Rhythmicity and Geological Significance of Positive Anomalous Natural Gamma Layers in Late Permian Coal-Bearing Series in West Guizhou
-
摘要: 黔西上二叠统发育的自然伽马(GR)高异常岩层的成分变化和韵律性分布的原因尚不清楚.分析了自然伽马高异常层的岩石学特征、地球化学特征及自然伽马高异常层的周期性.Al2O3/TiO2、REE配分模式、REE-La/Yb、La/Sc-Co/Th、Zr/TiO2-Al2O3/TiO2及Nb/Ta-Zr/Hf图解表明GR高异常岩层的物质来源包括峨眉山玄武岩、峨眉山大火成岩省衰退期火山灰及华南火山灰.自然伽马高异常层形成于相对炎热、海平面相对较低时期,并具有长偏心率和短偏心率周期.炎热的气候变化引起了海平面快速上升和冰体积的快速下降,区域上应力状态快速变化触发火山活动形成具有周期性的GR高异常层.精准识别自然伽马高异常层可用来对比划分区域地层格架,且可以分析峨眉山大火成岩省晚期的岩浆演化及关键金属富集.Abstract: The compositional variations and rhythmicity of the positive anomalous natural gamma (GR) layers developed in the Upper Permian of West Guizhou are not clear. In this paper, it analyzed the lithological characteristics, geochemical characteristics and periodicity of positive anomalous GR layers. Al2O3/TiO2, REE patterns, REE-La/Yb, La/Sc-Co/Th, Zr/TiO2-Al2O3/TiO2 and Nb/Ta-Zr/Hf diagrams indicate that the sources of highly radioactive layers include Emeishan basalt, volcanic ash originates from the Emeishan large igneous province during its waning phase and South China volcanic ash. The positive anomalous GR layers were formed during a period of relatively hot and low sea level, with long and short eccentricity cycles. The hot climate change caused rapid sea level rise and ice volume drop, and the rapid change of stress state on the region triggered volcanic activity to form periodic positive anomalous GR formations. Precise identification of positive anomalous GR layers can be used to compare and delineate the regional stratigraphic framework, and to analyze the magmatic evolution and critical element enrichment of the late Emeishan large igneous province.
-
Key words:
- West Guizhou /
- Late Permian /
- provenance /
- volcanic activity /
- periodicity /
- geochemistry
-
图 1 滇东-黔西晚二叠世同沉积构造及沉积环境(a);华南板块构造特征和研究区位置(b)
图a改自Wang et al.(2020);图b改自张国伟等(2013)
Fig. 1. Late Permian synsedimentary tectonics and sedimentary environment in East Yunnan and West Guizhou (a); tectonic characteristics of South China plate and location of the study area (b)
图 5 上地壳标准化后的主量元素及微量元素蛛网图(a~b)及稀土元素配分曲线(c)
稀土元素数据来自Xu et al.(2004);Xiao et al.(2004);He et al.(2010);Wang et al.(2015);Liao et al.(2016)
Fig. 5. UC normalized major (a) and trace (b) element spider diagrams and REE distribution pattern of samples (c)
图 7 J9、Z5及J8井地层对比及Th、Sr/Ba、Rb/Sr及Ga/Rb的垂向演化规律
J9井及Z5井层序划分引自赵勇(2021)
Fig. 7. Stratigraphic sequence comparison and vertical evolution patterns of Th, Sr/Ba, Rb/Sr and Ga/Rb in drilling J9, Z5 and J8
图 10 Al2O3/TiO2-Zr/TiO2及Nb/Ta-Zr/Hf图解及可能的物源
数据来自Xu et al.(2004);Xiao et al.(2004);He et al.(2010);Wang et al.(2015);Liao et al.(2016)
Fig. 10. The Al2O3/TiO2-Zr/TiO2 and Nb/Ta-Zr/Hf diagrams for studied samples and probable sources
表 1 样品XRD分析结果(%,空白表明矿物不存在或含量低于检测限)
Table 1. XRD analysis results (%, blanks signify the absence of the mineral or its content being below the detection limit)
