Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance
-
摘要: 翁门杂岩是在最近的专题地质填图工作中新识别的一套早前寒武纪变质基底,为深入研究扬子陆块北缘大别山早期陆壳形成与演化提供了新的窗口.选择翁门杂岩中代表性花岗质岩类开展了锆石LA-ICP-MS U-Pb年代学和Hf同位素研究.结果表明,2件英云闪长质片麻岩分别形成于2 914±24.5 Ma和2 874±6.6 Ma,2件二长花岗质片麻岩的形成年龄分别为2 669±10.7 Ma和2 644±7.1 Ma,1件糜棱岩化二长花岗岩形成于2 454±6.5 Ma,证实了大别山南缘存在太古宙‒古元古代早期陆壳基底.同时定年结果显示,2件眼球状花岗质片麻岩的形成时代分别为2 011±6.3 Ma和2 010±5.4 Ma,部分太古宙岩石中亦记录了古元古代~2.0 Ga变质锆石年龄,表明翁门杂岩曾卷入了古元古代造山事件.现有资料表明新发现的翁门杂岩与扬子陆核太古宙‒古元古代早期构造岩浆热事件和地壳增生时间具有可对比性,但大别山周缘以广泛发育与全球主要陆块一致的~2.5 Ga构造热事件而显示出独特性,可能是古老陆块最终成熟稳定化的记录,标志着组成扬子陆块北缘的各基底在该期可能共处于Sclavia超级克拉通的不同部位,而翁门杂岩所在的大别山周缘可能更靠近该超级克拉通的边缘.Abstract: The Wengmen complex, a newly identified Early Precambrian metamorphic basement with shallow metamorphism, opens a fresh avenue for future research on the formation and evolution of the early continental crust of the Dabie orogen on the northern Yangtze Block. In this paper, it presents a comprehensive study of in situ zircon U-Pb geochronology and Hf isotopes of representative meta-granitic rocks from the Wengmen complex. The results show that two meta-tonalite gneisses were formed at 2 914±24.5 Ma and 2 874±6.6 Ma respectively, two monzonitic granitic gneisses were formed at 2 669±10.7 Ma and 2 644±7.1 Ma respectively, and one mylonitized monzonitic granite was formed at 2 454±6.5 Ma, which confirms the existence of Archean to Early Paleoproterozoic continental crust basement in the southern Dabie orogen. The dating results also show that the formation ages of the two eyeball-like granitic gneisses are 2 011±6.3 Ma and 2 010±5.4 Ma, respectively. Moreover, ca. 2.0 Ga metamorphic zircon age has been obtained from the Wengmen Archean rocks, indicating that the complex may have been involved in the Paleoproterozoic orogenic event. The available data indicate that the newly discovered Wengmen complex in the southern Dabie orogen and the Kongling complex in the Yangtze continental core have synchronous tectono-magmatic thermal events and crustal accretion history during the Archean to Early Paleoproterozoic. However, the periphery of the Dabie orogen shows uniqueness due to its well-developed ~2.5 Ga tectono-magmatic thermal event, which is consistent with those of the ancient continental blocks in the world and may be the record of the final maturation and stabilization during the end of the Archean. Integrating the new and published data, it proposes that each basement on the northern Yangtze Block maybe coexisted in different parts of the Sclavia supercraton at the end of the Neoarchean, and the periphery of the Dabie orogen represented by the Wengmen complex maybe was located closer to the margin of the supercraton.
