Deep Carbonate Geohermal Reservoir Production Enhancement Technology in North China Plain
-
摘要: 华北地区地热资源丰富,新发现的蓟县系高于庄组热储层开发利用潜力更大.然而,高于庄组存在裂缝非均质性强、储层产能低等问题.选取华北平原典型高于庄组地热井,进行了酸化压裂和加砂压裂两种改造技术的实验研究和现场增储改造,分析了改造不同阶段的压力监测曲线,进行了改造效果的评估,并初步提出了储层评价-改造设计-效果评价综合技术方法.结果显示,雄安新区高于庄组热储酸化压裂改造后涌水量由4.72 m3/h增加到44.10 m3/h,单位涌水量由0.024 m3/h·m增加到0.745 m3/h·m;沧县隆起高于庄组热储加砂压裂使得单位涌水量由3.009 m3/h·m翻倍式增加至6.158 m3/h·m,单位涌水量增加1倍多,增产改造效果显著.Abstract: North China area is rich in geothermal resources. The newly discovered Gaoyuzhuang geothermal reservoir in the Jixian System has even greater potential for development and utilization. However, there are issues such as high fracture in homogeneity and low productivity in Gaoyuzhuang Formation. Two typical geothermal wells in the Gaoyuzhuang Formation of the North China plain were selected for experimental study and in-situ application of two reconstruction techniques, acid and sand fracturing. The efficiency is evaluated by analyzing the pressure curves at different stages. An integrated technical approach to geothermal reservoir evaluation-plan design-effect evaluation is presented. The water output increased from 4.72 m3/h to 44.10 m3/h after acid fracturing of the Gaoyuzhuang geothermal reservoir in Xiong'an New Area, and the unit water surge increased from 0.024 m3/h·m to 0.745 m3/h·m. The sand fracturing of the Gaoyuzhuang reservoir in the Cangxian uplift has doubled the unit gushing water from 3.009 m3/h·m to 6.158 m3/h·m. Both methods show significant productivity gains.
-
表 1 不同浓度酸液岩屑溶蚀实验结果
Table 1. Experimental results of acid rock chip dissolution with different concentrations
岩屑取样深度(m) 酸溶反应温度
(℃)酸溶反应时间
(min)15% HCl
溶蚀率(%)20% HCl
溶蚀率(%)3 158~3 160 60 60 78.1 82.3 3 174~3 176 60 60 87.3 88.5 3 178~3 180 60 60 86.9 87.2 表 2 酸蚀裂缝渗流能力测试结果
Table 2. Acid-etching fracture seepage capacity test results
序号 驱替介质 排量(mL/min) 渗透率(mD) 1 标准盐水 0.5 5.5 2 酸液 0.5 5.3 3 标准盐水 0.5 33.4 4 酸液 0.5 35 5 标准盐水 0.5 61.3 6 酸液 0.5 63.1 7 标准盐水 0.5 132.2 8 酸液 0.5 134.2 9 标准盐水 0.5 208 10 酸液 0.5 205.2 11 标准盐水 0.5 127.6 表 3 酸液体系性能评价结果汇总
Table 3. Acid system performance evaluation results
项目 实验结果 酸液 表观黏度(mPa·s) 39 耐温耐剪切性 剪切速率(s-1) 170 温度(℃) 90 剪切时间(min) 60 表观黏度(mPa·s) 17.62 酸液配伍性 常温2 h 酸液状态稳定,无分层、无絮凝物沉淀 90 ℃,加热2 h 酸液状态稳定,无分层、无絮凝物沉淀 铁离子稳定剂 pH 6 铁离子稳定能力(mg/mL) 682.31 酸化助排剂 表面张力(mN/m) 26.2 腐蚀速率 (g/m²·h) 3.82 酸岩反应动力学方程 J=1.846 6×10-5C 0.363 7 表 4 常规三轴试验结果
Table 4. Results of conventional triaxial tests
温度(℃) 围压(MPa) 峰值强度(MPa) 峰值应变 弹性模量(MPa) 泊松比 室温 0 198 0.003 76 63 048 0.275 0 40 373 0.007 00 60 793 0.091 0 50 361.9 0.007 00 61 576 0.076 0 60 395 0.007 35 62 594 0.074 0 70 40 404 0.007 17 60 551 0.060 0 50 412.7 0.007 23 64 960 0.074 5 60 465 0.008 37 59 887 0.079 0 110 40 391.8 0.007 35 59 436 0.113 0 50 390.2 0.006 98 62 826 0.090 5 60 434.5 0.007 35 62 405 0.114 5 150 40 400.2 0.007 59 61 223 0.113 0 50 427.1 0.007 66 62 905 0.085 0 60 429.0 0.007 96 59 574 0.055 0 表 5 剪切强度参数随温度的变化