样品 类型 石英 钾长石 斜长石 锐钛矿 硬水铝石 勃姆石 金红石 菱锰矿 方解石 铁白云石 菱铁矿 黄铁矿 针铁矿 方沸石 I/S 高岭石 绿泥石 蒙脱石 伊利石 8-14 Ⅲ 5.8 0.8 11.5 1.4 70 10.5 8-15 Ⅱ 15.2 1.5 2.6 5.2 2.5 28.2 5.3 13.8 21.7 0 4 8-16 Ⅰ 11.6 13.5 3 56.2 15 0.7 8-17 Ⅰ 24.4 1.1 3 8.6 8.7 12.5 23.8 11.9 6 8-45 Ⅰ 14.9 1.4 9.4 7.1 4.6 2.6 2.4 6.4 27.2 21.4 2.9 8-51 Ⅱ 23.1 1.5 8.5 12.7 34.8 14 5.4 8-86 Ⅰ 1.4 0.6 64.3 1.1 0.6 21.8 6.4 2.6 1.3 8-87 Ⅱ 51.5 5.5 9.3 0.3 4.2 8.8 2.6 15.5 2.3 J-4 Ⅲ 6.4 1.1 53.3 31.6 7.4 J-5 Ⅰ 3.3 1.3 1 71.9 22.6 J-6 Ⅰ 2.1 82.1 15.8 J-7 Ⅲ 5.5 67.6 26.9 J-8 Ⅰ 12 1.1 62.7 24.2 J-9 Ⅰ 3.6 12.4 1.7 1 5.5 12.8 63 J-10 Ⅰ 9.3 5.4 47.2 1.4 12.3 12.1 11.3 J-11 Ⅰ 9.1 38.5 2 1.7 5.9 4.3 15.7 22.8 J-12 Ⅰ 1.8 13 22 48.9 14.3 J-13 Ⅱ 18.8 2.7 32.6 23.5 21.8 0.6 J-27 Ⅱ 36.5 2.5 10.3 2.5 28.1 8.8 11.3 J-28 Ⅲ 35.5 3.6 6.1 40.1 2.5 12.3 J-34 Ⅱ 26.7 9 4.4 5.8 2.3 26.6 15.8 9.4 J-35 Ⅲ 22.9 2.8 3.5 5.9 5.8 45.4 8.2 5.5 J-38 Ⅰ 52.7 2.9 43.2 0.1 1.2 J-39 Ⅰ 50.5 8.6 35.8 0.3 4.8 J-48 Ⅲ 18.2 2.6 73.5 3 2 0.7 J-50 Ⅲ 31.4 28.6 6.3 16.9 14.8 1.5 0.5 J-51 Ⅲ 29.9 3.2 1.7 11.1 10.7 26.2 12.2 2 3 J-53 Ⅱ 4.5 1.5 4.8 76.9 6.7 5.5 注:样品J-4到J-12引自Yang et al.(2021). -
Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., et al., 2015. Provenance and Depositional History of Continental Slope Sediments in the Southwestern Gulf of Mexico Unraveled by Geochemical Analysis. Continental Shelf Research, 95: 15-26. https://doi.org/10.1016/j.csr.2015.01.003 Dai, S. F., Ward, C. R., Graham, I. T., et al., 2017. Altered Volcanic Ashes in Coal and Coal-Bearing Sequences: A Review of Their Nature and Significance. Earth-Science Reviews, 175: 44-74. https://doi.org/10.1016/j.earscirev.2017.10.005 Gao, Q. L., Chen, Z. Q., Zhang, N., et al., 2022. Felsic Volcanisms across the Wuchiapingian-Changhsingian Boundary(Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province. Earth Science, 47(8): 2925-2939(in Chinese with English abstract). Gao, X. Y., Shao, L. Y., Wang, X. T., et al., 2022. Astronomical Forcing in Lopingian Coal-Bearing Cycles: A Case Study of Bijie Area in Northwestern Guizhou. Journal of Mining Science & Technology, 7(1): 89-100(in Chinese with English abstract). Hayashi, K. I., Fujisawa, H., Holland, H. D., et al., 1997. Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115-4137. https://doi.org/10.1016/s0016-7037(97)00214-7 He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213(3/4): 391-405. https://doi.org/10.1016/s0012-821x(03)00323-6 He, Q., Xiao, L., Balta, B., et al., 2010. Variety and Complexity of the Late-Permian Emeishan Basalts: Reappraisal of Plume-Lithosphere Interaction Processes. Lithos, 119(1/2): 91-107. https://doi.org/10.1016/j.lithos.2010.07.020 Huang, K. N., Opdyke, N. D., 1998. Magnetostratigraphic Investigations on an Emeishan Basalt Section in Western Guizhou Province, China. Earth and Planetary Science Letters, 163(1-4): 1-14. https://doi.org/10.1016/s0012-821x(98)00169-1 Johnston, M. J. S., Mauk, F. J., 1972. Earth Tides and the Triggering of Eruptions from Mt Stromboli, Italy. Nature, 239: 266-267. https://doi.org/10.1038/239266b0 Kiipli, T., Hints, R., Kallaste, T., et al., 2017. Immobile and Mobile Elements during the Transition of Volcanic Ash to Bentonite: An Example from the Early Palaeozoic Sedimentary Section of the Baltic Basin. Sedimentary Geology, 347: 148-159. https://doi.org/10.1016/j.sedgeo.2016.11.009 Kutterolf, S., Jegen, M., Mitrovica, J. X., et al., 2013. A Detection of Milankovitch Frequencies in Global Volcanic Activity. Geology, 41(2): 227-230. https://doi.org/10.1130/g33419.1 Kutterolf, S., Schindlbeck, J. C., Jegen, M., et al., 2019. Milankovitch Frequencies in Tephra Records at Volcanic Arcs: The Relation of Kyr-Scale Cyclic Variations in Volcanism to Global Climate Changes. Quaternary Science Reviews, 204: 1-16. https://doi.org/10.1016/j.quascirev.2018.11.004 Li, M. S., Huang, C. J., Hinnov, L., et al., 2016. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology, 44(8): 623-626. https://doi.org/10.1130/g37970.1 Liao, Z. W., Hu, W. X., Cao, J., et al., 2016. Heterogeneous Volcanism across the Permian-Triassic Boundary in South China and Implications for the Latest Permian Mass Extinction: New Evidence from Volcanic Ash Layers in the Lower Yangtze Region. Journal of Asian Earth Sciences, 127: 197-210. https://doi.org/10.1016/j.jseaes.2016.06.003 Ma, C. Q., Zou, B. W., Huang, G. Z., 2022. Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering. Earth Science, 47(11): 4114-4121(in Chinese with English abstract). Ren, Z. Y., Wu, Y. D., Zhang, L., et al., 2017. Primary Magmas and Mantle Sources of Emeishan Basalts Constrained from Major Element, Trace Element and Pb Isotope Compositions of Olivine-Hosted Melt Inclusions. Geochimica et Cosmochimica Acta, 208: 63-85. https://doi.org/10.1016/j.gca.2017.01.054 Roy, D. K., Roser, B. P., 2013. Climatic Control on the Composition of Carboniferous-Permian Gondwana Sediments, Khalaspir Basin, Bangladesh. Gondwana Research, 23(3): 1163-1171. https://doi.org/10.1016/j.gr.2012.07.006 Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4 Satow, C., Gudmundsson, A., Gertisser, R., et al., 2021. Eruptive Activity of the Santorini Volcano Controlled by Sea-Level Rise and Fall. Nature Geoscience, 14: 586-592. https://doi.org/10.1038/s41561-021-00783-4 Shao, L. Y., Hua, F. H., Yi, T. S., et al., 2021. Sequence-Paleogeography and Coal Accumulation of Lopingian in Guizhou Province. Coal Geology & Exploration, 49(1): 45-56(in Chinese with English abstract). Shen, M. L., Dai, S. F., Graham, I. T., et al., 2021. Mineralogical and Geochemical Characteristics of Altered Volcanic Ashes (Tonsteins and K-Bentonites) from the Latest Permian Coal-Bearing Strata of Western Guizhou Province, Southwestern China. International Journal of Coal Geology, 237: 103707. https://doi.org/10.1016/j.coal.2021.103707 Shen, Y. L., Qin, Y., Guo, Y. H., et al., 2012. Sedimentary Controlling Factor of Unattached Multiple Superimposed Coalbed-Methane System Formation. Earth Science, 37(3): 573-579(in Chinese with English abstract). Sternai, P., Caricchi, L., Garcia-Castellanos, D., et al., 2017. Magmatic Pulse Driven by Sea-Level Changes Associated with the Messinian Salinity Crisis. Nature Geoscience, 10: 783-787. https://doi.org/10.1038/ngeo3032 Tian, J., Wu, H. C., Huang, C. J., et al., 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568 (in Chinese with English abstract). Wang, F. L., Wang, C. Y., Zhao, T. P., 2015. Boron Isotopic Constraints on the Nb and Ta Mineralization of the Syenitic Dikes in the ~260 Ma Emeishan Large Igneous Province (SW China). Ore Geology Reviews, 65: 1110-1126. https://doi.org/10.1016/j.oregeorev.2014.09.009 Wang, H., Shao, L. Y., Hao, L. M., et al., 2011. Sedimentology and Sequence Stratigraphy of the Lopingian (Late Permian) Coal Measures in Southwestern China. International Journal of Coal Geology, 85(1): 168-183. https://doi.org/10.1016/j.coal.2010.11.003 Wang, X. T., Shao, L. Y., Eriksson, K. A., et al., 2020. Evolution of a Plume-Influenced Source-to-Sink System: An Example from the Coupled Central Emeishan Large Igneous Province and Adjacent Western Yangtze Cratonic Basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224. https://doi.org/10.1016/j.earscirev.2020.103224 Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4: 