Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle
-
摘要: 异性岩石结构面在三峡库区广泛发育,准确评估其峰值剪切强度对库区岩体稳定性评价至关重要. 采用类岩石材料浇筑若干具有相同形貌、不同壁岩强度组合的异性结构面试块,在0.3~3.0 MPa常法向应力下开展直剪试验,并引入“壁岩强度组合系数λ”来表征岩石抗压强度和基本摩擦角对异性结构面峰值剪切强度的综合影响. 结果表明,异性结构面的峰值剪切强度随λ的增加而呈非线性降低,降低程度主要受粗糙度控制,而与法向应力关系不明显. 采用简单幂函数分析了峰值摩擦角与λ之间的关系,并在此基础上建立含三维形貌参数的异性岩石结构面抗剪强度经验准则. 最后,利用在三峡库区采集的天然样品进一步验证了新准则对天然异性岩石结构面峰值剪切强度评估的可靠性. 新准则可在一定程度上为三峡库区含异性结构面的岩体稳定性评价提供理论依据.Abstract: Discontinuities with different rock types are widely distributed in the Three Gorges reservoir area, and accurately evaluating the peak shear strengths of them is vital for rock mass stability analysis in this reservoir area. A batch of rock-like joint replicas with the same natural morphology but different joint wall strength combinations is prepared, and direct shear tests are conducted on them under constant normal stresses ranging from 0.3 to 3.0 MPa. Further, the joint wall strength combination coefficient (λ) is introduced to capture the combined effect of rock compressive strength and basic angle on the peak shear strength of discontinuities with different rock types. Testing results illustrate that the peak shear strengths of discontinuities with different rock types decrease non⁃linearly with increasing λ, and the decrease degree is mainly controlled by roughness while showing no obvious relationship with normal stress. A simple power law function is selected to analyze the correlation between the peak friction angles and λ, and an empirical strength criterion with the inclusion of three⁃dimensional morphology parameters is developed to predict the peak shear strengths of discontinuities with different rock types. Finally, natural samples collected from the Three Gorges reservoir area are used to further validate the reliability of the new criterion for evaluating the peak shear strength of natural discontinuities with different rock types. To some extent, the new criterion can provide a theoretical basis for the stability evaluation of rock masses containing discontinuities with different rock types in the Three Gorges reservoir area.
-
图 1 三峡库区典型异性岩石结构面(亢金涛等, 2019)
Fig. 1. Typical rock discontinuities with different rock types in the Three Gorges reservoir area (Kang et al., 2019)
图 15 Wu et al. (2018)的试验剪切强度与新公式预测值的对比
Fig. 15. Comparison between experimental shear strengths of Wu et al. (2018) and predicted values by the new criterion
图 16 Wu et al.(2018)的试验剪切强度与新公式预测值的相关性
Fig. 16. Correlation between experimental shear strengths of Wu et al. (2018) and predicted values by the new criterion
表 1 类岩石材料的主要力学参数
Table 1. Main mechanical parameters of rock⁃like materials
材料 水/石膏(质量比) 抗拉强度$ {\sigma }_{\mathrm{t}} $(MPa) 单轴压缩强度$ {\sigma }_{\mathrm{c}} $(MPa) 基本摩擦角$ {\varphi }_{\mathrm{b}} $(°) J-Ⅰ 0.70 0.82 10.3 35.3 J-Ⅱ 0.57 1.49 16.8 35.8 J-Ⅲ 0.45 2.01 27.4 36.5 J-Ⅳ 0.35 2.74 33.9 37.6 J-Ⅴ 0.30 4.33 45.3 38.1 表 2 结构面粗糙参数
Table 2. Roughness parameters of discontinuities
组别 $ {A}_{0} $ $ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}} $ C $ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}}/\left(C+1\right) $ JRC A 0.486 55.4 13.6 3.795 7.2 B 0.502 64.3 9.4 6.183 14.8 C 0.491 75.8 7.3 9.133 18.7 表 4 天然异性结构面的试验数据
Table 4. Experimental data of natural discontinuities with different rock types
