• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    走滑断裂内部结构渗透差异特征及其输导控藏模式

    罗群 王千军 杨威 王耀华 许倩 张子隆 邱兆轩

    罗群, 王千军, 杨威, 王耀华, 许倩, 张子隆, 邱兆轩, 2023. 走滑断裂内部结构渗透差异特征及其输导控藏模式. 地球科学, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092
    引用本文: 罗群, 王千军, 杨威, 王耀华, 许倩, 张子隆, 邱兆轩, 2023. 走滑断裂内部结构渗透差异特征及其输导控藏模式. 地球科学, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092
    Luo Qun, Wang Qianjun, Yang Wei, Wang Yaohua, Xu Qian, Zhang Zilong, Qiu Zhaoxuan, 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092
    Citation: Luo Qun, Wang Qianjun, Yang Wei, Wang Yaohua, Xu Qian, Zhang Zilong, Qiu Zhaoxuan, 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092

    走滑断裂内部结构渗透差异特征及其输导控藏模式

    doi: 10.3799/dqkx.2023.092
    基金项目: 

    中国石油-中国石油大学战略合作科技专项课题 ZLZX2020-01-6

    胜利油田技术项目 30200018-20-ZC0613-0104

    大港油田科技项目 2021DJ0702-1

    详细信息
      作者简介:

      罗群(1963-),教授,研究方向为常规与非常规油气成藏与地质评价. E-mail:luoqun2002@263.net

      通讯作者:

      王千军,教授级高工,研究方向为油气勘探开发与管理. E-mail:wangqianjin873.slyt@sinopec.com

    • 中图分类号: P618

    Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults

    • 摘要: 走滑断裂及其控藏规律已经成为油气勘探的热点,但不同类型走滑断裂内部结构单元、输导特征及其控藏规律,目前还不甚清楚.通过野外精细表征、物理模拟实验和典型实例剖析,揭示走滑断裂内部结构及其控藏特征:走滑断裂内部结构包括断层核、其两侧的滑动破碎带和诱导裂缝带3个单元5个带;张扭性走滑断裂的断层核输导性最好、其次是滑动破碎带,再次是诱导裂缝带;压扭或纯扭性走滑断裂的断层核封闭性最好,其次是诱导裂缝带,滑动破碎带输导性最好.张扭性走滑断裂纵横向输导性要好于压扭和纯扭性走滑断裂,主动盘输导性好于被动盘,活动时期的输导性好于静止时期.走滑断裂的主动盘以输层油气垂向运移为主、被动盘以横向遮挡油气为特征.构建了准噶尔盆地吉木萨尔凹陷西部走滑断裂的控藏模式.

       

    • 图  1  野外考察区域及主要考察露头剖面位置卫星图

      Fig.  1.  Satellite images of field investigation area and main outcrop profiles

      图  2  观察点3小型张扭走滑断裂的吐孜沟剖面照片

      Fig.  2.  The profile photo of Tuzigou with the twist-slip fault in observation point 3

      图  3  观察点3吐孜沟剖面走滑断裂裂缝条数与距断层核距离的关系

      Fig.  3.  Relationship between the number of strike-slip fractures in Tuzigou profiles and the distance from the fault core at observation point 3

      图  4  吐孜沟剖面3号走滑断裂不同结构单元渗透率分布

      Fig.  4.  Permeability distribution of different structural units of No. 3 strike-slip fault in Tuzigou profile

      图  5  吐孜沟剖面观察点3不同结构镜下特征

      a.tz-s-9主动盘原岩带(粉砂);b.tz-s-6主动盘破碎带(粉砂);c.tz-s-7被动盘破碎带(粉砂质泥);d.tz-s-8被动盘原岩带(粉砂质泥);e.tz-s-3主动盘破碎带(砂岩);f.tz-s-3主动盘破碎带(砂岩,书斜式构造);g.tz-s-2被动盘破碎带(砂岩);h.tz-s-1核部;塑性矿物(黑云母)含量较高

      Fig.  5.  Microscopic features of different structures at observation point 3 of Tuzigou profile

      图  6  乌尔禾1号走滑断裂南段野外露头断裂结构单元划分照片

      a.全貌;b.主动盘;c.被动盘;红方框为取样位置与样品号

      Fig.  6.  Classification of outcrop fault structural units in the southern section of Wuerhe No.1 strike-slip fault