Table 5. Variation of rock shear strength parameters with temperature
温度(℃) 摩擦角(°) 粘聚力(MPa) 室温 46.14 47.41 70 37.15 68.26 110 31.13 84.27 150 24.74 116.80 表 6 真三轴水力压裂试验方案
Table 6. True triaxial hydraulic fracturing test scheme
试样编号 应力状态(MPa) 处理方式 裂缝发育 排量
(mL/min)1 σv=60;
σh=38.5;
σH=50正常 较少 1.0 2 正常 较多 1.0 3 正常 较少 1.5 4 酸化处理(5%HCl) 较少 1.0 5 酸化处理(5%HCl) 较多 1.0 表 7 GRY1井小型压裂测试分析结果
Table 7. GRY1 well mini-fracture test analysis results
分析方法 井下闭合压力
(MPa)闭合压力梯度
(MPa/m)地层闭合时间
(min)瞬时停泵压力
(MPa)液体效率
(%)G函数法 38.51 0.103 4.70 41.7 19.6 双对数法 39.06 0.102 2.84 41.7 13.5 平方根法 38.84 0.102 3.27 41.7 15.2 表 8 D22井改造后抽水试验数据
Table 8. Data sheet of pumping test after reconstruction of well D22
落程 静止水位埋深
(m)动水位埋深
(m)水位降深
(m)涌水量
(m³/h)单位涌水量
(m³/h·m)水温
(℃)稳定时间
(h)S3 101.43 160.66 59.23 44.10 0.745 66.5 40 S2 101.43 136.54 35.11 33.40 0.951 66.0 21 S1 101.43 114.77 13.34 18.9 1.417 60.5 9 表 9 GRY1井压裂后抽水试验成果表
Table 9. Data sheet of pumping test after reconstruction of well GRY1
落程 水位降深(m) 涌水量(m³/h) 单位涌水量(m³/h·m) 延续时间(h) 稳定时间(h) S1 25.33 69.379 2.739 72 10 S2 16.42 61.186 3.726 48 10 S3 8.32 51.242 6.159 48 10 -
Chen, M. X., Wang, J. Y., Deng, X., 1996. The Map of Geothermal System Types in China and Its Brief Explanation. Chinese Journal of Geology, 31(2): 114-121(in Chinese with English abstract). Dai, M. G., Lei, H. F., Hu, J. G., et al., 2019. Evaluation of Recoverable Geothermal Resources and Development Parameters of Mesoproterozoic Thermal Reservoir with the Top Surface Depth of 3 500 m and Shallow in Xiong'an New Area. Acta Geologica Sinica, 93(11): 2874-2888(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.11.012 Gong, Y. L., 2003. Thermal Structure and Thermal Evolution of Bohai Bay Basin in Eastern China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). He, T. Z., Sun, Z. T., 2019. Application of Acid Fracturing Technology for Increasing the Production of Geothermal Wells in Tongxiang Area, Zhejiang Province. Urban Geology, 14(4): 49-54(in Chinese). doi: 10.3969/j.issn.1007-1903.2019.04.009 Huang, X., Shen, C. B., Du, L., et al., 2021. Geothermal Geological Characteristics of the Xianxian High and Fucheng Sag in the Middle Cangxian Uplift, Bohai Bay Basin. Geoscience, 35(4): 997-1008(in Chinese with English abstract). Ji, Y. H., 2017. Application of Acid Fracturing Technology in Geothermal Well of Carbonate Rock in Southwest of Shandong Province. Site Investigation Science and Technology, (4): 62-64(in Chinese with English abstract). doi: 10.3969/j.issn.1001-3946.2017.04.016 Li, D. W., Wang, Y. X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11): 1858-1869(in Chinese with English abstract). Li, P. W., He, Z. L., Luo, P., et al., 2020. Characteristics of and Main Factors Controlling the Dolomite Reservoir of Gaoyuzhuang-Wumishan Formations in the Jixian System, the North of North China. Oil & Gas Geology, 41(1): 26-36, 49(in Chinese with English abstract). Li, W., Kong, X. J., Yuan, L. J., et al., 2019. Study