Late Paleoproterozoic Metamorphic-Anatexis Events and Their Tectonic Implications in Longshoushan Area, Alxa Block
-
摘要: 阿拉善地块位于华北克拉通的西南缘,其早前寒武纪地质演化及构造归属存在争议,这严重制约了华北克拉通构造格局和演化的研究.龙首山杂岩为阿拉善地块少有的早前寒武纪变质基底,记录了古元古代多期变质事件,可为解决上述争议提供依据.以龙首山地区中部金川矿区内、龙首山杂岩中的花岗伟晶岩和黝帘斜长角闪岩为研究对象,系统开展岩相学、锆石和全岩的元素地球化学,以及锆石U-Pb年代学的研究.花岗伟晶岩的SiO2介于69.70%~73.08%,属于弱过铝质、钾玄岩的范畴,为混合岩化过程中地壳岩石低程度部分熔融的产物.在花岗伟晶岩中锆石核部获得了1 892±7 Ma(MSWD=0.76)的上交点年龄,代表花岗伟晶岩的形成年龄.黝帘斜长角闪岩的SiO2介于41.51%~48.92%,其原岩为拉斑玄武质的辉绿岩.黝帘斜长角闪岩中的锆石均为变质锆石,所获得的1 830±8 Ma(MSWD=0.61)加权平均年龄代表了一期角闪岩相变质事件的时间.结合前人的研究,龙首山地区在古元古代晚期存在强烈的变质/深熔事件,可能与碰撞造山事件有关.而通过构造热事件的对比,认为阿拉善地块与华北克拉通的孔兹岩带在早前寒武纪具有亲缘关系.Abstract: The Alxa block is located in the southwestern margin of the North China craton. The Early Precambrian tectonic evolution and tectonic affinity of the block remain unknown or controversial, which restricts the study of the tectonic framework and evolution of the North China craton. The Longshoushan complex is one of the few Early Precambrian metamorphic basement rocks in the Alxa block, and records multiple Paleoproterozoic metamorphic events. Hence, which makes it possible to solve the above problems. It presents petrography, whole-rock geochemistry, and mineralogy, mineral geochemistry and chronology of zircon for the granitic pegmatite and zoisite amphibolite in the Longshoushan complex from the Jinchuan mining area in the central part of the Longshoushan area. The granitic pegmatite is characterized by SiO2 contents of 69.70%-73.08%, belongs to weak peraluminous and shoshonite series, and formed from low degree partial melting of crustal rocks during migmatisation. The intersection ages of 1 892±7 Ma (MSWD=0.76) were obtained from the core of zircon in granitic pegmatite, representing the formation age of the granitic pegmatite. The zoisite amphibolite is characterized by SiO2 contents of 41.51%-48.92%, and is the metamorphic product of tholeiitic diabase. Zircons in the zoisite amphibolite are amphibolite facies metamorphic zircons. The weighted average age of 1 830±8 Ma (MSWD=0.61) represents an amphibolite facies metamorphic event in the Longshoushan area. Combined with previous studies, there was a strong metamorphic-anatexis event in the Late Paleoproterozoic in the Longshoushan area, which is most likely related to a collisional orogeny. Through the comparison of tectonic-thermal events, it suggests that the Alxa block and the Khondalite belt of the North China craton have affinity in the Early Precambrian.
