Geochronology, Geochemistry and Petrogenesis of the Harizha-Nagengkangqieer Granites in the East Kunlun Orogen
-
摘要: 东昆仑东西部发育多处大型银矿床,但东昆仑古特提斯构造演化和银矿成矿构造背景争议很大,基于此,对东昆仑哈日扎-那更康切尔银矿区岩心样品花岗岩及花岗斑岩开展年代学与地球化学方面研究.LA-ICP-MS锆石U-Pb定年结果表明,哈日扎花岗岩年龄为255 Ma,哈日扎-那更康切尔花岗斑岩年龄在220 Ma到224 Ma.哈日扎晚二叠世花岗岩整体上体现高硅、富碱、贫钙及贫镁的特征,轻稀土元素富集,重稀土元素及Nb、Ta等高场强元素亏损,具有强烈的负Eu异常,Ga/Al比值和Zr+Nb+Ce+Y含量明显偏高,符合A型花岗岩的特点.由于岩石K2O/Na2O与FeO/MgO比值较高,可能来自地壳钙碱性Ⅰ型花岗岩的部分熔融,形成于晚二叠世弧后伸展体制.晚三叠世花岗斑岩是银成矿期岩石,主量元素与晚二叠世花岗岩相似,体现钙碱性过铝质的特点,但稀土元素与微量元素含量远低于晚二叠世花岗岩.结合前人研究成果,晚三叠世花岗斑岩及成矿可能形成于后碰撞构造背景,花岗斑岩是岩浆强烈结晶分异的产物.Abstract: Several large silver deposits occur in the East Kunlun Orogen but their tectonic setting and related Paleo-Tethyan evolution are highly debated. Geochronological and geochemical works on the granites and porphyritic granites in the Harizha-Nagengkangqieer silver deposits of the East Kunlun Orogen were made in this study. LA-ICP-MS zircon U-Pb dating shows that the Harizha granites were emplaced at 255 Ma and the porphyritic granites in both areas between 220 Ma and 224 Ma. Late Permian Harizha granites have high SiO2 and K2O+Na2O but low CaO and MgO contents with enriched light rare earth elements, depleted heavy rare earth elements and high field strength elements, negative Eu anomalies, high Ga/Al ratios and Zr+Nb+Ce+Y values, and thus are A-type. These rocks were generated by partial melting of crustal calc-alkaline Ⅰ-type granitoids in a back-arc extensional setting because of their relatively high K2O/Na2O, Ga/Al, FeO/MgO ratios. The Late Triassic calc-alkaline, peraluminous porphyritic granites are related to silver mineralization with similar major elements but low contents of trace elements compared to the Late Permian granites, are thus the result of fractional crystallization in a post-collisional background according to this and numerous previous data.
-
Key words:
- East Kunlun /
- Harizha /
- Nagengkangqieer /
- granite /
- geochronology /
- geochemistry
-
图 1 东昆仑地区地质简图(据Zhang et al., 2017a),展示主要斑岩铜矿与哈日扎‒那更康切尔研究区(绿色框)
主要斑岩铜矿:1.赛什塘与铜峪沟;2.加当根;3.托可妥;4.清水河东;5.乌兰乌珠尔;6.鸭子沟;7.卡尔却卡.NKF、CKF、SKF为昆北、昆中、昆南断裂
Fig. 1. Simplified geological map of the East Kunlun Orogen showing the major porphyry copper deposits and the location of research area (green rectangle)
图 2 东昆仑哈日扎(a)与那更康切尔(b)矿区地质简图
a.据Fan et al.(2021);b.据Chen et al.(2020)
Fig. 2. Geological map of the Harizha (a) and Nagengkangqieer areas (b)
图 10 哈日扎‒那更康切尔矿区晚二叠世花岗岩、晚三叠世花岗斑岩稀土元素球粒陨石标准化配分图解(a)及微量元素原始地幔蛛网图(b)
标准化数据来自于Sun and McDonough(1989)
Fig. 10. Chondrite-normalized rare earth element patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for the samples at Harizha and Nagengkangqieer
图 11 哈日扎矿区晚二叠世花岗岩类型判别图(底图据Whalen et al., 1987)
Fig. 11. Classification diagrams for the Late Permian granites from Harizha area (adapted from Whalen et al., 1987)
图 12 哈日扎‒那更康切尔及周缘晚二叠世岩石与晚三叠世斑岩哈克图解
本文仅将同一时代的岩石进行对比分析.数据来自于Zhang et al.(2017a);Zhao et al.(2019, 2020)
Fig. 12. Hacker diagrams for the Late Permian rocks and the Late Triassic porphyritic rocks in the Harizha-Nagengkangqieer and nearby areas
图 13 哈日扎‒那更康切尔地区及周缘晚三叠世斑岩岩浆结晶分异判别
底图据周红智等(2020);Allan. 褐帘石;Ap. 磷灰石;Sph. 榍石;Mon. 独居石
Fig. 13. Diagrams showing fractional crystallization for the Late Triassic porphyritic rocks in the Harizha-Nagengkangqieer and nearby areas
图 14 哈日扎‒那更康切尔地区晚三叠世花岗斑岩构造环境判别图(底图据Pearce et al., 1984)
Fig. 14. The tectonic discrimination diagrams of the Late Triassic porphyritic granites from Harizha-Nagengkangqieer area (after Pearce et al., 1984)
-