      图  7  乌尔禾1号走滑断裂不同内部单元裂缝发育分布

      Fig.  7.  Development and distribution of fractures in different internal units of Wuerhe No.1 strike-slip fault

      图  8  乌尔禾1号走滑断裂不同结构单元的镜下特征

      a.we-s-2主动盘滑动破碎带(大量沥青充填);b.we-s-3主动盘诱导裂缝带(少量沥青充填);c.we-s-4主动盘原岩带(基本无沥青充填);d.we-s-1被动盘滑动破碎带(较少量沥青充填);e.we-s-5被动盘诱导裂缝带(少量沥青充填);f.we-s-5被动盘原岩带(基本无沥青充填)

      Fig.  8.  Microscopical features of different structural elements of Wuerhe No.1 strike-slip fault

      图  9  柳树沟3号压扭走滑断裂及其结构单元野外照片

      Fig.  9.  Field photo of Liushugou No.3 compression-torsion strike-slip fault and its structural elements

      图  10  柳树沟3号压扭走滑断裂不同结构单元铸体薄片照片

      a.ls-s-1铸体薄片照片;b.ls-s-2铸体薄片照片;c.ls-s-3铸体薄片照片

      Fig.  10.  Thin section photos of different structural elements of Liushugou No.3 compression-torsion strike-slip fracture

      图  11  走滑断裂内部结构、地质特征及渗透性差异分布(以准噶尔盆地西缘为例)

      Fig.  11.  Distribution of internal structure, geological characteristics and permeability differences of strike-slip faults (taking the western margin of Junggar basin as an example)

      图  12  实验模型1张扭走滑断裂活动期输导油气实验模型

      Fig.  12.  Experimental models 1 experimental model of hydrocarbon transport during active torsional strike-slip faults

      图  13  实验模型2张扭走滑断裂静止期输导油气实验模型

      Fig.  13.  Experimental models 2 experimental models for hydrocarbon transport during stationary phase of torsional strike-slip faults

      图  14  实验模型3压扭走滑断裂活动期输导油气实验模型

      Fig.  14.  Experimental model 3 Experimental model of oil and gas transport during the active period of pressure-torsional strike-slip fault

      图  15  实验模型4压扭走滑断裂静止期输导油气实验模型

      Fig.  15.  Experimental model 4 Experimental model of oil and gas transport during stationary period of pressure-torsion strike-slip fault

      图  16  张扭走滑断裂静止期垂向输导石油运移(a)和侧向遮挡石油聚集(b)实验照片

      a.张扭走滑断裂静止期垂向输导石油运移实验过程照片;b.张扭走滑断裂静止期侧向遮挡石油聚集实验过程照片

      Fig.  16.  Experimental photos of vertical transport of oil (a) and lateral occlusion of oil accumulation (b) during stationary period of torsional strike-slip fault

      图  17  压扭走滑断裂静止期垂向输导石油运移(a)和侧向遮挡石油聚集(b)实验照片

      a.压扭走滑断裂静止期垂向输导石油运移实验过程照片;b.压扭走滑断裂静止期侧向遮挡石油聚集实验过程照片

      Fig.  17.  Experimental photos of vertical transport of oil (a) and lateral occlusion of oil accumulation (b) during stationary period

      图  18  不同类型不同活动性的走滑断裂输导遮挡成藏机理综合模式

      Fig.  18.  Comprehensive models of hydrocarbon accumulation mechanism of different types and different activities of strike-slip faults

      图  19  吉木萨尔凹陷西部二叠系勘探成果(a)与油藏成藏剖面(b)

      Fig.  19.  Permian exploration results (a) and reservoir-forming profile (b) in western Jimsar Sag

      图  20  不同类型走滑断裂的结构与输导遮挡油气运聚控藏模式

      Fig.  20.  Structure of different types of strike-slip faults and hydrocarbon migration, accumulation and accumulation control modes

      图  21  吉木萨尔凹陷西部梧桐沟组、井井子沟组油气运聚成藏立体模式

      Fig.  21.  Stereotypical pattern of hydrocarbon migration and accumulation in Wutonggou Formation and Jingjingzigou Formation in western Jimsar sag

