Quantitative Evaluation of Petroleum Maturity of Different Periods of Charging of Ordovician Reservoirs in Tahe Area Using Fluorescence Spectrum Parameters of Oil
-
摘要: 塔河地区储层原油主要来自于寒武系玉尔吐斯组烃源岩,所发现的油藏为不同期次,不同成熟度的原油在储层中发生混合的结果.在对储层原油成熟度和荧光光谱分析的基础之上,利用荧光光谱参数建立原油成熟度定量评价模板,通过获取的油包裹体荧光光谱参数对塔河地区不同期次充注原油的成熟度进行定量评价.原油成熟度参数分析结果表明芳烃中甲基菲指数和二苯并噻吩参数是定量评价塔河地区原油成熟度的有效指标.采用芳烃成熟度参数计算得到塔河地区原油成熟度(Ro)范围为0.6%~1.4%,与原油荧光光谱参数具有很好的相关性,基于原油荧光光谱参数与成熟度的关系建立了原油成熟度定量评价模板.流体包裹体分析结果表明塔河地区奥陶系碳酸盐岩储层中存在四期油气充注,分别对应发橘黄色、亮黄色、浅黄色和蓝色荧光的油包裹体,不同期次油包裹体荧光光谱参数存在一定差异.通过不同期次油包裹体荧光光谱参数结合建立的原油荧光光谱参数成熟度评价模板确定橘黄色荧光油包裹体油成熟度(Ro)小于0.6%,亮黄色荧光油包裹体油(Ro)在0.6%~0.8%之间,浅黄色荧光油包裹体油(Ro)在0.8%~1.0%之间,蓝色荧光油包裹体油(Ro)在1.0%~1.2%之间.确定的不同期次充注油气的成熟度对于研究塔河地区油气成藏过程具有重要的参考作用.Abstract: The crude oil in the reservoirs in the Tahe area is mainly derived from the Cambrian Yuertusi source rocks. The discovered oil reservoirs are the result of mixing of crude oils of different stages and different maturities in the reservoirs. Based on the analysis of reservoir oil maturity and fluorescence spectra, this paper uses fluorescence spectrum parameters to establish a quantitative evaluation template for crude oil maturity, and assesses the maturity of crude oil at different episodes in the Tahe area by obtaining oil inclusion fluorescence spectrum parameters. The analysis results of the maturity parameters of crude oil show that the methylphenanthrene parameters and dibenzothiophene parameters in aromatic hydrocarbons are effective indicators for quantitatively evaluating the maturity of crude oil in Tahe area. Using aromatic hydrocarbon maturity parameters to calculate, the crude oil maturity (Ro) in Tahe area ranges from 0.6% to 1.4%, which has a good correlation with the crude oil fluorescence spectrum parameters, and a quantitative evaluation template for crude oil maturity is established based on the relationship between the two. The fluid inclusion analysis results show that there are four periods of petroleum charging in the Ordovician carbonate reservoirs in the Tahe area, corresponding to oil inclusions with orange, bright yellow, light yellow, and blue fluorescence. The fluorescence spectrum parameters of oil inclusions in different periods are also different. Based on the fluorescence spectrum parameters of oil inclusions in different periods and the established fluorescence spectrum parameters-maturity evaluation template of crude oil, it is determined that the maturity (Ro) of oil in orange fluorescent oil inclusions is less than 0.6%, that of oil in bright yellow fluorescent oil inclusions is between 0.6% and 0.8%, that of oil in light yellow fluorescent oil inclusions is between 0.8% and 1.0%, and that of oil in blue fluorescent oil inclusions is between 1.0% and 1.2%.The determined maturity of petroleum in different periods has an important reference for the study of petroleum accumulation process in Tahe area.