-
Key words:
- Dabie orogen /
- metamorphic complex /
- Archean /
- Paleoproterozoic /
- zircon /
- crustal growth and reworking /
- supercraton /
- tectonics
-
图 1 大别山南缘翁门杂岩地质简图
a.华南大陆前寒武纪地质简图(据Zhao and Cawood,2012修改),扬子陆块中已识别的早前寒武纪基底杂岩以绿色字体标注;b.大别山南缘大地构造简图(据大别山超高压变质作用与碰撞造山动力学编写组,2005;Wang et al.,2021;Zhao et al.,2021等修编);c.翁门杂岩地质简图(据徐大良等,2022修编)
Fig. 1. Geological map of the Wengmen complex in the southern Dabie orogen
图 2 翁门杂岩典型野外露头及岩石镜下特征
a.太平寨新元古代花岗岩逆推叠置到早前寒武纪翁门杂岩之上;b. 中太古代英云闪长质片麻岩呈构造岩片产出;c. 新太古代二长花岗质片麻岩中构造片理较发育,以假层状地质体形式产出;d. 古元古代早期糜棱岩化二长花岗岩与变质表壳岩间呈构造接触;e. 古元古代眼球状二长花岗质片麻岩;f. 中太古代英云闪长质片麻岩;g. 新太古代二长花岗质片麻岩;h. 古元古代早期糜棱岩化二长花岗岩,矿物多呈断续条带状定向排列,斜长石表面绢云母化明显;i. 古元古代眼球状二长花岗质片麻岩,残斑主要为钾长石,斜长石明显绢云母化. 镜下照片均为正交偏光. 矿物缩写:Pl. 斜长石;Kfs. 钾长石;Qtz. 石英;Bt. 黑云母;Ser. 绢云母;Ilm. 钛铁矿
Fig. 2. Representative field and microscopic photos of the meta-granitic rocks from the Wengmen complex
图 4 翁门杂岩变花岗质片麻岩锆石U-Pb年龄特征
图 4h中崆岭杂岩的岩浆岩年龄谱图转引自Wang et al.(2018)
Fig. 4. U-Pb ages of the meta-granitic rocks from the Wengmen complex
图 5 翁门杂岩花岗质片麻岩的锆石Hf同位素组成特征
数据来源:崆岭杂岩数据转引自Wang et al.,2018;大别山南缘数据引自Wang et al.,2021和Zhao et al.,2021
Fig. 5. Characteristics of zircon Hf isotopic composition of granitic gneisses in the Wengmen complex
图 6 扬子陆块北缘太古宙‒古元古代变质基底杂岩构造岩浆热事件对比
据Wang et al.,2018;Zhao et al.,2021;Yuan et al.,2022及本文数据修改;地壳生长时间主要依据计算的基底杂岩锆石Hf同位素两阶段模式年龄范围确定,其中北大别新太古代片麻岩基底的地壳生长时间为4 250~3 980 Ma(Qiu et al.,2021),超出了图中的显示范围
Fig. 6. Major magmatic, metamorphic, crustal growth and reworking events in different complexes of the northern Yangtze Block during the Archean to Paleoproterozoic
-
Ames, L., Zhou, G. Z., Xiong, B. C., 1996. Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino- Korean and Yangtze Cratons, Central China. Tectonics, 15(2): 472-489. https://doi.org/10.1029/95tc02552 Bureau of Geology and Mineral Resources of Hubei Province, 1990. Regional Geology of Hubei Province. Geological Publishing House, Beijing, 1-705 (in Chinese). Chang, Y. F., Dong, S. W., Huang, D. Z., 1996. On Tectonics of "Poly-Basement with One Cover" in Middle-Lower Yangtze Craton, China. Volcanology & Mineral Resources, 17(S1): 1-15 (in Chinese with English abstract). Chen, D. G., Deloule, E., Xia, Q. K., et al., 2002. Metamorphic Zircon from Shuanghe Ultra-High Pressure Eclogite, Dabieshan: Ion Microprobe and Internal Micro-Structure Study. Acta Petrologica Sinica, 18(3): 369-377 (in Chinese with English abstract). Chen, K., Gao, S., Wu, Y. B., et al., 2013. 2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. https://doi.org/10.1016/j.precamres.2012.10.017 Chen, Q., Sun, M., Zhao, G. C., et al., 2019. Episodic Crustal Growth and Reworking of the Yudongzi Terrane, South China: Constraints from the Archean TTGS and Potassic Granites and Paleoproterozoic Amphibolites. Lithos, 326/327: 1-18. https://doi.org/10.1016/j.lithos.2018.12.005 Condie, K. C., 2008. Did the Character of Subduction Change at the End of the Archean? Constraints from Convergent-Margin Granitoids. Geology, 36(8): 611. https://doi.org/10.1130/g24793a.1 Condie, K. C., Kröner, A., 2013. The Building Blocks of Continental Crust: Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2): 394-402. https://doi.org/10.1016/j.gr.2011.09.011 Dabieshan Ultrahigh Pressure Metamorphism and Collision Orogeny Dynamics Writing Group, 2005. Dabieshan Ultrahigh Pressure Metamorphism and Collision Orogeny Dynamics. Science Press, Beijing, 1-209 (in Chinese). Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03 Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007 Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230. https://doi.org/10.1016/S0012-821X(98)00152-6 Jiang, L. L., Wu, W. P., Liu, Y. C., et al., 2003. U-Pb Zircon and Ar-Ar Hornblende Ages of the Susong Complex of the Southern Dabie Orogen and Their Geological Implication. Acta Petrologica Sinica, 19(3): 497-505 (in Chinese with English abstract). Li, Y., Liu, Y. C., Yang, Y., et al., 2018. Zircon U-Pb Ages and Hf-Isotope Compositions of Granitic Gneisses from the Susong Metamorphic Zone in the Dabie Orogen, China. Journal of Earth Sciences and Environment, 40(1): 61-75 (in Chinese with English abstract). Liu, P. L., Jin, Z. M., 2022. Metamorphic Evolution of a Tremolite Marble from the Dabie UHP Terrane, China: A Focus on Zircon. Journal of Earth Science, 33(2): 493-506. https://doi.org/10.1007/s12583-020-1363-1 Liu, Y. B., Mitchell, R. N., Li, Z. X., et al., 2021. Archean Geodynamics: Ephemeral Supercontinents or Long-Lived Supercratons. Geology, 49(7): 794-798. https://doi.org/10.1130/g48575.1 Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Okay, A. I., Şengör, A. M. C., Satir, M., 1993. Tectonics of an Ultrahigh-Pressure Metamorphic Terrane: The Dabie Shan/Tongbai Shan Orogen, China. Tectonics, 12(6): 1320-1334. https://doi.org/10.1029/93tc01544 Qiu, X. F., Tong, X. R., Jiang, T., et al., 2021. Reworking of Hadean Continental Crust in the Dabie Orogen: Evidence from the Muzidian Granitic Gneisses. Gondwana Research, 89: 119-130. https://doi.org/10.1016/j.gr.2020.08.014 Rogers, J. J. W., Santosh, M., 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3/4): 373-380. https://doi.org/10.1016/j.gr.2008.06.008 Shi, Y. H., Wang, C. S., Kang, T., et al., 2012. Petrological Characteristics and Zircon U-Pb Age for Susong Metamorphic Complex Rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389-3402 (in Chinese with English abstract). Tu, C., Zhang, S. B., Su, K., et al., 2021. Zircon U-Pb Dating and Lu-Hf Isotope Results for Feidong Complex: Implications for Coherent Basement of the Yangtze Craton. Earth Science, 46(5): 1630-1643 (in Chinese with English abstract). Wan, Y. S., 2022. How did the Oldest Continental Crust Form? Earth Science, 47(10): 3776-3778 (in Chinese). Wang, K., Li, Z. X., Dong, S. W., et al., 2018. Early Crustal Evolution of the Yangtze Craton, South China: New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314: 325-352. https://doi.org/10.1016/j.precamres.2018.05.016 Wang, X., Guo, J. W., Tao, W., et al., 2021. Paleoproterozoic Tectonic Evolution of the Yangtze Craton: Evidence from Magmatism and Sedimentation in the Susong Area, South China. Precambrian Research, 365: 106390. https://doi.org/10.1016/j.precamres.2021.106390 Wang, Z. J., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic Ⅰ-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent: Evidence from the Lengshui Complex, South China. Precambrian Research, 263: 157-173. https://doi.org/10.1016/j.precamres.2015.03.014 