-
Key words:
- North China craton /
- Alxa block /
- Longshoushan area /
- metamorphism-anatexis event /
- zircon /
- engineering geology
-
图 1 华北克拉通构造划分(a.据Wan et al.,2009修改)和金川矿区地质简图(b.据Zeng et al., 2018修改)
Fig. 1. Tectonic subdivision of the North China craton (a. modified from Wan et al., 2009) and geologic map of the Jinchuan mineral area (b. modified from Zeng et al., 2018)
图 3 SiO2-Na2O+K2O图解(a. 底图据Middlemost,1994)、K2O-SiO2图解(b. 底图据Rickwood,1989)、Nb/Y-Zr/Ti图解(c. 底图据Pearce,1996)和亚碱性玄武岩的SiO2-FeOT /MgO分类图解(d. 底图据Miyashiro,1974)
Fig. 3. SiO2-Na2O+K2O diagram (a. after Middlemost, 1994), K2O-SiO2 diagram (b. after Rickwood, 1989), Nb/Y-Zr/Ti diagram (c. after Pearce, 1996) and SiO2-FeOT /MgO diagram (d. after Miyashiro, 1974)
图 4 花岗伟晶岩和黝帘斜长角闪岩的稀土元素球粒陨石标准化配分模式(a, c)和微量元素原始地幔标准化蛛网图(b, d)(球粒陨石和原始地幔的标准化值,以及OIB、E-MORB和N-MORB的值据Sun and McDonough, 1989)
Fig. 4. Chondrite-normalized REE patterns (a and c) and primitive mantle-normalized trace-element patterns (b and d) of the granitic pegmatite and the zoisite amphibolite (chondrite, primitive mantle, OIB, E-MORB and N-MORB values are from Sun and McDonough, 1989)
图 7 锆石的稀土元素配分曲线(球粒陨石标准化取自Sun and McDonough, 1989)
Fig. 7. Chondrite-normalized REE patterns for zircons (chondrite values are from Sun and McDonough, 1989)
图 9 花岗伟晶岩的结晶分异(a,b)和源区性质(c,d)判别图解
a.Nb/Ta⁃TE1,3图解;b.K/Rb⁃TE1,3图解(CHARAC范围来Bau,1996和Ballouard et al.,2016);c.(Na2O+K2O)/(FeOT+MgO+TiO2)⁃Na2O+K2O+FeOT+MgO+TiO2图解(底图据Douce,1999);d.molar Al2O3/(MgO+FeOT)⁃molar CaO/(MgO+FeOT)图解(底图据Altherr et al.,2000)
Fig. 9. Crystal fractionation (a, b) and source characteristics (c, d) discrimination diagrams for the granitic pegmatite
图 10 黝帘斜长角闪岩构造环境(a~c)、地壳混染(d,e)、结晶分异(f)和源区性质(g,h)判别图解
a.Ti⁃Zr⁃Y图解(底图据Pearce and Cann, 1973);b.Ti⁃Sm⁃Y图解(底图据Vermeesch,2006);c.Ti⁃V图解(底图据Shervais,1982);d.SiO2⁃Mg#图解;(e.Nb/La⁃Nb/Th图解;f.La/Sm⁃La图解(底图据Treuil and Joron, 1975);g.Sm/Yb⁃Sm图解(底图据曾认宇等,2022);h.(Hf/Sm)N⁃(Ta/La)N图解(底图据LaFlèche et al.,1998). LKT.低钾拉斑玄武岩;WPB.板内玄武岩;CAB.钙碱性玄武岩;MORB.洋中脊玄武岩;IAB.岛弧玄武岩;OIB & Alkali-B.洋岛玄武岩和碱性玄武岩;CFB.大陆溢流玄武岩
Fig. 10. Tectonic setting (a‒c), crustal contamination (d‒e), crystal fractionation (f) and source characteristics (g‒h) discrimination diagrams for the amphibolite
图 11 变质锆石频率图
a.西阿拉善地块(数据来源:本文;Zhang et al.,2013;王强,2014;Gong et al.,2016);b.孔兹岩带变质锆石频率图(数据来源:张成立等,2018及其中参考文献)
Fig. 11. Frequence plots of U-Pb ages for metamorphic zircons
-
Altherr, R., Holl, A., Hegner, E., et al., 2000. High- Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50: 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3 Andersson, J., Möller, C., Johansson, L., 2002. Zircon Geochronology of Migmatite Gneisses along the Mylonite Zone (S Sweden): A Major Sveconorwegian Terrane Boundary in the Baltic Shield. Precambrian Research, 114(1-2): 121-147. https://doi.org/10.1016/S0301-9268(01)00220-0 Ballouard, C., Branquet, Y., Tartese R., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(7): e395. https://doi.org/10.1130/G38169Y.1 Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159 Dan, W., Li, X. H., Guo, J. H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China: Evidence from In Situ Zircon U–Pb Dating and Hf–O Isotopes. Gondwana Research, 21(4): 838-864. https://doi.org/10.1016/j.gr.2011.09.004 Dan, W., Li, X. H., Wang, Q., et al., 2014. Neoproterozoic S-Type Granites in the Alxa Block, Westernmost North China and Tectonic Implications: In Situ Zircon U-Pb- Hf-O Isotopic and Geochemical Constraints. American Journal of Science, 314(1): 110-153. https://doi.org/10.2475/01.2014.04 Dan, W., Li, X. H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic Granitoids, U–Pb Geochronology and Sr–Nd–Pb–Hf–O Isotope Geochemistry. Gondwana Research, 32: 105-121. https://doi.org/10.1016/j.gr.2015.02.011 