-
图 1 塔河地区取样井分布(据王斌等,2021修改)
Fig. 1. Location of sampling wells in the Tahe area
图 2 塔河地区原油及寒武系烃源岩饱和烃色谱‒质谱图(LT1数据引自杨海军等, 2020)
Fig. 2. Chromatography-mass spectra of saturated hydrocarbon of the crude oil and Cambrian source rock in Tahe area
图 3 塔河地区原油地化特征(LT1数据引自杨海军等, 2020)
Fig. 3. Geochemical features of crude oil in Tahe area
图 8 塔河地区奥陶系油包裹体透射光、荧光以及荧光光谱图
a~c.YQ8井,6 630.21 m,O1‒2y,高角度缝充填方解石中发育的橘黄色荧光原生油包裹体透射光、荧光和荧光光谱图;d~f. AT25X井,6 588.0 m,O2yj,方解石中发育的亮黄色原生油包裹体透射光、荧光和荧光光谱图;g~i. TS3井,6 103.0 m,O1‒2y,方解石中发育的浅黄色原生油包裹体透射光、荧光和荧光光谱图;j~l. AT5井,6 524.7 m,O2yj,溶洞巨型方解石中发育的蓝色次生油包裹体透射光、荧光和荧光光谱图
Fig. 8. Photographs and fluorescence spectra of oil inclusions in calcite veins in Ordovician reservoirs of Tahe area
表 1 塔河地区原油芳烃成熟度参数
Table 1. Aromatic geochemical parameters of crude oil from Tahe area
井名 深度 层位 TNR1 TNR2 MPI1 MPI2 F1 F2 K2, 4 K4, 6 Rc Ro1 Ro2 AT40 7 227.88~7 254.00 m O2yj 1.53 0.92 1.42 1.50 0.65 0.57 2.78 6.45 1.45 1.41 1.43 S9702 5 545.00~5 650.50 m O2yj 1.11 1.17 1.35 1.44 0.56 0.50 2.21 4.74 1.49 1.17 1.23 AT5 6 554.44~6 595.00 m O2yj 1.50 0.82 1.38 1.47 0.57 0.47 2.28 5.44 1.47 1.21 1.26 SHB5-1 7 468.00~7 888.77 m O2yj 1.00 0.78 0.76 0.88 0.42 0.39 1.24 3.22 0.85 0.81 0.89 YQ14 4 848.00~4 852.00 m K1y 1.25 0.85 0.94 1.07 0.50 0.48 1.52 3.33 0.97 1.02 0.99 YJ3-3H - O2yj 1.15 0.79 0.95 1.13 0.47 0.43 1.77 4.75 0.97 0.95 1.08 TP310 6 759.16~6 855.00 m O2yj 0.85 0.72 0.67 0.79 0.40 0.36 0.96 2.38 0.80 0.76 0.80 TP39 6 950.00~7 110.00 m O2yj 0.68 0.61 0.72 0.84 0.42 0.37 1.12 2.51 0.83 0.83 0.85 HY1 - C1kl 0.92 0.74 0.83 0.97 0.45 0.38 1.01 2.34 0.90 0.88 0.81 TP336H 6 555.06~6 555.16 m O2yj 0.72 0.68 0.61 0.70 0.38 0.33 0.82 1.96 0.77 0.71 0.75 TK506 5 277.81~5 330.00 m O2yj 0.94 0.73 0.73 0.86 0.41 0.37 0.90 2.61 0.84 0.80 0.77 T903 5 726.12~5 870.82 m T2a1 0.82 0.70 0.60 0.69 0.38 0.34 0.82 1.98 0.76 0.71 0.75 TK310-1X 4 945.00~4 954.50 m C1kl 0.83 0.72 0.78 0.92 0.45 0.38 1.25 2.72 0.87 0.89 0.90 TS6 7 418.89 m O1p 1.13 1.30 1.13 1.25 0.53 0.49 2.01 5.67 1.08 1.11 1.16 TK495 - O1‒2y 0.67 0.36 0.53 0.65 0.35 0.31 0.43 1.40 0.72 0.65 0.61 TH123114 6 128.00~6 173.40 m O1‒2y 0.54 0.32 0.55 0.71 0.39 0.34 0.51 0.98 0.73 0.73 0.64 TH10365 5 887.46~5 930.00 m O1‒2y 0.54 0.32 0.50 0.63 0.36 0.34 0.45 0.97 0.70 0.66 0.62 S99 6 171.72 m O1‒2y 0.65 0.34 0.55 0.68 0.37 0.35 0.68 1.38 0.73 0.70 0.70 表 2 塔河地区原油荧光光谱参数
Table 2. Fluorescence spectrum parameters of crude oil from Tahe area
井名 深度 层位 λmax Q QF535 CIE-X CIE-Y AT40 7 227.88~7 254.00 m O2yj 455.79 0.06 0.21 0.17 0.17 S9702 5 545.00~5 650.50 m O2yj 456.25 0.12 0.36 0.20 0.22 AT5 6 554.44~6 595.00 m O2yj 456.36 0.08 0.31 0.19 0.22 SHB5-1 7 468.00~7 888.77 m O2yj 513.74 0.31 0.99 0.29 0.40 YQ14 4 848.00~4 852.00 m K1y 498.14 0.15 0.50 0.29 0.36 YJ3-3H - O2yj 505.94 0.17 0.62 0.28 0.38 TP310 6 759.16~6 855.00 m O2yj 535.71 0.34 1.03 0.30 0.38 TP39 6 950.00~7 110.00 m O2yj 503.65 0.34 1.01 