Windley, B. F., Kusky, T., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980 Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/201/202/203: 26-37. https://doi.org/10.1016/j.precamres.2011.12.015 Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008 Xu, D. L., Peng, L. H., Deng, X., et al., 2022. China Geology Survey: 1∶50 000 Geological Map Database of Qichun Area (within H50E011006, H50E011007, H50E012006 and H50E012007), Hubei Province. Geological Science Data Publishing System, Beijing (in Chinese). Xu, S. T., Liu, Y. C., Jiang, L. L., et al., 2002. Architecture and Kinematics of the Dabieshan Orogen. University of Science and Technology of China Press, Heifei, 53-68 (in Chinese). Yuan, X. Y., Niu, M. L., Cai, Q. R., et al., 2022. The Nature of Paleoproterozoic Basement in the Northern Yangtze and Its Geological Implication. Precambrian Research, 378: 106761. https://doi.org/10.1016/j.precamres.2022.106761 Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022 Zhang, L., Liu, H. J., Zhang, S. B., et al., 2022. Tectonic Switch of the North Yangtze Craton at ca. 2.0 Ga: Implications for Its Position in Columbia Supercontinent. Precambrian Research, 381: 106842. https://doi.org/10.1016/j.precamres.2022.106842 Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. https://doi.org/10.1016/j.gr.2012.09.005 Zhang, S. B., Zheng, Y. F., Wu, P., et al., 2020. The Nature of Subduction System in the Neoarchean: Magmatic Records from the Northern Yangtze Craton, South China. Precambrian Research, 347: 105834. https://doi.org/10.1016/j.precamres.2020.105834 Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017 Zhao, T., Zhu, G., Wu, Q., et al., 2021. Evidence for Discrete Archean Microcontinents in the Yangtze Craton. Precambrian Research, 361: 106259. https://doi.org/10.1016/j.precamres.2021.106259 Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417. https://doi.org/10.1130/g22282.1 Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029 Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851 湖北省地质矿产局, 1990. 湖北省区域地质志. 北京: 地质出版社, 1-705. 常印佛, 董树文, 黄德志, 1996. 论中‒下扬子"一盖多底"格局与演化. 火山地质与矿产, 17(S1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ1996Z1000.htm 陈道公, Deloule, E., 夏群科, 等, 2002. 大别山双河超高压榴辉岩中变质锆石: 离子探针和微区结构研究. 岩石学报, 18(3): 369-377. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203011.htm 大别山超高压变质作用与碰撞造山动力学编写组, 2005. 大别山超高压变质作用与碰撞造山动力学. 北京: 科学出版社, 1-209. 江来利, 吴维平, 刘贻灿, 等, 2003. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义. 岩石学报, 19(3): 497-505. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303013.htm 李远, 刘贻灿, 杨阳, 等, 2018. 大别山宿松变质带花岗片麻岩的锆石U-Pb年龄和Hf同位素成分. 地球科学与环境学报, 40(1): 61-75. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201801007.htm 石永红, 王次松, 康涛, 等, 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10): 3389-3402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210026.htm 涂城, 张少兵, 苏克, 等, 2021. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46(5): 1630-1643. doi: 10.3799/dqkx.2020.169 万渝生, 2022. 最古老陆壳是如何形成的?. 地球科学, 47(10): 3776-3778. doi: 10.3799/dqkx.2022.804 徐大良, 彭练红, 邓新, 等, 2022. 中国地质调查局: 湖北省蕲春地区(H50E011006, H50E011007, H50E012006和H50E012007图幅之内)1∶50 000地质图数据库. 北京: 地质科学数据出版系统. 徐树桐, 刘贻灿, 江来利, 等, 2002. 大别山造山带的构造几何学和运动学. 合肥: 中国科学技术大学出版社, 53-68. -
dqkxzx-48-11-4072-附表.xls
-