Anderson, T., 2002. Correction of Common Lead in U-Pb Analyse That Do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292/293: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006 Chen, X. D., Li, Y. G., Li, M. T., et al., 2020. Ore Geology, Fluid Inclusions, and C-H-O-S-Pb Isotopes of Nagengkangqieergou Ag-Polymetallic Deposit, East Kunlun Orogen, NW China. Geological Journal, 55(4): 2572-2590. https://doi.org/10.1002/gj.3526 Chiaradia, M., Ulianov, A., Kouzmanov, K., et al., 2012. Why Large Porphyry Cu Deposits Like High Sr/Y Magmas? Scientific Reports, 2: 685. https://doi.org/10.1038/srep00685 Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015 Fan, X. Z., Sun, F. Y., Xu, C. H., et al., 2021. Genesis of Harizha Ag-Pb-Zn Deposit in the Eastern Kunlun Orogen, NW China: Evidence of Fluid Inclusions and C-H-O-S-Pbisotopes. Resource Geology, 71(3): 177-201. https://doi.org/10.1111/rge.12256 Feng, K., Li, R. B., Pei, X. Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216 (in Chinese with English abstract). Gu, Z. C., Long, L. L., Wang, Y. W., et al., 2021. Geochronology and Geochemistry of the Late Permian Rhyolite Porphyry in the Nagengkangqieergou Ag-Polymetallic Deposit, East Kunlun Orogen, NW China. Mineral Exploration, 12(4): 919-933 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2021.04.014 Guo, X. Z., Jia, Q. Z., Kong, H. L., et al., 2016. Zircon U-Pb Geochronology and Geochemistry of Harizha Quartz Diorite in the Eastern Section from East Kunlun. Geological Science and Technology Information, 35(5): 18-26 (in Chinese with English abstract). Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006 Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004 Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010 Li, M. T., Li, Z. Q., 2017. Constrains of S-Pb-C-O Isotope Compositions on the Origin of Nagengkangqieer Silver Deposit, the Eastern Kunlun Mountains, China. Acta Mineralogica Sinica, 37(6): 771-781 (in Chinese with English abstract). Li, Q., 2019. Study on the Geological Characteristics and Enrichment Regularities of Mineralization of Harizha Ag-Cu Polymetallic Deposit in Eastern Kunlun Orogenic Belt, Qinghai Province (Dissertation). Jilin University, Changchun, 17-27 (in Chinese with English abstract). Li, Q., Cui, B., Wang, L., et al., 2019. Zircon U-Pb Chronology, Geochemistry and Lu-Hf Isotope Constraints on Genesis of Monzonitic Granite from Harizha Area in Eastern Section of East Kunlun Region. Global Geology, 22(1): 36-49. https://doi.org/10.3969/j.issn.1673-9736.2019.01.05 Li, Z. C., Pei, X. Z., Bons, P. D., et al., 2022. Petrogenesis and Tectonic Setting of the Early-Middle Triassic Subduction-Related Granite in the Eastern Segment of East Kunlun: Evidences from Petrology, Geochemistry, and Zircon U-Pb-Hf Isotopes. International Geology Review, 64(5): 698-721. https://doi.org/10.1080/00206814.2021.1875268 Liu, Z. Q., 2011. Study on the Geological Characteristics and Tectonic of Buqingshan Melanges Belt, The South Margin of East Kunlun Mountains (Dissertation). Chang'an University, Xi'an, 141-149 (in Chinese with English abstract). Ma, C. Q., Xiong, F. H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568 (in Chinese with English abstract). Patiño-Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)0250743: gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 Richards, J. P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. https://doi.org/10.2113/gsecongeo.98.8.1515 Song, Z. B., Zhang, Y. L., Chen, X. Y., et al., 2013. Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Their Geological Implications. Mineral Deposits, 32(1): 157-168 (in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Wang, W., Xiong, F. H., Ma, C. Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902 (in Chinese with English abstract). Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038 Xu, C. W., Wei, J. H., Zhou, H. Z., et al., 2020. S-Pb Isotope Characteristics and Prospecting Model of the Nagengkangqieer Silver Deposit in the Eastern Segment of East Kunlun Mountain. Geological Bulletin of China, 39(5): 712-727 (in Chinese with English abstract). Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. https://doi.org/10.1007/s12583-009-0027-y Yu, M., Feng, C. Y., Zhao, Y. M., et al., 2015. Genesis of Post-Collisional Calc-Alkaline and Alkaline Granitoids in Qiman Tagh, East Kunlun, China. Lithos, 239: 45-59. https://doi.org/10.1016/j.lithos.2015.08.022 Zhang, B., Kong, H. L., Li, Z. M., et al., 2016. Zircon U-Pb Dating, Geochemical and Geological Significance of the Tonalites from the Harizha Lead-Zinc Polymetallic Mine in East Kunlun Mountains. Geological Science and Technology Information, 35(5): 9-17 (in Chinese with English abstract). Zhang, J. Y., Ma, C. Q., Li, J. W., et al., 2017a. A Possible Genetic Relationship between Orogenic Gold Mineralization and Post-Collisional Magmatism in the Eastern Kunlun Orogen, Western China. Ore Geology Reviews, 81: 342-357. https://doi.org/10.1016/j.oregeorev.2016.11.003 Zhang, J. Y., Yang, Z. B., Zhang, H., et al., 2017b. Controls on the Formation of Cu-Rich Magmas: Insights from the Late Triassic Post-Collisional Saishitang Complex in the Eastern Kunlun Orogen, Western China. Lithos, 278/279/280/281: 400-418. https://doi.org/10.1016/j.lithos.2017.02.008 Zhao, X., Fu, L. B., Wei, J. H., et al., 2019. Late Permian Back-Arc Extension of the Eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos, 340/341: 34-48. https://doi.org/10.1016/j.lithos.2019.05.006 Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360/361: 105446. https://doi.org/10.1016/j.lithos.2020.105446 Zhou, H. Z., Wei, J. H., Shi, W. J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated Ⅰ-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164 (in Chinese with English abstract). Zhu, Y. T., 2006. The Formation and Evolution of the Hoh Xil-Bayan Har Triassic Sedimentary Basin (Dissertation). Chengdu University of Technology, Chengdu, 20-25 (in Chinese with English abstract). 封铿, 李瑞保, 裴先治, 等, 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116?viewType=HTML 谷子成, 龙灵利, 王玉往, 等, 2021. 东昆仑那更康切尔沟银多金属矿床晚二叠世流纹斑岩年代学和地球化学特征研究. 矿产勘查, 12(4): 919-933. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202104018.htm 国显正, 贾群子, 孔会磊, 等, 2016. 东昆仑东段哈日扎石英闪长岩时代、成因及其地质意义. 地质科技情报, 35(5): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605003.htm 李敏同, 李忠权, 2017. 东昆仑那更康切尔银矿床S-Pb-C-O同位素地球化学特征. 矿物学报, 37(6): 771-781. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706012.htm 李青, 2019. 青海东昆仑哈日扎银铜多金属矿床地质特征及矿化富集规律(硕士学位论文). 长春: 吉林大学, 17-27. 刘战庆, 2011. 东昆仑南缘布青山构造混杂岩带地质特征及区域构造研究(硕士学位论文). 西安: 长安大学, 141-149. 马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512004.htm 宋忠宝, 张雨莲, 陈向阳, 等, 2013. 东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 矿床地质, 32(1): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201301014.htm 王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270?viewType=HTML 徐崇文, 魏俊浩, 周红智, 等, 2020. 东昆仑东段那更康切尔银矿硫-铅同位素特征与找矿模型. 地质通报, 39(5): 712-727. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202005013.htm 张斌, 孔会磊, 李智明, 等, 2016. 东昆仑哈日扎铅锌多金属矿区英云闪长岩锆石U-Pb定年、地球化学及其地质意义. 地质科技情报, 35(5): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605002.htm 周红智, 魏俊浩, 石文杰, 等, 2020. 东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展: 来自索拉沟高分异Ⅰ型花岗岩的证据. 地质科技通报, 39(4): 150-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004020.htm 朱迎堂, 2006. 可可西里-巴颜喀拉三叠纪沉积盆地的形成及演化(博士学位论文). 成都: 成都理工大学, 20-25. -
dqkxzx-49-5-1778-附表.docx
-