daye District, China. Ore Geology Reviews, 65: 990-1004. https://doi.org/10.1016/j.oregeorev. 2014. 08.011 doi: 10.1016/j.oregeorev.2014.08.011 Duan, Z., Li, J. W., 2017. Zircon and Titanite U-Pb Dating of the Zhangjiawa Iron Skarn Deposit, Luxi District, North China Craton: Implications for a Craton-Wide Iron Skarn Mineralization. Ore Geology Reviews, 89(1): 309-323. https://doi.org/10.1016/j.oregeorev.2017.06.022 Farges, F., Linnen, R. L., Brown, Jr., et al., 2006. Redox and Speciation of Tin in Hydroussilicate Glasses: A Comparison with Ta, Mo and W. The Canadian Mineralogist, 4: 795-810. Frost, B. R., Chamberlain, K. R., Schumacher, J. C., 2000. Sphene (Titanite); Phase Relations and Role as a Geochronometer. Chemical Geology, 172: 131-148. Fu, Y., Sun, X. M., Zhou, H. Y., et al., 2016. In-Situ LA- ICP-MS U-Pb Geochronology and Trace Elements Analysis of Polygenetic Titanite from the Giant Beiya Gold-Polymetallic Deposit in Yunnan Province, Southwest China. Ore Geology Reviews, 77(1): 43-56. https://doi.org/10.1016/j.oregeorev.2016.02.001 Ge, L. S., Wang, Z. H., Yang, G. C., et al., 2012. Yanshanian Magmatism and Gold-Polymetallic Mineralization Dynamics in Northeastern Shanxi Province, China. Acta Petrologica Sinica, 28(2): 619-636 (in Chinese with English abstract). Hart-Madigan, L., Wilkinson, J. J., Lasalle, S., et al., 2020. U-Pb Dating of Hydrothermal Titanite Resolves Multiple Phases of Propylitic Alteration in the Oyu Tolgoi Porphyry District, Mongolia. Economic Geology, 115(8): 1605-1618. https://doi.org/10.5382/econgeo.4780 Hayden, L. A., Watson, E. B., Wark, D. A., 2008. A Thermobarometer for Sphene (Titanite). Contributions to Mineralogy and Petrology, 155(4): 529-540. https://doi.org/10.1007/s00410-007-0256-y Higgins, J. B., Ribbe, P. H., 1976. The Crystal Chemistry and Space Groups of Natural and Synthetic Titanites. American Mineralogist, 61: 878-888. Horie, K., Hidaka, H., Gauthier-Lafaye, F., 2008. Elemental Distribution in Apatite, Titanite and Zircon during Hydrothermal Alteration: Durability of Immobilization Mineral Phases for Actinides. Physics and Chemistry of the Earth, Parts A/B/C, 33(14-16): 962-968. https://doi.org/10.1016/j.pce.2008.05.008 Hu, H., Li, J. W., McFarlane, C. R. M., 2017. Hydrothermal Titanite from the Chengchao Iron Skarn Deposit: Temporal Constraints on Iron Mineralization, and its Potential as a Reference Material for Titanite U-Pb Dating. Mineralogy and Petrology, 111(4): 593-608. https://doi.org/10.1007/s00710-017-0517-z Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j King, P. L., Sham, T. K., Gordon, R. A., et al., 2013. Microbeam X-Ray Analysis of Ce3+/Ce4+ in Ti-Rich Minerals: A Case Study with Titanite (Sphene) with Implications for Multivalent Trace Element Substitution Inminerals. American Mineralogist, 98(1): 110-119. doi: 10.2138/am.2013.3959 Li, H. W., Dong, G. C., Dong, P. S., et al., 2020. Titanite Chemical Compositions and Their Implications for Petrogenesis and Mineralization in Zhongdian Arc, NW Yunnan, China. Earth Science, 45(6): 1999-2010 (in Chinese with English abstract). Li, J. C., 2006. Study on Structure and Sub-Volcanic Metallogenic System in North Region of Shanxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Li, J. D., Li, X. F., Xiao, R., 2020. In Situ LA-ICP-MS U-Pb Geochronology and Trace Element Analysis of Hydrothermal Titanite from the Jiepai W-Cu Deposit, South China: Implications for W Mineralization. The Canadian Mineralogist, 58(1): 45-69. https://doi.org/10.3749/canmin.1900027 Li, J. W., Deng, X. D., Zhou, M. F., et al., 2010. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of Hydrothermal Ore Deposits: A Case Study of the Tonglushan Cu-Fe-Au Skarn Deposit, SE Hubei Province, China. Chemical Geology, 270(1-4): 56-67. https://doi.org/10.1016/j.chemgeo.2009.11.005 Li, Z. D., Li, S. P., Guo, H., et al., 2022. Geochemical, U-Pb Age and Nd-Isotopic Characteristics of Titanite in Alkaline Rocks from Dazhuang Nb-REE Deposit in Southern Margin of North China Craton. Earth Science, 47(4): 1415-1434 (in Chinese with English abstract). Li, Z. L., Zhang, L. Y., 1999. Geological Characteristics and Genetic Mechanism of the Diaoquan Silver Copper Deposit, Shanxi Province. Mineral Deposits, 18(1): 11-21 (in Chinese with English abstract). Linnen, R. L., Cuney, M., 2005. Granite-Related Rare- Element Deposits and ExperimentalConstraints on Ta- Nb-W-Sn-Zr-Hf Mineralization. In: Linnen, R. L., Samson, I. M., eds., Rare-Element Geochemistry and Mineral Deposits, Geological Association of Canada. GAC Short Course Notes, 17: 45-67. Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39. Niu, C. Y., Qin, M., Tang, M. G., et al., 2013. Molybdenite Re-Os Age of Diaoquan Silver-Copper Polymetallic Deposit in Shanxi Province and Its Geological Significance. Mineral Deposits, 32(5): 972-978 (in Chinese with English abstract). Niu, S. D., Li, S. R., Zhang, J. Q., et al., 2014. Characteristics of Fluid Inclusions and Fluid Evolution of the Diaoquan Ag-Cu Deposit, Lingqiu County, Shanxi Province, North China. Acta Petrologica Sinica, 30(11): 3432-3442 (in Chinese with English abstract). Pan, L. C., Hu, R. Z., Bi, X. W., et al., 2018. Titanite Major and Trace Element Compositions as Petrogenetic and Metallogenic Indicators of Mo Ore Deposits: Examples from Four Granite Plutons in the Southern Yidun Arc, SW China. American Mineralogist, 103(9): 1417-1434. https://doi.org/10.2138/am-2018-6224 Schönenberger, J., Markl, G., 2008. The Magmatic and Fluid Evolution of the Motzfeldt Intrusion in South Greenland: Insights into the Formation of Agpaitic and Miaskitic Rocks. Journal of Petrology, 49(9): 1549-1577. https://doi.org/10.1093/petrology/egn037 Scott, D. J., St-Onge, M. R., 1995. Constraints on Pb Closure Temperature in Titanite Based on Rocks from the Ungava Orogen, Canada: Implications for U-Pb Geochronology and P-T-T Path Determinations. Geology, 23(12): 1123. https://doi.org/10.1130/0091-7613(1995) 023<1123:copcti>2.3.co;2 doi: 10.1130/0091-7613(1995)023<1123:copcti>2.3.co;2 Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551 Shanxi Provincial Bureau of Geology and Mineral Resources, 1989. Regional Geology of Shanxi Province. Geological Publishing House, Beijing (in Chinese). Storey, C. D., Smith, M. P., Jeffries, T. E., 2007. In Situ LA-ICP-MS U-Pb Dating of Metavolcanics of Norrbotten, Sweden: Records of Extended Geological Histories in Complex Titanite Grains. Chemical Geology, 240(1-2): 163-181. https://doi.org/10.1016/j.chemgeo.2007.02.004 Smith, M. P., Storey, C. D., Jeffries, T. E., et al., 2009. In Situ U-Pb and Trace Element Analysis of Accessory Minerals in the Kiruna District, Norrbotten, Sweden: New Constraints on the Timing and Origin of Mineralization. Journal of Petrology, 50(11): 2063-2094. https://doi.org/10.1093/petrology/egp069 Smith, M. P., Henderson, P., Jeffries, T. E. R., et al., 2004. The Rare Earth Elements and Uranium in Garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on Processes in Adynamic Hydrothermal System. Journal of Petrology, 45(3): 457-484. doi: 10.1093/petrology/egg087 Sun., S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478(3): 164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033 Wang, R. C., Xie, L., Chen, J., et al., 2011. Titanite as an Indicator Mineral of Tin Mineralizing Potential of Granites in the Middle Nanling Range. Geological Journal of China Universities. 