      表  1  吐孜沟剖面观察点3走滑断裂裂缝要素统计

      Table  1.   Statistical of strike-slip fracture elements at observation point 3 of Tuzigou profile

      剖面名称 观察点序号 断裂结构 裂缝条数(条) 裂缝开度(mm) 裂缝密度
      (条/m2)
      裂缝充填性
      吐孜沟剖面 观察带3 破碎带
      (主动盘)
      42 1~4 10 少部分充填
      破碎带
      (被动盘)
      23 0.2~2.0 3 大部分充填
      下载: 导出CSV

      表  2  乌尔禾1号走滑断裂南端和中南端不同结构单元裂缝

      Table  2.   Fracture statistics of different structural units in the southern and middle southern parts of Wuerhe No.1 strike-slip fault

      剖面名称 断裂名称 断裂结构 裂缝条数
      (条)
      裂缝开度
      (mm)
      裂缝密度
      条/m2)
      裂缝充填性
      乌尔禾沥青脉观测剖面 1号走滑断裂南端 滑动破碎带(主动盘) 10 0.2~2.0 10 大部分充填胶结
      诱导裂缝带(被动盘) 7 0.1~1.0 7 少量充填胶结
      1号走滑断裂中南段 滑动破碎带(主动盘) 22 0.2~4.0 22 大部分充填胶结
      诱导裂缝带(主动盘) 10 0.12 10 少量充填胶结
      下载: 导出CSV

      表  3  实验模型1各模拟内容参数

      Table  3.   Simulation content parameters of experimental model 1

      位置 烃源岩 主动盘裂缝带 被动盘裂缝带 断层核部 储层1 储层2
      玻璃珠目数 60 40 80 120 30 100
      玻璃珠粒径(mm) 0.25 0.425 0.18 0.125 0.6 0.15
      渗透率(mD) 4 625 13 366 2 398 1 156 26 640 1 665
      下载: 导出CSV

      表  4  实验模型2各模拟内容参数

      Table  4.   Simulation content parameters of experimental model 2

      位置 烃源岩 主动盘裂缝带 被动盘裂缝带 断层核部 储层1 储层2
      玻璃珠目数 60 80 120 40 30 100
      玻璃珠粒径(mm) 0.25 0.18 0.125 0.425 0.6 0.15
      渗透率(mD) 4 625 2 398 1 156 13 366 26 640 1 665
      下载: 导出CSV

      表  5  实验模型3各模拟内容参数

      Table  5.   Simulation content parameters of experimental model 3

      位置 烃源岩 主动盘裂缝带 被动盘裂缝带 断层核部 储层1 储层2
      玻璃珠目数 60 40 80 120 30 60
      玻璃珠粒径(mm) 0.15 0.425 0.18 0.425 0.6 0.25
      渗透率(mD) 4 625 13 366 2 398 1 156 26 640 4 625
      下载: 导出CSV