0.29 0.37 HY1 - C1kl 511.45 0.47 1.24 0.31 0.37 TP336H 6 555.06~6 555.16 m O2yj 533.43 0.47 1.27 0.32 0.39 TK506 5 277.81~5 330.00 m O2yj 551.54 0.65 1.63 0.34 0.39 T903 5 726.12~5 870.82 m T2a1 554.28 0.91 2.09 0.36 0.39 TK310-1X 4 945.00~4 954.50 m C1kl 502.27 0.54 1.43 0.30 0.37 TS6 7 418.89 m O1p 481.50 0.16 0.61 0.33 0.41 TK495 - O1‒2y 568.10 1.24 2.74 0.37 0.44 TH123114 6 128.00~6 173.40 m O1‒2y 537.69 0.53 1.51 0.36 0.43 TH10365 5 887.46~5 930.00 m O1‒2y 555.57 0.73 1.87 0.24 0.32 S99 6 171.72 m O1‒2y 549.05 0.87 2.15 0.39 0.44 -
Alexander, R., Kagi, R. I., Rowland, S. J., et al., 1985. The Effects of Thermal Maturity on Distributions of Dimethylnaphthalenes and Trimethylnaphthalenes in Some Ancient Sediments and Petroleums. Geochimica et Cosmochimica Acta, 49(2): 385-395. https://doi.org/10.1016/0016-7037(85)90031-6 Bao, J. P., Wang, T. G., Zhou, Y. Q., et al., 1992. The Relationship between Methyl Phenanthrene Ratios and the Evolution of Organic Matter. Journal of Jianghan Petroleum Institute, 14(4): 8-13 (in Chinese with English abstract). Bastow, T. P., Alexander, R., Fisher, S. J., et al., 2000. Geosynthesis of Organic Compounds. Part V-Methylation of Alkylnaphthalenes. Organic Geochemistry, 31(6): 523-534. https://doi.org/10.1016/S0146-6380(00)00038-3 Chen, H. H., 2014. Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion. Acta Petrolei Sinica, 35(3): 584-590 (in Chinese with English abstract). Duan, Y., Wang, C. Y., Zheng, C. Y., et al., 2007. Distribution of Double Diamantane Hydrocarbons in Crude Oils from Tahe Oilfield of Tarim Basin and Its Implication for Oil and Gas Migration. Natural Gas Geoscience, 18(5): 693-696 (in Chinese with English abstract). Fang, X. X., Gan, H. J., Jiang, H., et al., 2012. Analyzing Hydrocarbon-Charging Periods of Carbonate Reservoir in North Tarim by Micro Fluorescence Spectrum of Petroleum Inclusions. Earth Science, 37(3): 580-586 (in Chinese with English abstract). George, S. C., Ruble, T. E., Dutkiewicz, A., et al., 2001. Assessing the Maturity of Oil Trapped in Fluid Inclusions Using Molecular Geochemistry Data and Visually-Determined Fluorescence Colours. Applied Geochemistry, 16(4): 451-473. https://doi.org/10.1016/S0883-2927(00)00051-2 Hanson, A. D., Zhang, S. C., Moldowan, J. M., et al., 2000. Molecular Organic Geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84(8): 1109-1128. https://doi.org/10.1306/a9673c52-1738-11d7-8645000102c1865d Huang, H. P., Zhang, S. C., Su, J., 2016. Palaeozoic Oil-Source Correlation in the Tarim Basin, NW China: A Review. Organic Geochemistry, 94: 32-46. https://doi.org/10.1016/j.orggeochem.2016.01.008 Jin, Z. J., 2006. New Progresses in Research of China's Typical Superimposed Basins and Reservoiring of Hydrocarbons (Part Ⅱ): Taking Tarim Basin as an Example. Oil & Gas Geology, 27(3): 281-288 (in Chinese with English