试件编号 岩石类型 三维形貌参数 $ {\sigma }_{\mathrm{n}} $(MPa) 岩石力学参数 剪切强度(MPa) 相对误差 $ {A}_{0} $ $ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}} $ C $ {\sigma }_{\mathrm{c}} $(MPa) $ {\varphi }_{\mathrm{b}} $(°) 试验值 预测值 1# 粉砂质泥岩/长石石英砂岩 0.501 48.1 12.3 0.5 34.7/80.6 32.7/36.5 0.452 0.545 20.58% 2# 粉砂质泥岩/长石石英砂岩 0.488 50.8 11.9 0.7 34.7/80.6 32.7/36.5 0.801 0.791 1.20% 3# 粉砂质泥岩/长石石英砂岩 0.492 51.4 11.7 1.3 34.7/80.6 32.7/36.5 1.325 1.454 9.75% 4# 泥岩/泥质灰岩 0.500 55.4 10.1 1.1 26.4/126.5 25.7/38.1 1.207 1.322 9.50% 5# 泥岩/泥质灰岩 0.489 45.7 11.2 1.8 26.4/126.5 25.7/38.1 2.030 1.768 12.89% 6# 泥岩/泥质灰岩 0.507 45.6 10.3 2.5 26.4/126.5 25.7/38.1 2.975 2.504 15.83% 7# 泥质粉砂岩/泥质灰岩 0.490 55.4 10.5 0.6 58.2/126.5 25.7/38.1 0.652 0.787 20.70% 8# 泥质粉砂岩/泥质灰岩 0.493 57.2 9.8 0.9 58.2/126.5 25.7/38.1 1.324 1.239 6.45% 9# 泥质粉砂岩/泥质灰岩 0.510 60.1 8.6 1.0 58.2/126.5 25.7/38.1 1.627 1.530 5.97% 10# 粉砂质泥岩/泥质粉砂岩 0.504 58.3 10.2 0.7 40.6/58.2 34.1/35.0 0.803 0.926 15.34% 11# 粉砂质泥岩/泥质粉砂岩 0.495 52.1 9.9 1.4 40.6/58.2 34.1/35.0 1.508 1.666 10.51% -
Asadollahi, P., Tonon, F., 2010. Constitutive Model for Rock Fractures: Revisiting Barton's Empirical Model. Engineering Geology, 113(1/2/3/4): 11-32. https://doi.org/10.1016/j.enggeo.2010.01.007 Alejano, L. R., Muralha, J., Ulusay, R., et al., 2018. ISRM Suggested Method for Determining the Basic Friction Angle of Planar Rock Surfaces by Means of Tilt Tests. Rock Mechanics and Rock Engineering, 51(12): 3853-3859. https://doi.org/10.1007/s00603-018-1627-6 Ban, L. R., Qi, C. Z., Chen, H. X., et al., 2020. A New Criterion for Peak Shear Strength of Rock Joints with a 3D Roughness Parameter. Rock Mechanics and Rock Engineering, 53(4): 1755-1775. https://doi.org/10.1007/s00603-019-02007-z Bandis, S. C., Lumsden, A. C., Barton, N. R., 1983. Fundamentals of Rock Joint Deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6): 249-268. https://doi.org/10.1016/0148-9062(83)90595-8 Barton, N., Choubey, V., 1977. The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics and Rock Engineering, 10(1-2): 1-54. https://doi.org/10.1007/bf01261801 Barton, N., 1973. Review of a New Shear Strength Criterion for Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(11): A220. https://doi.org/10.1016/0148-9062(74)90491-4 Beer, A. J., Stead, D., Coggan, J. S., 2002. Technical Note Estimation of the Joint Roughness Coefficient (JRC) by Visual Comparison. Rock Mechanics and Rock Engineering, 35(1): 65-74. https://doi.org/10.1007/s006030 200009 doi: 10.1007/s006030200009 Chen, X., Zeng, Y. W., Ye, Y., et al., 2021. A Simplified Form of Grasselli's 3D Roughness Measure Θ*max/(C + 1). Rock Mechanics and Rock Engineering, 54(8): 4329-4346. https://doi.org/10.1007/s00603-021-02512-0 Fan, X., Deng, Z. Y., Cui, Z. M., et al., 2021. A New Peak Shear Strength Model for Soft-Hard Joint. Rock and Soil Mechanics, 42(7): 1861-1870 (in Chinese with English abstract). Grasselli, G., Wirth, J., Egger, P., 2002. Quantitative Three-Dimensional Description of a Rough Surface and Parameter Evolution with Shearing. International Journal of Rock Mechanics and Mining Sciences, 39(6): 789-800. https://doi.org/10.1016/s1365-1609(2)00070-9 Grasselli, G., Egger, P., 2003. Constitutive Law for the Shear Strength of Rock Joints Based on Three-Dimensional Surface Parameters. International Journal of Rock Mechanics and Mining Sciences, 40(1): 25-40. https://doi.org/10.1016/s1365-1609(2)00101-6 Ghazvinian, A. H., Taghichian, A., Hashemi, M., et al., 2010. The Shear Behavior of Bedding Planes of Weakness between Two Different Rock Types with High Strength Difference. Rock Mechanics and Rock Engineering, 43(1): 69-87. https://doi.org/10.1007/s00603-009-0030-8 