Dong, C. Y., Liu, D. Y., Li, J. J., et al., 2007a. Palaeoproterozoic Khondalite Belt in the Western North China Craton: New Evidence from SHRIMP Dating and Hf Isotope Composition of Zircons from Metamorphic Rocks in the Bayan Ul-Helan Mountains Area. Chinese Science Bulletin, 52(21): 2984-2994. doi: 10.1007/s11434-007-0404-9 Dong, G. A., Yang, H. Y., Liu, D. Y., 2007b. Detrital Zircon SHRIMP U-Pb Geochronology and Geological Significance of Longshoushan Group. Chinese Science Bulletin, 52(6): 688-697. doi: 10.1360/csb2007-52-6-688 Douce, P. A. E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?. Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/GSL.SP.1999.168.01.05 Gan, B. P., Diwu, C. R., Wang, B. L., et al., 2019. Geochronology and Geochemistry of the Paleoproterozoic Granites from the Helanshan Region: Contrains on the Formation and Evolution of Khodalite Belt in the Western North China Craton. Acta Petrologica Sinica, 35(8): 2325-2343 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.08.03 Gao, M. D., Xu, H. J., Zhang, J. F., et al., 2018. Incipient Melt during Partial Melting of the Deeply Subducted Continental Crust: Evidence from Leucosome of Migmatite in Sulu Ultra-High Pressure Terrane. Acta Petrologica Sinica, 34(3): 547-566 (in Chinese with English abstract). Geng, Y. S., Wang, X. S., Shen, Q. H., et al., 2006. Redefinition of the Alxa Group-Complex (Precambrian Metamorphic Basement) in the Alxa Area, Inner Mongolia. Geology in China, 33(1): 138-145 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.01.015 Geng, Y. S., Wang, X. S., Shen, Q. H., et al., 2007. Chronology of the Precambrian Metamorphic Series in the Alxa Area, Inner Mongolia. Geology in China, 34(2): 251-261 (in Chinese with English abstract). Gong, J. H., Zhang, J. X., Wang, Z. Q., et al., 2016. Origin of the Alxa Block, Western China: New Evidence from Zircon U-Pb Geochronology and Hf Isotopes of the Longshoushan Complex. Gondwana Research, 36: 359-375. https://doi.org/10.1016/j.gr.2015.06.014 Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82. https://doi.org/141:66-82.10.1007/s004100000218 Hollister, L. S., 1993. The Role of Melt in the Uplift and Exhumation of Orogenic Belts. Chemical Geology, 108(1-4): 31-48. https://doi.org/10.1016/0009-2541(93)90316-B Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793-834. https://doi.org/10.1093/petrology/egg112 Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367-9120(03)00071-3 LaFlèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chemical Geology, 148: 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3 Li, J. J., Shen, B. F., Li, H. M., et al., 2004. Single- Zircon U-Pb Age of Granodioritic Gneiss in the Bayan UI Area, Western Inner Mongolia. Geological Bulletin of China, 23(12): 1243-1245 (in Chinese with English abstract). Li, J. Y., Qian, Y., Li, Y. J., et al., 2020. Highly Fractionated Granitic Pegmatite of Early Stage of Early Cretaceous in Liaodong Peninsula: Petrogenesis and Tectonic Setting. Earth Science, 45(11): 4054-4071 (in Chinese with English abstract). Liu, F., Robinson, P. T., Gerdes, A., et al., 2010. Zircon U–Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China: Constraints on the Timing and Nature of Partial Melting. Lithos, 117(1-4): 247-268. https://doi.org/10.1016/j.lithos.2010.03.002 Liu, P. H., Tian, Z. H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216 (in Chinese with English abstract). Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~ 35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354. https://doi.org/10.1016/j.lithos.2015.11.026 London, D., 2005. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 80(1-4): 281-303. https://doi.org/10.1016/j.lithos.2004.02.009 Ma, L., Jiang, S. Y., Hou, M. L., 2014. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25: 859-872. https://doi.org/10.1016/j.gr.2013.05.012 Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321 Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites, 8: 525-548. Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Newfoundland: Geological Association of Canada, 12: 79-113. Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5 Qi, J. W., Zhang, S. M., Yang, C. S., et al., 2019. The LA-ICP-MS Zircon U-Pb Age of the Pegmatoidal Alaskite and Its Relationship with Uranium Mineralization in Hongshiquan Area, Gansu Province. Geological Bulletin of China, 38(4): 562-572 (in Chinese with English abstract). Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 Santosh, M., Wan, Y. S., Liu, D. Y., 2009. Anatomy of Zircons from an Ultrahot Orogen: The Amalgamation of the North China Craton within the Supercontinent Columbia. The Journal of Geology, 117(4): 429-443. https://doi.org/10.1086/598949 Sawyer, E. W., 2008. Working with Migmatites: Nomenclature for the Constituent Parts. In: Sawyer, E. W., ed., Working with Migmatites. Quebec City, Mineralogical Association of Canada, Quebec, 1-28. Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth and Planetary Science Letters, 228(1-2): 65-84. https://doi.org/10.1016/j.epsl.2004.09.020 Shen, Q. H., Geng, Y. S., Wang, X. S., et al., 2004. Mineral Characteristics and Metamorphic P-T Condition of Precambrian Amphibolites in Alxa Region. Geological Survey and Research, 27(4): 209-216 (in Chinese with English abstract). Shen, Q. H., Geng, Y. S., Wang, X. S., et al., 2005. Petrology, Geochemistry, Formation Environment and Ages of Precambrian Amphibolites in Alxa Region. Acta Petrologica et Mineralogica, 24(1): 21-31 (in Chinese with English abstract). Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101-118. https://doi.org/10.1016/0012-821X(82)90120-0 Su, H., Zeng, R. Y., Gan, D. B., et al., 2023. Petrogenesis and Tectonic Implications of Granite Porphyry in the Beidashan Area, Alxa Block: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Geoscience (in Chinese with English abstract). Sun, W. D., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tang, Z. L., 2002. Metallogenic System and Metallogenic Tectonic Dynamics in the Southwest Margin of North China Ancient Land (Longshoushan-Qilian Mountain). Geological Publishing House, Beijing (in Chinese with English abstract). Treuil, M., Joron, J. L., 1975. Utilisation des Elements Hygromagmatophiles Pour la Simplification de la Modélisation Quantitative des Processus Magmatiques: Exemples de l'Afar et de la Dorsale Médio-Atlantique. Soc. Ital. Mineral. Petrol. , 31: 125-174. https://doi.org/10.2113/gssgfbull.s7-xix.6.1197 Vermeesch, P., 2006. Tectonic Discrimination Diagrams Revisited. Geochemistry, Geophysics, Geosystems, 7(6): 466-482. https://doi.org/10.1029/2005gc001092 Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2009. The Precambrian Khondalite Belt in the Daqingshan Area, North China Craton: Evidence for Multiple Metamorphic Events in the Palaeoproterozoic Era. Geological Society, London, Special Publications, 323(1): 73-97. https://doi.org/10.1144/sp323.4 Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (∼2.45, ∼1.95 and ∼1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U–Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224: 71-93. https://doi.org/10.1016/j.precamres.2012.09.014 Wang, Q., 2014. Study on Metamorphism of Longshoushan Baijiazuizi Group (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x Wu, F. Y., Liu, X. C., Ji W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 47(7): 745-765 (in Chinese). Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002 Wu, Y. B., Zheng, Y. F., Zhang, S. B., et al., 2007. Zircon U–Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China: Constraints on Partial Melting. Journal of Metamorphic Geology, 25(9): 991-1009. https://doi.org/10.1111/j.1525-1314.2007.00738.x Xiu, Q. Y., Lu, S. N., Yu, H. F., et al., 2002. The Isotopic Age Evidence for Main Longshoushan Group Contributing to Palaeoproterozoic. Progess in Precambrian Research, 25(2): 93-96 (in Chinese with English abstract). Xiu, Q. Y., Yu, H. F., Li, Q., et al., 2004. Disscussion on the Petrogenic Time of Longshoushan Group, Gansu Province. Acta Geologica Sinica, 78(3): 366-373 (in Chinese with English abstract). Xu, W., Liu, F. l., Liu, C. H., 2017. Petrogenesis and Geochemical Characteristics of the North Liaohe Metabasic Rocks, Jiao-Liao-Ji Orogenic Belt and Their Tectonic Significance. Acta Petrologica Sinica, 33(9): 2743-2757 (in Chinese with English abstract). Yang, Q. Y., Santosh, M., Collins, A. S., et al., 2016. Microblock Amalgamation in the North China Craton: Evidence from Neoarchaean Magmatic Suite in the Western Margin of the Jiaoliao Block. Gondwana Research, 31: 96-123. https://doi.org/10.1016/j.gr.2015.04.002 Yang, Z. Y., Yuan, W., Tong, Y. B., et al., 2014. Tectonic Affinity Reconnaissance of the Alxa Block in the Pre-Mesozoic. Acta Geoscientica Sinica, 35(6): 673-681 (in Chinese with English abstract). Yin, C. Q., Zhao, G. C., Guo, J. H., et al., 2011. U-Pb and Hf Isotopic Study of Zircons of the Helanshan Complex: Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38. https://doi.org/10.1016/j.lithos.2010.11.010 Yu, S. Y., Zhang, J. X., Li, S. Z., et al., 2016. "Barrovian-Type" Metamorphism and In Situ Anatexis during Continental Collision: A Case Study from the South Altun Mountains, Western China. Acta Petrologica Sinica, 32(12): 3703-3714 (in Chinese with English abstract). Yu, Y., Li, Z. F., Bai, L. A., et al., 2022. Metallogenic Regularity and Prospecting Direction of Pegmatitic Rare-Metal Deposits in Western Yunnan. Acta Petrologica Sinica, 38(7): 2052-2066 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.14 Yuan, W., Yang, Z. Y., 2015. The Alashan Terrane was not Part of North China by the Late Devonian: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 27(3): 1270-1282. https://doi.org/10.1016/j.gr.2013.12.009 Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2018. Paleoproterozoic Multiple Tectonothermal Events in the Longshoushan Area, Western North China Craton and Their Geological Implication: Evidence from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Minerals-Basel, 8(9): 361. https://doi.org/10.3390/min8090361 Zeng, R. Y., Pan, J. Y., Su, H., et al., 2023. Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization. Earth Science, 48(9): 3258-3279 (in Chinese with English abstract). Zhai, M. G., 2011. Craton and the Formation of North China Land Block. Science in China (Series D: Earth Sciences), 41(8): 1037-1046 (in Chinese). Zhai, M. G, Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview, Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 Zhang, C. L., Gou, L. l., Diwu, C. R., et al., 2018. Early Precambrian Geological Events of the Basement in Western Block of North China Craton and Their Properties and Geological Significance. Acta Petrologica Sinica, 34(4): 981-998 (in Chinese with English abstract). Zhang, J. X., Gong, J. H., 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English abstract). Zhang, J. X., Gong, J. H., Yu, S. Y., et al., 2013. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication: Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235: 36-57. https://doi.org/10.1016/j.precamres.2013.05.002 Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract). Zhao, G. C, Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 Zou, L., Guo, J. H., Jiao, S. J., et al., 2022. Paleoproterozoic Ultrahigh-Temperature Metamorphism in the Alxa Block, the Khondalite Belt, North China Craton: Petrology and Phase Equilibria of Quartz-Absent Corundum-Bearing Pelitic Granulites. J. Metamorph. Geol. , https://doi: 10.1111/jmg.12661 Zou, L., Guo, J. H., Liu, L. S., et al., 2021. Palaeoproterozoic Granulite-Facies Metamorphism in the Eastern Alxa Block: New Petrological and Geochronological Evidence from the Diebusige Complex. Precambrian Research, 354(7-8): 106051. https://doi.org/10.1016/j.precamres.2020.106051 甘保平, 第五春荣, 王伯隆, 等, 2019. 贺兰山古元古代花岗岩年代学及地球化学特征: 对华北克拉通西部孔兹岩带形成和演化的制约. 岩石学报, 35(8): 2325-2343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908003.htm 高名迪, 续海金, 章军锋, 等, 2018. 深俯冲陆壳部分熔融初始熔体的厘定: 来自苏鲁超高压地体混合岩中浅色体证据. 岩石学报, 34(3): 547-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803002.htm 耿元生, 王新社, 沈其韩, 等, 2006. 内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定. 中国地质, 33(1): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601014.htm 耿元生, 王新社, 沈其韩, 等, 2007. 内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究. 中国地质, 34(2): 251-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702006.htm 李俊建, 沈保丰, 李惠民, 等, 2004. 内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄. 地质通报, 23(12): 1243-1245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200412013.htm 李锦毓, 钱烨, 李予晋, 等, 2020. 辽东半岛早白垩世早期高分异花岗伟晶岩成因与构造背景. 地球科学, 45(11): 4054-4071. doi: 10.3799/dqkx.2020.998 刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228 戚佳伟, 张树明, 杨春四, 等, 2019. 甘肃红石泉地区伟晶状白岗岩LA-ICP-MS锆石U-Pb年龄与铀成矿关系. 地质通报, 38(4): 562-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201904009.htm 沈其韩, 耿元生, 王新社, 等, 2004. 阿拉善地区前寒武纪斜长角闪岩组成矿物特征及变质温压条件. 地质调查与研究, 27(4): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200404000.htm 沈其韩, 耿元生, 王新社, 等, 2005. 阿拉善地区前寒武纪斜长角闪岩的岩石学、地球化学、形成环境和年代学. 岩石矿物学杂志, 24(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200501003.htm 苏惠, 曾认宇, 甘德斌, 等, 2023. 阿拉善北大山地区花岗斑岩岩石成因及构造启示: 元素地球化学、锆石U-Pb年代学及Hf同位素约束. 现代地质. 汤中立, 2002. 华北古陆西南缘(龙首山‒祁连山)成矿系统及成矿构造动力学. 北京: 地质出版社. 王强, 2014. 龙首山群白家嘴子组变质作用研究(硕士学位论文). 西安: 长安大学. 吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm 修群业, 陆松年, 于海峰, 等, 2002. 龙首山岩群主体划归古元古代的同位素年龄证据. 前寒武纪研究进展, 25(2): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200202004.htm 修群业, 于海峰, 李铨, 等, 2004. 龙首山岩群成岩时代探讨. 地质学报, 78(3): 366-373. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200403009.htm 许王, 刘福来, 刘超辉, 2017. 胶‒辽‒吉造山带北辽河变基性岩的成因、地球化学属性及其构造意义. 岩石学报, 33(9): 2743-2757. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709006.htm 杨振宇, 袁伟, 仝亚博, 等, 2014. 阿拉善地块前中生代构造归属的新认识. 地球学报, 35(6): 673-681. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201406002.htm 于胜尧, 张建新, 李三忠, 等, 2016. 大陆碰撞过程中的巴罗式变质作用及原地深熔作用: 以南阿尔金为例. 岩石学报, 32(12): 3703-3714. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612010.htm 余勇, 李祖福, 白令安, 等, 2022. 滇西伟晶岩型稀有金属矿床成矿规律与找矿方向. 岩石学报, 38(7): 2052-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202207014.htm 曾认宇, 潘家永, 苏惠, 等, 2023. 赣南会昌辉石闪长岩中磷灰石和锆石的年代学、成因矿物学及铀成矿指示意义. 地球科学, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127 翟明国, 2011. 克拉通化与华北陆块的形成. 中国科学(D辑: 地球科学), 41(8): 1037-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108001.htm 张成立, 苟龙龙, 第五春荣, 等, 2018. 华北克拉通西部基底早前寒武纪地质事件、性质及其地质意义. 岩石学报, 34(4): 981-998. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804010.htm 张建新, 宫江华, 2018. 阿拉善地块性质和归属的再认识. 岩石学报, 34(4): 940-962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804008.htm 赵国春, 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908006.htm -
dqkxzx-48-11-4034-附表.docx
-