abstract). Kvalheim, O. M., Christy, A. A., Nils, T., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7): 1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7 Li, F., Zhu, G. Y., Lü, X. X., et al., 2021. The Disputes on the Source of Paleozoic Marine Oil and Gas and the Determination of the Cambrian System as the Main Source Rocks in Tarim Basin. Acta Petrolei Sinica, 42(11): 1417-1436 (in Chinese with English abstract). Li, S. M., Pang, X. Q., Zhang, B. S., et al., 2015. Marine Oil Source of the Yingmaili Oilfield in the Tarim Basin. Marine and Petroleum Geology, 68: 18-39. https://doi.org/10.1016/j.marpetgeo.2015.07.016 Liu, D. H., Xiao, X. M., Cheng, P., et al., 2017. Study of Genetic Evolution of Oil Inclusion and Density of Surface Oil by Measurement of Fluorescence Lifetime of Crude Oil and Oil Inclusion. Science China Earth Sciences, 60(1): 95-101. https://doi.org/10.1007/s11430-016-5094-8 Luo, J., Cheng, K. M., Fu, L. X., et al., 2001. Alkylated Dibenzothiophene Index-A New Method to Assess Thermal Maturity of Source Rocks. Acta Petrolei Sinica, 22(3): 27-31 (in Chinese with English abstract). Oxtoby, N. H., 2002. Comments on: Assessing the Maturity of Oil Trapped in Fluid Inclusions Using Molecular Geochemistry Data and Visually-Determined Fluorescence Colours. Applied Geochemistry, 17(10): 1371-1374. https://doi.org/10.1016/S0883-2927(02)00026-4 Peters, K. E., Fraser, T. H., Amris, W., et al., 1999. Geochemistry of Crude Oils from Eastern Indonesia. AAPG Bulletin, 83(12): 1927-1942. https://doi.org/10.1306/e4fd4643-1732-11d7-8645000102c1865d Ping, H. W., Chen, H. H., George, S. C., 2020. Quantitatively Predicting the Thermal Maturity of Oil Trapped in Fluid Inclusions Based on Fluorescence and Molecular Geochemical Data of Oil Inclusions in the Dongying Depression, Bohai Bay Basin, China. AAPG Bulletin, 104(8): 1751-1791. https://doi.org/10.1306/09271919096 Ping, H. W., Chen, H. H., Thiéry, R., et al., 2017. Effects of Oil Cracking on Fluorescence Color, Homogenization Temperature and Trapping Pressure Reconstruction of Oil Inclusions from Deeply Buried Reservoirs in the Northern Dongying Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 80: 538-562. https://doi.org/10.1016/j.marpetgeo.2016.12.024 Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224-236. https://doi.org/10.1016/0264-8172(88)90003-7 Radke, M., Rullkötter, J., Vriend, S. P., 1994. Distribution of Naphthalenes in Crude Oils from the Java Sea: Source and Maturation Effects. Geochimica et Cosmochimica Acta, 58(17): 3675-3689. https://doi.org/10.1016/0016-7037(94)90158-9 Rao, D., Qin, J. Z., Xu, J., et al., 2014. Accumulation Periods of Ordovician Reservoirs in Tahe Oil Field. Petroleum Geology & Experiment, 36(1): 83-88 (in Chinese with English abstract). Su, A., Chen, H. H., He, C., et al. 2016. Microscopic Fluorescence Spectral Characteristics of Mixing Ratio of