2452. https://doi.org/10.1038/ncomms3452 Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002 Xie, G. L., Shen, Y. L., Liu, S. G., et al., 2018. Trace and Rare Earth Element (REE) Characteristics of Mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for Provenance, Depositional Conditions and Paleoclimate. Marine and Petroleum Geology, 92: 20-36. https://doi.org/10.1016/j.marpetgeo.2018.02.019 Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/G20602.1 Xu, Y. G., He, B., Luo, Z. Y., et al., 2013. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39(in Chinese with English abstract). Yang, T. Y., Shen, Y. L., Qin, Y., et al., 2021. Distribution of Radioactive Elements (Th, U) and Formation Mechanism of the Bottom of the Lopingian (Late Permian) Coal-Bearing Series in Western Guizhou, SW China. Journal of Petroleum Science and Engineering, 205: 108779. https://doi.org/10.1016/j.petrol.2021.108779 Yu, X., Yang, J. H., Liu, J. Z., et al., 2017. Provenance of the Late Permian Longtan Formation in SW Guizhou Province and Implication for Reconstruction of Regional Sedimentation and Paleogeography. Acta Geologica Sinica, 91(6): 1374-1385(in Chinese with English abstract). Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. South China Continental Structure and Problems. Scientia Sinica (Terrae), 43(10): 1553-1582(in Chinese). Zhao, L. X., Dai, S. F., Graham, I. T., et al., 2016. New Insights into the Lowest Xuanwei Formation in Eastern Yunnan Province, SW China: Implications for Emeishan Large Igneous Province Felsic Tuff Deposition and the Cause of the End-Guadalupian Mass Extinction. Lithos, 264: 375-391. https://doi.org/10.1016/j.lithos.2016.08.037 Zhao, Y., 2021. High Frequency Sequence Stratigraphy of Late Permian Coal Measures in Liupanshui Area Western Guizhou Constrained by Event Layers (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). Zhou, Y. P., Bohor, B. F., Ren, Y. L., 2000. Trace Element Geochemistry of Altered Volcanic Ash Layers (Tonsteins) in Late Permian Coal-Bearing Formations of Eastern Yunnan and Western Guizhou Provinces, China. International Journal of Coal Geology, 44(3-4): 305-324. https://doi.org/10.1016/s0166-5162(00)00017-3 Zong, Y., Shen, Y. L., Qin, Y., et al., 2019. High Frequency Cyclic Sequence Based on the Milankovitch Cycles in Upper Permian Coal Measures in Panxian, Western Guizhou Province. Geological Journal of China Universities, 25(4): 598-609(in Chinese with English abstract). 高秋灵, 陈中强, 张宁, 等, 2022. 湖南嘉禾大窝岭剖面晚二叠世吴家坪期-长兴期之交长英质火山作用记录. 地球科学, 47(8): 2925-2939. doi: 10.3799/dqkx.2022.175 高祥宇, 邵龙义, 王学天, 等, 2022. 乐平统含煤岩系旋回地层的天文周期驱动: 以黔西北毕节地区为例. 矿业科学学报, 7(1): 89-100. 马昌前, 邹博文, 黄贵治, 2022. 火山喷发机制、气候效应及火山地球工程. 地球科学, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415 邵龙义, 华芳辉, 易同生, 等, 2021. 贵州省乐平世层序–古地理及聚煤规律. 煤田地质与勘探, 49(1): 45-56. 沈玉林, 秦勇, 郭英海, 等, 2012. "多层叠置独立含煤层气系统" 形成的沉积控制因素. 地球科学, 37(3): 573-579. doi: 10.3799/dqkx.2012.064 田军, 吴怀春, 黄春菊, 等, 2022. 从40万年长偏心率周期看米兰科维奇理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248 徐义刚, 何斌, 罗震宇, 等, 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39. 于鑫, 杨江海, 刘建中, 等, 2017. 黔西南晚二叠世龙潭组物源分析及区域沉积古地理重建. 地质学报, 91(6): 1374-1385. 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. 赵勇, 2021. 以事件层为约束的黔西六盘水地区晚二叠世煤系高频层序地层(硕士学位论文). 徐州: 中国矿业大学. 宗毅, 沈玉林, 秦勇, 等, 2019. 基于米氏旋回的黔西盘县上二叠统煤系高频层序研究. 高校地质学报, 25(4): 598-609. -
dqkxzx-49-10-3697-附表1.docx
-