on Geothermal Acid Fracturing Increasing Reinjection Test in Tongzhou Area, Beijing. Urban Geology, 14(4): 43-48(in Chinese). doi: 10.3969/j.issn.1007-1903.2019.04.008 Li, X. N., 2019. Study on Comprehensive Logging Evaluation Method of Fractured-Vuggy Reservoir (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract). Li, Y. Z., Tian, J., 2009. Application of Acid Well Flushing in 2 Wells of Niutuo Geothermal Field in Hebei. Exploration Engineering(Rock & Soil Drilling and Tunneling), 36(6): 16-18(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7428.2009.06.005 Lin, T. Y., Ke, B. L., Yang, M., et al., 2018. The Acid-Fracturing Stimulation Mechanism and Application in Hydrothermal-Carbonate Geothermal Reservoir. Urban Geology, 13(3): 21-26(in Chinese with English abstract). doi: 10.3969/j.issn.1007-1903.2018.03.003 Lin, W. J., Liu, Z. m., Wang, W. L., et al., 2013. The Assessment of Geothermal Resources Potential of China. Geology in China, 40(1): 312-321(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.01.021 Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Science, 45(6): 2221-2231(in Chinese with English abstract). Luo, L., Hu, P. Y., Zhou, Z. Y., 2001. Log Identification for Fracture in Carbonate. Acta Petrolei Sinica, 22(3): 32-35, 7(in Chinese with English abstract). Ma, F., Wang, G. L., Zhang, W., et al., 2020. Structure of Geothermal Reservoirs and Resource Potential in the Rongcheng Geothermal Field in Xiongan New Area. Acta Geologica Sinica, 94(7): 1981-1990(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.007 Ma, F., Wang, G. L., Zhang, W., et al., 2021. Influence Mechanism of Ancient Buried Hill Geothermal Development on Land Subsidence. Geology in China, 48(1): 40-51(in Chinese with English abstract). Mao, X., Luo, L., Wang, X. W., et al., 2020. Distribution Characteristics of Cenozoic Volcanic Rocks and Its Geothermal Exploration Potential in Bohai Bay Basin. Geoscience, 34(4): 858-864(in Chinese with English abstract). Qiu, N. S., Xu, W., Zuo, Y. H., et al., 2017. Evolution of Meso-Cenozoic Thermal Structure and Thermal-Rheological Structure of the Lithosphere in the Bohai Bay Basin, Eastern North China Craton. Earth Science Frontiers, 24(3): 13-26(in Chinese with English abstract). Sun, D. S., 2001. Meso-Cenozoic Composite Extensional Structure in the Central Area of Jizhong Depression (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). Tan, X. F., Wang, H., Kang, F. X., 2016. Experimental Study on Fracturing of GRY1 Hot Dry Rock Hole in Chenzhuang Town, Lijin County. Exploration Engineering(Rock & Soil Drilling and Tunneling), 43(10): 230-233(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7428.2016.10.049 Tang, B. N., Zhu, C. Q., Qiu, N. S., et al., 2020. Characteristics of the Karst Thermal Reservoir in the Wumishan Formation in the Xiongan New Area. Acta Geologica Sinica, 94(7): 2002-2012(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.009 