17(3): 368-380 (in Chinese with English abstract). Wilson, A. J., Cooke, D. R., Stein, H. J., et al., 2007. U-Pb and Re-Os Geochronologic Evidence for Two Alkalic Porphyry Ore-Forming Events in the Cadia District, New South Wales, Australia. Economic Geology, 102(1): 3-26. https://doi.org/10.2113/gsecongeo.102.1.3 Xiao, X., Zhou, T. F., White, N. C., et al., 2020. Multiple Generations of Titanites and their Geochemical Characteristics Record the Magmatic-Hydrothermal Processes and Timing of the Dongguashan Porphyry-Skarn Cu-Au System, Tongling District, Eastern China. Mineralium Deposita, 56(2): 363-380. https://doi.org/10.1007/s00126-020-00962-0 Xie, L., Wang, R. C., Chen, J., et al., 2009. Primary Sn-Rich Titianite in the Qitianling Granite, Hunan Province, Southern China: An Important Type of Tin-Bearing Mineral and Its Implications for Tin Exploration. Science Bulletin, 54(5): 798-805. https://doi.org/10.1007/s11434-008-0557-1 Xie, Y. X., 2014. Ag-Cu-Mo Metallogenic Series of Yanshanian Magmatic Hydrothermal in Diaoquan, Shanxi Province(Dissertation). Central South University, Changsha (in Chinese with English abstract). Zhang, J. Q., Li, S. R., Santosh, M., et al., 2015. Timing and Origin of Mesozoic Magmatism and Metallogeny in the Wutai-Hengshan Region: Implications for Destruction of the North China Craton. Journal of Asian Earth Sciences, 113(2): 677-694. https://doi.org/10.1016/j.jseaes. 2015. 05.004 doi: 10.1016/j.jseaes.2015.05.004 Zhang, L. S., Schärer, U., 1996. Inherited Pb Components in Magmatic Titanite and Their Consequence for the Interpretation of U-Pb Ages. Earth and Planetary Science Letters, 138(1-4): 57-65. https://doi.org/10.1016/0012-821x(95)00237-7 Zhang, L. Z., Chen, L., Wang, G. P., et al., 2020. Garnet U-Pb Dating Constraints on the Timing of Breccia Pipes Formation and Genesis of Gold Mineralization in Yixingzhai Gold Deposit, Shanxi Province. Earth Science, 45(1): 108-117 (in Chinese with English abstract). Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002 Zhou, L. X., Tang, Y. L., 1997. Geological Characteristics and Genesis of Diaoquan Silver-Copper Deposit, Shanxi Province. Journal of Geology and Mineral Resources in North China, 12(2): 21-35 (in Chinese with English abstract). Zhou, S. Z., 1999. Geology and Prospecting of Silver (Gold) Deposits in Northeast Shanxi. Geology and Exploration, 35(3): 6-23 (in Chinese with English abstract). Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 苌笙任, 苏建辉, 秦志军, 等, 2022. 鄂西北碱性火山岩型铌矿床榍石矿物学及对铌富集机理的指示. 地球科学, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134 葛良胜, 王治华, 杨贵才, 等, 2012. 晋东北燕山期岩浆活动与金多金属成矿作用动力学. 岩石学报, 28(2): 619-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202022.htm 李华伟, 董国臣, 董朋生, 等, 2020. 滇西北中甸弧成矿岩体中榍石化学成分特征及其成岩成矿标识. 地球科学, 45(6): 1999-2010. doi: 10.3799/dqkx.2019.193 李景春, 2006. 晋北地区构造与次火山岩成矿系统研究(博士学位论文). 北京: 中国地质大学. 李志丹, 李山坡, 郭虎, 等, 2022. 华北克拉通南缘大庄铌-稀土矿床碱性岩中榍石的地球化学、U-Pb年龄和Nd同位素特征. 地球科学, 47(4): 1415-1434. doi: 10.3799/dqkx.2021.126 李兆龙, 张连营, 1999. 山西省刁泉银铜矿床地质特征及成因机制. 矿床地质, 18(1): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ901.001.htm 牛翠祎, 卿敏, 唐明国, 等, 2013. 山西刁泉银铜多金属矿床辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 32(5): 972-978. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201305009.htm 牛斯达, 李胜荣, 张聚全, 等, 2014. 山西灵丘县刁泉银铜矿流体包裹体特征及成矿流体演化. 岩石学报, 30(11): 3432-3242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411025.htm 山西省地质矿产局, 1989. 山西省区域地质志. 北京: 地质出版社. 王汝成, 谢磊, 陈骏, 等, 2011. 南岭中段花岗岩中榍石对锡成矿能力的指示意义. 高校地质学报, 17(3): 368-380. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103004.htm 谢燕霄, 2014. 山西刁泉燕山期岩浆热液型Ag、Cu、Mo成矿系列研究(硕士毕业论文). 长沙: 中南大学. 张立中, 陈蕾, 王国平, 等, 2020. 石榴石U-Pb定年对山西义兴寨金矿床角砾岩筒时间的限制和金矿成因的指示. 地球科学, 45(1): 108-117. doi: 10.3799/dqkx.2018.547 周利霞, 唐耀林, 1997. 山西刁泉银铜矿地质特征及矿床成因. 华北地质矿产杂志, 12(2): 21-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDZ702.002.htm 周绍芝, 1999. 晋东北地区银(金)矿成矿特征及远景浅析. 地质与勘探, 35(3): 6-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199903002.htm -
dqkxzx-48-9-3327-附表1-5.docx