Crude Oil Experiment. Spectroscopy and Spectral Analysis, 36(9): 3039-3046. https://doi.org/10.3964/j.issn.1000-0593(2016)09-3039-08 Sun, Y. G., Xu, S. P., Lu, H., et al., 2003. Source Facies of the Paleozoic Petroleum Systems in the Tabei Uplift, Tarim Basin, NW China: Implications from Aryl Isoprenoids in Crude Oils. Organic Geochemistry, 34(4): 629-634. https://doi.org/10.1016/S0146-6380(03)00063-9 Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216 (in Chinese with English abstract). Wang, T. G., Wang, C. J., He, F. Q., et al., 2004. Determination of Double Filling Ratio of Mixed Crude Oils in the Ordovician Oil Reservoir, Tahe Oilfield. Petroleum Geology & Experiment, 26(1): 74-79 (in Chinese with English abstract). Xiao, H., Li, M. J., Yang, Z., et al., 2019. Distribution Patterns and Geochemical Implications of C19-C23 Tricyclic Terpanes in Source Rocks and Crude Oils Occurring in Various Depositional Environments. Geochimica, 48(2): 161-170 (in Chinese with English abstract). Xu, H., Guo, X. W., Cao, Z. C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548 (in Chinese with English abstract). Yang, H. J., Yu, S., Zhang, H. Z., et al., 2020. Geochemical Characteristics of Lower Cambrian Sources Rocks from the Deepest Drilling of Well LT-1 and Their Significance to Deep Oil Gas Exploration of the Lower Paleozoic System in the Tarim Basin. Geochimica, 49(6): 666-682 (in Chinese with English abstract). Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low- Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract). Zhang, C. J., Jia, C. Z., Li, B. L., et al., 2010. Ancient Karsts and Hydrocarbon Accumulation in the Middle and Western Parts of the North Tarim Uplift, NW China. Petroleum Exploration and Development, 37(3): 263-269 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60032-8 Zhang, H. J., Chen, Y., Wang, M., et al., 2019. Quantitative Determination of the Proportion of Mixed Crude Oil with Different Maturity by Fluorescence Spectra: Take a Case of the Es4 Oil in the Dongying Depression. Spectroscopy and Spectral Analysis, 39(11): 3414-3419 (in Chinese with English abstract). Zhang, S. C., Wang, F. Y., Zhang, B. M., et al., 2000. Middle-Upper Ordovician Source Rock Geochemistry of the Tarim Basin. Acta Petrolei Sinica, 21(6): 23-28 (in Chinese with English abstract). Zhao, W. Z., Zhu, G. Y., Su, J., et al., 2012. Study on the Multi-Stage Charging and Accumulation Model of Chinese Marine Petroleum: Example from Eastern Lungu Area in the Tarim Basin. Acta Petrologica Sinica, 28(3): 709-721 (in Chinese with English abstract). Zhao, Y. J., Chen, H. H., 2008. The Relationship between Fluorescence Colors of Oil Inclusions and Their Maturities. Earth Science, 33(1): 91-96 (in Chinese with English abstract). Zheng, C. Y., Duan, Y., Zhang, X. J., et al., 2011. Characteristics of Molecular Geochemistry and Genesis of Crude Oils from Tahe Oilfield of Tarim Basin. Acta Sedimentologica Sinica, 29(3): 605-612 (in Chinese with English abstract). Zhu, G. Y., Cui, J., Yang, H. J., et al., 2011. The Distribution and Origin of Cambrian Crude Oil in North Tarim Basin. Acta Petrologica Sinica, 27(8): 2435-2446 (in Chinese with English abstract). 