Wang, G. L., Liu, Y. G., Zhu, X., et al., 2020. The Status and Development Trend of Geothermal Resources in China. Earth Science Frontiers, 27(1): 1-9(in Chinese with English abstract). Wang, G. L., Zhang, W., Lin, W. J., et al., 2017. Research on Formation Mode and Development Potential of Geothermal Resources in Beijing-Tianjin-Hebei Region. Geology in China, 44(6): 1074-1085(in Chinese with English abstract). Wang, Z. T., 2021. Terrestrial Heat Flow of Jizhong Depression, China, Western Bohai Bay Basin and Its Influencing Factors. Geothermics, 96: 102210. https://doi.org/10.1016/j.geothermics.2021.102210 Wei, G. R., 2020. Study on the Development Law of Karst Thermal Fracture Cave Reservoir in Jixian System, Xiong'an New Area. Petrochemical Industry Technology, 27(8): 248-249(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0235.2020.08.147 Wu, A. M., Ma, F., Wang, G. L., et al., 2018. A Study of Deep-Seated Karst Geothermal Reservoir Exploration and Huge Capacity Geothermal Well Parameters in Xiongan New Area. Acta Geoscientia Sinica, 39(5): 523-532(in Chinese with English abstract). Xu, Z. Y., 1991. Well Completion and Fracturing Techniques in Xi'an. Coal Geology of China, (2): 83-85(in Chinese with English abstract). Yue, G. F., Wang, G. L., Ma, F., et al., 2021. Evaluation of Fault Slip Probability of Geothermal Large-Scale Development: A Case Study of Deep Karst Geothermal Reservoir in Xiongan New Area. Geology in China, 48(5): 1382-1391(in Chinese with English abstract). Yue, G. F., Wang, G. L., Ma, F., et al., 2022. Fracture Characteristics and Reservoir Inhomogeneity Prediction of the Gaoyuzhuang Formation in the Xiong'an New Area: Insights from a 3D Discrete Fracture Network Model. Frontiers in Earth Science, 10: 849361. https://doi.org/10.3389/feart.2022.849361 Zhang, C. H., 2021. Study on Anteklise Geothermal Energy Reservoiring Mechanism in Cangxian County, Hebei Province. Coal Geology of China, 33(7): 72-77(in Chinese with English abstract). Zhang, D. Z., Liu, Z. G., Lu, H. L., 2013. Hebei Geothermal. Geological Publishing House, Beijing(in Chinese). Zhu, L. J., Liu, G. L., 2015. Summary of Acidizing Fracturing Technology. Anhui Chemical Industry, 41(2): 9-12(in Chinese). Zhang, L. F., Zhou F. J., Wang J., et al., 2018. An Experimental Investigation of Long-Term Acid Propped Fracturing Conductivity in Deep Carbonate Reservoirs. 52nd US Rock Mechanics/Geomechanics Symposium, Washington, ARMA-2018-545: 1-9. 陈墨香, 汪集旸, 邓孝, 1996. 中国地热系统类型图及其简要说明. 地质科学, 31(2): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX602.001.htm 戴明刚, 雷海飞, 胡甲国, 等, 2019. 雄安新区顶面埋深在3500m以浅的中元古界热储可采地热资源量和开发参数评估. 地质学报, 93(11): 2874-2888. doi: 10.3969/j.issn.0001-5717.2019.11.012 龚育龄, 2003. 中国东部渤海湾盆地热结构和热演化(博士学位论文). 南京: 南京大学. 何铁柱, 孙振添, 2019. 酸化压裂工艺在浙江桐乡地热井增产中的应用. 城市地质, 14(4): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201904009.htm 黄旭, 沈传波, 杜利, 等, 2021. 沧县隆起中段献县凸起和阜城凹陷岩溶型地热资源特征. 