      表  6  实验模型4各模拟内容参数

      Table  6.   Simulation content parameters of experimental model 4

      位置 烃源岩 主动盘裂缝带 被动盘裂缝带 断层核部 储层1 储层2
      玻璃珠目数 60 80 120 40 30 60
      玻璃珠粒径(mm) 0.15 0.18 0.125 0.425 0.6 0.25
      渗透率(mD) 4 625 2 398 1 156 13 366 26 640 4 625
      下载: 导出CSV
    • Aydin, A., 2000. Fractures, Faults, and Hydrocarbon Entrapment, Migration and Flow. Marine and Petroleum Geology, 17(7): 797-814. https://doi.org/10.1016/s0264-8172(00)00020-9
      Chen, D. C., Yang, G. L., Ma, L. C., et al., 2020. Characteristics of the Strike-Slip Fault System and Their Control Actions on the Hydrocarbon Accumulation for Weibei Sag. Acta Geologica Sinica, 94(8): 2410-2421(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.08.017
      Chen, W., Wu, Z. P., Hou, F., et al., 2010. Internal Structures of Fault Zones and Their Relationship with Hydrocarbon Migration and Accumulation. Acta Petrolei Sinica, 31(5): 774-780(in Chinese with English abstract).
      Clauzon, V., Mayolle, S., Leonardi, V., et al., 2020. Fault Zones in Limestones: Impact on Karstogenesis and Groundwater Flow (Lez Aquifer, Southern France). Hydrogeology Journal, 28(7): 2387-2408. https://doi.org/10.1007/s10040-020-02189-9
      Crowell, J. C., 1962. Displacement along the San Andreas Fault, California. Geological Society of America Special Paper, 71: 61.
      Deng, S., Zuo, L., Aydin, A., et al., 2015. Permeability Characterization of Natural Compaction Bands Using Core Flooding Experiments and Three-Dimensional Image-Based Analysis: Comparing and Contrasting the Results from Two Different Methods. AAPG Bulletin, 99(1): 27-49. https://doi.org/10.1306/07071413211
      Dewney, M. W., 1984. Evaluating Seals for Hydrocarbon Accumulations. AAPG Bulletin, 68: 1752-1763. https://doi.org/10.1306/ad461994-16f7-11d7-8645000102c1865d
      Fu, W. M., 1998. Distribution Characteristics of Fault Zone Structure and Permeability. Complex Hydrocarbon Reservoirs, 3(1): 65-66(in Chinese with English abstract).
      Han, J. F., Su, Z., Chen, L. X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310(in Chinese with English abstract). doi: 10.7623/syxb201911002
      Harland, W. B., 1971. Tectonic Transpression in Caledonian Spitsbergen. Geological Magazine, 108(1): 27-41. https://doi.org/10.1017/s0016756800050937
      Hu, D. S., Tong, D. J., Yang, H. Z., 2009. Progress in Research of Strike-Slip Tectonics. Fault-Block Oil & Gas Field, 16(5): 27-30(in Chinese with English abstract).
      Hu, H. W., Li, H. Y., Xiao, S. G., et al., 2022. Characteristics of Strike-Slip Faults on the Western Shaleitian Uplift and Their Control over Oil and Gas Accumulation. Marine Geology Frontiers, 38(3): 36-44(in Chinese with English abstract).
      Hu, L., Li, C., Jin, Q. Y., et al., 2021. Experimental Analysis on Influence of Plastic Formation on Characteristics of Fault Development under Extensional Stress. Earth Science, 46(5): 1749-1757(in Chinese with English abstract)
      Kennedy, W. Q., 1946. The Great Glen Fault. Quarterly Journal of the Geological Society, 102(1-4): 41-76. https://doi.org/10.1144/gsl.jgs.1946.102.01-04.04
      Li, W., Meng, M. F., Chen, X. P., et al., 2021. Quantitative Characterization of Extension and Compression Derived from Bending Strike-Slip Faults and Their Petroleum Geological Significance of the Eastern Bohai Sea. Journal of China University of Petroleum (Edition of Natural Science), 45(5): 23-32(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2021.05.003
      Liu, Y. J., Wu, K. Y., Liu, Y., et al., 2022. Analogue Modeling and Structural Differences of Stepovers of Strike Slip Faults: A Case from Shunbei-1 Fault of Tarim Basin. Journal of Zhejiang University (Science Edition), 49(3): 363-375(in Chinese with English abstract)
      Luo, C. M., Liang, X. X., Huang, S. Y., et al., 2022. Three-Layer Structure Model of Strike-Slip Faults in the Tazhong Uplift and Its Formation Mechanism. Oil & Gas Geology, 43(1): 118-131, 148. (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3426.2022.01.019