He, J. M., Wu, G., 1994. The Criterion For Shear Strength of Discontinuities with Different Rock Properties in Rock Mass. Journal of Chongqing University, 17(2): 105-110 (in Chinese with English abstract). Homand, F., Belem, T., Souley, M., 2001. Friction and Degradation of Rock Joint Surfaces under Shear Loads. International Journal for Numerical and Analytical Methods in Geomechanics, 25(10): 973-999. https://doi.org/10.1002/nag.163.abs Hong, E. S., Lee, J. S., Lee, I. M., 2008. Underestimation of Roughness in Rough Rock Joints. International Journal for Numerical and Analytical Methods in Geomechanics, 32(11): 1385-1403. https://doi.org/10.1002/nag.678 Jang, H. S., Kang, S. S., Jang, B. A., 2014. Determination of Joint Roughness Coefficients Using Roughness Parameters. Rock Mechanics and Rock Engineering, 47(6): 2061-2073. https://doi.org/10.1007/s00603-013-0535-z Jing, L. L., Wei, Y. F., 2020. Calculation Model for the Shear Strength of Soft-Hard Joints Based on Three-Dimensional Morphology and Dilatancy Effect. Engineering Mechanics, 37(12): 180-190 (in Chinese with English abstract). doi: 10.6052/j.issn.1000-4750.2020.02.0109 Kulatilake, P. H. S. W., Shou, G., Huang, T. H., et al., 1995. New Peak Shear Strength Criteria for Anisotropic Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(7): 673-697. https://doi.org/10.1016/0148-9062(95)00022-9 Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract). Li, Y. C., Tang, C., Li, D. Q., et al., 2020. A New Shear Strength Criterion of Three-Dimensional Rock Joints. Rock Mechanics and Rock Engineering, 53(3): 1477-1483. https://doi.org/10.1007/s00603-019-01976-5 Liu, Q. S., Tian, Y. C., Liu, D. F., et al., 2017. Updates to JRC-JCS Model for Estimating the Peak Shear Strength of Rock Joints Based on Quantified Surface Description. Engineering Geology, 228(1): 282-300. https://doi.org/10.1016/j.enggeo.2017.08.020 Patton, F. D., 1996. Multiple Modes of Shear Failure in Rock. In: Proceedings of the 1st Congress of International Society of Rock Mechanics, Lisbon, 509-513. Song, L. B., Jiang, Q., Li, Y. H., et al., 2017. Improved JRC-JCS Shear Strength Formula for Soft-Hard Natural Joints. Rock and Soil Mechanics, 38(10): 2789-2798 (in Chinese with English abstract). Tang, H. M., Ma, S. Z., Liu, Y. R., et al., 2002. Stability and Control Measures of Zhaoshuling Landslide, Badong County, Three Gorges Reservoir. Earth Science, 27(5): 621-625 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.05.024 Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China : Lessons Learned from Decades of Research. Engineering Geology, 261(1): 105267. https://doi.org/10.1016/j.enggeo. 2019. 105267 doi: 10.1016/j.enggeo.2019.105267 Tang, Z. C., Xia, C. C., Song, Y. L., et al., 2012. Discussion about Grasselli's Peak Shear Strength Criterion for Rock Joints. Chinese Journal of Rock Mechanics and Engineering, 31(2): 356-364 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.02.015 Tang, Z. C., Zhang, Z. F., Zuo, C. Q., et al., 2021. Peak Shear Strength Criterion for Mismatched Rock Joints: Revisiting JRC-JMC Criterion. International Journal of Rock Mechanics and Mining Sciences, 147(2): 104894. https://doi.org/10.1016/j.ijrmms.2021.104894 Tang, Z. C., Wong, L. N. Y., 2016. New Criterion for Evaluating the Peak Shear Strength of Rock Joints under Different Contact States. Rock Mechanics and Rock Engineering, 49(4): 1191-1199. https://doi.org/10.1007/s00603-015-0811-1 Tatone, B. S. A., Grasselli, G., 