现代地质, 35(4): 997-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202104009.htm 姬永红, 2017. 酸化压裂技术在鲁西南碳酸盐岩地热井中的应用. 勘察科学技术, (4): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX201704016.htm 李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40(11): 1858-1869. doi: 10.3799/dqkx.2015.166 李朋威, 何治亮, 罗平, 等, 2020. 华北北部地区蓟县系高于庄组-雾迷山组白云岩储层特征与形成主控因素. 石油与天然气地质, 41(1): 26-36, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001004.htm 李文, 孔祥军, 袁利娟, 等, 2019. 北京通州地区地热井酸化压裂增灌试验研究. 城市地质, 14(4): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201904008.htm 李曦宁, 2019. 缝洞型储层综合测井评价方法研究(博士学位论文). 北京: 中国石油大学. 李砚智, 田京振, 2009. 酸化洗井在河北牛驼镇地热田两口井中的应用. 探矿工程(岩土钻掘工程), 36(6): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC200906006.htm 林天懿, 柯柏林, 杨淼, 等, 2018. 碳酸盐岩热储酸化压裂增产机理研究及应用. 城市地质, 13(3): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201803003.htm 蔺文静, 刘志明, 王婉丽, 等, 2013. 中国地热资源及其潜力评估. 中国地质, 40(1): 312-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301023.htm 刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270 罗利, 胡培毅, 周政英, 2001. 碳酸盐岩裂缝测井识别方法. 石油学报, 22(3): 32-35, 7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200103010.htm 马峰, 王贵玲, 张薇, 等, 2020. 雄安新区容城地热田热储空间结构及资源潜力. 地质学报, 94(7): 1981-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007007.htm 马峰, 王贵玲, 张薇, 等, 2021. 古潜山热储开发对地面沉降的影响机制研究. 中国地质, 48(1): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101004.htm 毛翔, 罗璐, 汪新伟, 等, 2020. 渤海湾盆地新生代火山岩分布特征及其地热勘探潜力. 现代地质, 34(4): 858-864. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202004022.htm 邱楠生, 许威, 左银辉, 等, 2017. 渤海湾盆地中-新生代岩石圈热结构与热-流变学演化. 地学前缘, 24(3): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703003.htm 孙冬胜, 2001. 冀中坳陷中区中新生代复合伸展构造(博士学位论文). 西安: 西北大学. 谭现锋, 王浩, 康凤新, 2016. 利津陈庄干热岩GRY1孔压裂试验研究. 探矿工程(岩土钻掘工程), 43(10): 230-233. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201610049.htm 唐博宁, 朱传庆, 邱楠生, 等, 2020. 雄安新区雾迷山组岩溶裂隙发育特征. 地质学报, 94(7): 2002-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007009.htm 王贵玲, 刘彦广, 朱喜, 等, 2020. 中国地热资源现状及发展趋势. 地学前缘, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm 王贵玲, 张薇, 蔺文静, 等, 2017. 京津冀地区地热资源成藏模式与潜力研究. 中国地质, 44(6): 1074-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706004.htm 魏广仁, 2020. 雄安新区蓟县系岩溶热储缝洞储层发育规律研究. 石化技术, 27(8): 248-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS202008147.htm 吴爱民, 马峰, 王贵玲, 等, 2018. 雄安新区深部岩溶热储探测与高产能地热井参数研究. 地球学报, 39(5): 523-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805002.htm 许宗余, 1991. 西安地区地热井成井及压裂增产的新工艺. 中国煤田地质, (2): 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199102021.htm 岳高凡, 王贵玲, 马峰, 等, 2021. 地热规模化开发断层滑动概率评估: 以雄安新区深部岩溶热储为例. 中国地质, 48(5)1382-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202105007.htm 张财华, 2021. 河北沧县抬拱带地热能蕴藏机制研究. 中国煤炭地质, 33(7): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202107013.htm 张德忠, 刘志刚, 卢红柳, 2013. 河北地热. 北京: 地质出版社. 朱丽君, 刘国良, 2015. 酸化压裂工艺技术综述. 安徽化工, 41(2): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-AHHG201502004.htm