      Luo, Q., 2002. Fault Controlling Hydrocarbon Theory and Petroleum Exploration Practice. Earth Science, 27(6): 751-756(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.06.017
      Luo, Q., 2011. Transporting and Sealing Capacity of Fault Belt and Its Controlling on Reservoir. Petroleum Geology & Experiment, 33(5): 474-479(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2011.05.006
      Ma, Q. Y., Zeng, L. B., Xu, X. H., et al., 2022. Internal Architecture of Strike-Slip Fault Zone and Its Control over Reservoirs in the Xiaoerbulake Section, Tarim Basin. Oil & Gas Geology, 43(1): 69-78(in Chinese with English abstract).
      Moody, J. D., Hill, M. J., 1956. Wrench-Fault Tectonics. Geological Society of America Bulletin, 67(9): 1207. doi: 10.1130/0016-7606(1956)67[1207:WT]2.0.CO;2
      Su, S. M., Jiang, Y. L., 2021. Fault Zone Structures and Its Relationship with Hydrocarbon Migration and Accumulation in Petroliferous Basin. Journal of China University of Petroleum (Edition of Natural Science), 45(4): 32-41(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2021.04.004
      Sun, Y., Li, B. L., Liu, H. L., et al., 1999. On Layer Slip, Dip Slip and Strike Slip Fault Systems. Journal of Geomechanics, 5(3): 53-57(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.1999.03.009
      Sylvester, A. G., 1988. Strike-Slip Faults. Geological Society of America Bulletin, 100(11): 1666-1703. https://doi.org/10.1130/0016-7606(1988)1001666:ssf>2.3.co;2 doi: 10.1130/0016-7606(1988)1001666:ssf>2.3.co;2
      Wang, J. W., Bao, J., Cao, J. J., et al., 2022. Two Types of Strike-Slip Fault Zones and Their Tectonic Deformation Patterns in the Central Junggar Basin. Earth Science, 47(9): 3389-3400(in Chinese with English abstract).
      Wang, Y., Zhang, S. N., Liu, Y. L., 2022. Controls of Strike-Slip Fault Activities on Hydrocarbon Accumulation in Tahe Oilfield, Tarim Basin: A Case Study of TP 39 Fault Zone. Petroleum Geology & Experiment, 44(3): 394-401(in Chinese with English abstract).
      Wang, Z. Y., Su, J. Q., Qian, M. L., et al., 2011. Control Action of Strike-Slip Faulting on Hydrocarbon Accumulation: A Case Study from Cenozioc Fault in Qikou Sag. Lithologic Reservoirs, 23(4): 35-40(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2011.04.007
      Wu, G. H., Chen, Z. Y., Qu, T. L., et al., 2012. Characteristics of the Strik-Slip Fault Facies in Ordovician Carbonate in the Tarim Basin, and Its Relations to Hydrocarbon. Acta Geologica Sinica, 86(2): 219-227(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.02.001
      Xiao, Y., Wu, G. H., Lei, Y. L., et al., 2017. Analogue Modeling of Through-Going Process and Development Pattern of Strike-Slip Fault Zone. Petroleum Exploration and Development, 44(3): 340-348(in Chinese with English abstract).
      Xu, Z. Q., Zeng, L. S., Yang, J. S., et al., 2004. Role of Large-Scale Strike-Slip Faults in the Formation of Petroleum-Bearing Compressional Basin-Mountain Range Systems. Earth Science, 29(6): 631-643(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.06.001
      Yun, L., 2021. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3): 41-52(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2021.03.004
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: a Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhang, J. B., Zhang, Z. P., Wang, B. F., et al., 2018. Development Pattern and Prediction of Induced Fractures from Strike-Slip Faults in Shunnan Area, Tarim Basin. Oil & Gas Geology, 39(5): 955-963, 1055(in Chinese with English abstract).
      Zhang, Q. L., Hou, G. T., Pan, W. Q., et al., 2012. Numerical Simulation of Structural Fractures Controlled by Piqiang Strike-Slip Fault. Journal of Geomechanics, 18(2): 110-119(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2012.02.002
      Zhang, Z. T., 1987. On Strike-Slip Faults in Mid-West China. Northwest Geoscience, (1): 103-111(in Chinese with English abstract).