2009. A Method to Evaluate the Three-Dimensional Roughness of Fracture Surfaces in Brittle Geomaterials. Review of Scientific Instruments, 80(12): 125110. https://doi.org/10.1063/1.3266964 Tatone, B. S. A., Grasselli, G., 2010. A New 2D Discontinuity Roughness Parameter and its Correlation with JRC. International Journal of Rock Mechanics and Mining Sciences, 47(8): 1391-1400. https://doi.org/10.1016/j.ijrmms.2010.06.006 Tian, Y. C., Liu, Q. S., Liu, D. F., et al., 2018. Updates to Grasselli's Peak Shear Strength Model. Rock Mechanics and Rock Engineering, 51(7): 2115-2133. https://doi.org/10.1007/s00603-018-1469-2 Wu, Q., Xu, Y. J., Tang, H. M., et al., 2018. Investigation on the Shear Properties of Discontinuities at the Interface between Different Rock Types in the Badong Formation, China. Engineering Geology, 245(4): 280-291. https://doi.org/10.1016/j.enggeo.2018.09.002 Wu, Q., Jiang, Y. F., Tang, H. M., et al., 2020. Experimental and Numerical Studies on the Evolution of Shear Behaviour and Damage of Natural Discontinuities at the Interface between Different Rock Types. Rock Mechanics and Rock Engineering, 53(8): 3721-3744. https://doi.org/10.1007/s00603-020-02129-9 Xu, D. P., Feng, X. T., Cui, Y. J., 2012. A Simple Shear Strength Model for Interlayer Shear Weakness Zone. Engineering Geology, 147-148(4): 114-123. https://doi.org/10.1016/j.enggeo.2012.07.016 Xia, C. C., Tang, Z. C., Xiao, W. M., et al., 2014. New Peak Shear Strength Criterion of Rock Joints Based on Quantified Surface Description. Rock Mechanics and Rock Engineering, 47(2): 387-400. https://doi.org/10.1007/s00603-013-0395-6 Yang, J., Rong, G., Hou, D., et al., 2016. Experimental Study on Peak Shear Strength Criterion for Rock Joints. Rock Mechanics and Rock Engineering, 49(3): 821-835. https://doi.org/10.1007/s00603-015-0791-1 Zhao, J., 1997. Joint Surface Matching and Shear Strength Part B: JRC-JMC Shear Strength Criterion. International Journal of Rock Mechanics and Mining Sciences, 34(2): 179-185. https://doi.org/10.1016/s0148-9062(96)00063-0 Zhao, Y. L., Zhang, L. Y., Wang, W. J., et al., 2020. Experimental Study on Shear Behavior and a Revised Shear Strength Model for Infilled Rock Joints. International Journal of Geomechanics, 20(9): 4020141. https://doi.org/10.1061/(asce)gm.1943-5622.0001781 Zhang, Y. H., Wang, D. J., Tang, H. M., et al., 2016. Study of Shear Strength Characteristics of Heterogeneous Discontinuities Using PFC2D Simulation. Rock and Soil Mechanics, 37(4): 1031-1041 (in Chinese with English abstract). 范祥, 邓志颖, 崔志猛, 等, 2021. 一种新的软-硬节理峰值剪切强度模型. 岩土力学, 42(7): 1861-1870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107011.htm 贺建明, 吴刚, 1994. 岩体异性结构面的抗剪强度准则. 重庆大学学报, 17(2): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE402.017.htm 金磊磊, 魏玉峰, 2020. 基于三维形貌和剪胀效应的软-硬节理抗剪强度模型. 工程力学, 37(12): 180-190. doi: 10.6052/j.issn.1000-4750.2020.02.0109 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110 宋磊博, 江权, 李元辉, 等, 2017. 软-硬自然节理的改进JRC-JCS剪切强度公式. 岩土力学, 38(10): 2789-2798. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710004.htm 唐辉明, 马淑芝, 刘佑荣, 等, 2002. 三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究. 地球科学, 27(5): 621-625. http://www.earth-science.net/article/id/1175 唐志成, 夏才初, 宋英龙, 等, 2012. Grasselli节理峰值抗剪强度公式再探. 岩石力学与工程学报, 31(2): 356-364. doi: 10.3969/j.issn.1000-6915.2012.02.015 张雅慧, 汪丁建, 唐辉明, 等, 2016. 基于PFC2D数值试验的异性结构面剪切强度特性研究. 岩土力学, 37(4): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604016.htm -