包建平, 王铁冠, 周玉琦, 等, 1992. 甲基菲比值与有机质热演化的关系. 江汉石油学院学报, 14(4): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX199204001.htm 陈红汉, 2014. 单个油包裹体显微荧光特性与热成熟度评价. 石油学报, 35(3): 584-590. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403026.htm 段毅, 王传远, 郑朝阳, 等, 2007. 塔里木盆地塔河油田原油中双金刚烷分布特征与油气运移. 天然气地球科学, 18(5): 693-696. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200705013.htm 方欣欣, 甘华军, 姜华, 等, 2012. 利用石油包裹体微束荧光光谱判别塔北碳酸盐岩油气藏油气充注期次. 地球科学, 37(3): 580-586. doi: 10.3799/dqkx.2012.065 金之钧, 2006. 中国典型叠合盆地油气成藏研究新进展(之二)——以塔里木盆地为例. 石油与天然气地质, 27(3): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200603000.htm 李峰, 朱光有, 吕修祥, 等, 2021. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定. 石油学报, 42(11): 1417-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111003.htm 罗健, 程克明, 付立新, 等, 2001. 烷基二苯并噻吩——烃源岩热演化新指标. 石油学报, 22(3): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200103008.htm 饶丹, 秦建中, 许锦, 等, 2014. 塔河油田奥陶系油藏成藏期次研究. 石油实验地质, 36(1): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201401015.htm 王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352 王铁冠, 王春江, 何发岐, 等, 2004. 塔河油田奥陶系油藏两期成藏原油充注比率测算方法. 石油实验地质, 26(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200401014.htm 肖洪, 李美俊, 杨哲, 等, 2019. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义. 地球化学, 48(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201902006.htm 徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376 杨海军, 于双, 张海祖, 等, 2020. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义. 地球化学, 49(6): 666-682. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202006007.htm 杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200 张朝军, 贾承造, 李本亮, 等, 2010. 塔北隆起中西部地区古岩溶与油气聚集. 石油勘探与开发, 37(3): 263-269. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003003.htm 张韩静, 陈勇, 王淼, 等, 2019. 荧光光谱定量表征不同成熟度的同源混合原油——以东营凹陷沙四段为例. 光谱学与光谱分析, 39(11): 3414-3419. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201911021.htm 张水昌, 王飞宇, 张保民, 等, 2000. 塔里木盆地中上奥陶统油源层地球化学研究. 石油学报, 21(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200006005.htm 赵文智, 朱光有, 苏劲, 等, 2012. 中国海相油气多期充注与成藏聚集模式研究——以塔里木盆地轮古东地区为例. 岩石学报, 28(3): 709-721. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203002.htm 赵艳军, 陈红汉, 2008. 油包裹体荧光颜色及其成熟度关系. 地球科学, 33(1): 91-96. http://www.earth-science.net/article/id/1737 郑朝阳, 段毅, 张学军, 等, 2011. 塔河油田奥陶系原油有机地球化学特征及其油藏成因. 沉积学报, 29(3): 605-612. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201103025.htm 朱光有, 崔洁, 杨海军, 等, 2011. 塔里木盆地塔北地区具有寒武系特征原油的分布及其成因. 岩石学报, 27(8): 2435-2446. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108020.htm -