      Zhao, F., Jia, C. Z., Yuan, J. Y., et al., 2012. Study on Strike-Slip Fault and Its Control Effect on Oil and Gas Accumulation in Western Qaidam Basin, China. Geological Review, 58(4): 660-670(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.04.007
      Zhou, Q. H., 2005. Study on Fault Closure Based on Interior Structure of Fracture Belt. Petroleum Geology & Oilfield Development in Daqing, 24(6): 1-3, 103(in Chinese).
      陈登超, 杨贵丽, 马立驰, 等, 2020. 潍北凹陷走滑断裂体系特征及其控藏作用. 地质学报, 94(8): 2410-2421. doi: 10.3969/j.issn.0001-5717.2020.08.017
      陈伟, 吴智平, 侯峰, 等, 2010. 断裂带内部结构特征及其与油气运聚关系. 石油学报, 31(5): 774-780. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202104005.htm
      傅文敏, 1998. 断层带结构和渗透率的分布特征. 小型油气藏, 3(1): 65-66.
      韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. doi: 10.7623/syxb201911002
      胡德胜, 佟殿君, 阳怀忠, 2009. 走滑构造研究进展. 断块油气田, 16(5): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200905011.htm
      胡贺伟, 李慧勇, 肖述光, 等, 2022. 沙垒田凸起西段走滑断裂发育特征及其对油气的控制作用. 海洋地质前沿, 38(3): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202203004.htm
      胡林, 李才, 金秋月, 等, 2021. 伸展背景下塑性地层对断裂发育特征影响的实验分析. 地球科学, 46(5): 1749-1757. doi: 10.3799/dqkx.2020.137
      李伟, 蒙美芳, 陈兴鹏, 等, 2021. 渤海海域东部弯曲走滑断裂派生伸展与挤压作用的定量表征及其油气地质意义. 中国石油大学学报(自然科学版), 45(5): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202105003.htm
      刘芋杰, 吴孔友, 刘寅, 等, 2022. 走滑断裂分段叠置区物理模拟及构造差异性解析: 以塔里木盆地顺北1号断裂为例. 浙江大学学报(理学版), 49(3): 363-375. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202203014.htm
      罗彩明, 梁鑫鑫, 黄少英, 等, 2022. 塔里木盆地塔中隆起走滑断裂的三层结构模型及其形成机制. 石油与天然气地质, 43(1): 118-131, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201009.htm
      罗群, 2002. 断裂控烃理论与油气勘探实践. 地球科学, 27(6): 751-756. http://www.earth-science.net/article/id/1198
      罗群, 2011. 断裂带的输导与封闭性及其控藏特征. 石油实验地质, 33(5): 474-479. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201105009.htm
      马庆佑, 曾联波, 徐旭辉, 等, 2022. 塔里木盆地肖尔布拉克剖面走滑断裂带内部结构及控储模式. 石油与天然气地质, 43(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201005.htm
      苏圣民, 蒋有录, 2021. 含油气盆地断裂带结构特征及其与油气运聚关系. 中国石油大学学报(自然科学版), 45(4): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202104005.htm
      孙岩, 李本亮, 刘海龄, 等, 1999. 论层滑、倾滑和走滑断裂系统. 地质力学学报, 5(3): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX199903008.htm
      汪洋, 张哨楠, 刘永立, 2022. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例. 石油实验地质, 44(3): 394-401. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203003.htm
      王建伟, 鲍军, 曹建军, 等, 2022. 准噶尔盆地腹部两类走滑断裂带及其构造变形样式. 地球科学, 47(9): 3389-3400. doi: 10.3799/dqkx.2022.032
      王芝尧, 苏俊青, 钱茂路, 等, 2011. 走滑断裂作用对油气成藏的控制: 以歧口凹陷新生代断裂为例. 岩性油气藏, 23(4): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201104009.htm
      邬光辉, 陈志勇, 曲泰来, 等, 2012. 塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系. 地质学报, 86(2): 219-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201202002.htm
      肖阳, 邬光辉, 雷永良, 等, 2017. 走滑断裂带贯穿过程与发育模式的物理模拟. 石油勘探与开发, 44(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703004.htm
      许志琴, 曾令森, 杨经绥, 等, 2004. 走滑断裂、"挤压性盆-山构造" 与油气资源关系的探讨. 地球科学, 29(6): 631-643. http://www.earth-science.net/article/id/1464
      云露, 2021. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202103004.htm
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
      张继标, 张仲培, 汪必峰, 等, 2018. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测. 石油与天然气地质, 39(5): 955-963, 1055. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805011.htm
      张庆莲, 侯贵廷, 潘文庆, 等, 2012. 皮羌走滑断裂控制构造裂缝发育的力学机制模拟. 地质
      张治洮, 1987. 论我国中西部的大型走滑断裂. 西北地质科学, (1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK198701007.htm
      赵凡, 贾承造, 袁剑英, 等, 2012. 柴达木盆地西部走滑相关断裂特征及其控藏作用. 地质论评, 58(4): 660-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201204007.htm
      周庆华, 2005. 从断裂带内部结构探讨断层封闭性. 大庆石油地质与开发, 24(6): 1-3, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200506000.htm
    • 加载中
    图(21) / 表(6)
    计量
    • 文章访问数:  847
    • HTML全文浏览量:  652
    • PDF下载量:  226
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-29
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回