Basement Architecture and Evolution of Neoproterozoic Tarim Rift Basin
-
摘要: 沉积盆地基底结构与演化是盆地动力学研究的重要内容,针对塔里木板块新元古代变质基底与裂谷盆地成因机制问题,综合新元古代年代学与地球化学资料研究其基底结构、构造环境与演化.结果表明,南、北塔里木地块拼合于1.9~1.8 Ga,早新元古代沉积岩系与古元古代火成岩系于780~750 Ma形成统一的变质基底,并经历多期构造-热事件作用形成南北差异的复杂变质基底结构.新元古代具有950~900 Ma、860~840 Ma、830~800 Ma、780~760 Ma的多期前展式俯冲作用,760~720 Ma、670~610 Ma的多期后撤俯冲作用,形成了转换期在约760 Ma的前展-后撤俯冲构造旋回.新元古代前展式俯冲控制了变质基底的演变,后撤俯冲控制了大陆裂谷盆地的演化,具有不同于经典威尔逊旋回的成盆动力学机制与演化过程.Abstract: The basement architecture and evolution is of important role in dechipering sedimentary basin dynamitics.Based on the compiled geochronological and geochemical data, it has a review on the hot debates on the basement architecture, tectonic environment and evolution of the Neoproterozoic Tarim Basin.The results show that the southern and northern Tarim terranes are assemblied during 1.9-1.8 Ga, and the Early Neoproterozoic sedimentary succession and Paleoproterozoic igneous succession are composed to form a unified metamorphic basement during 780-750 Ma, and to form a complex metamorphic basement structure with differences between northern and southern terranes by multi-stage tectonic-thermal events. The Neoproterozoic was characterized by multi-stage of advancing subduction at ca. 950-900 Ma, 860-840 Ma, 830-800 Ma, 780-760 Ma, and multi-stages of retreating subduction at ca. 760-720 Ma, 670-610 Ma, which resulting in a Neoproterozoic advancing-retreating subduction cycle with the switch at ca. 760 Ma. The Neoproterozoic advancing subduction controlled the origin and evolution of the metamorphic basement, and the subsequent retreating subduction controlled the initiation and evolution of continental rift basin, which suggests a different basin dynamic mechanism and evolutionary process from the classical Wilson cycle.
-
Key words:
- Tarim /
- Neoproterozoic /
- basement architecture /
- subduction mechanism /
- rift basin /
- evolution /
- structural geology
-
图 1 塔里木板块构造示意图(a);塔中-塔北地震剖面示前寒武系基底结构(b)
图a据Wu et al.(2021)修改;寒武系之下地震成像差,早期研究仅解释黄色线之间的坳陷,但剖面结构与塔中三维地震揭示深部可能还有更深大裂陷槽,红色虚线示可能断层
Fig. 1. Schematic map showing the Neoproterozoic age data and Cryogenian rifts in the Tarim Craton (a); the seismic cross the central Tarim Basin showing the Late Neoproterozoic rifts (b)
图 2 塔里木阿克苏、叶城、库鲁克塔格晚新元古代沉积岩地层柱状对比
据Zhou et al.(2022)修改
Fig. 2. Stratigraphic columns and correlation of Late Neoproterozoic sedimentary rocks in Aksu, Yecheng and Kuruktag
图 5 塔里木板块1 100~500 Ma碎屑和岩浆锆石的εHf(t)与U-Pb年龄对比(据Wu et al.,2021)
Fig. 5. Plots of εHf(t) versus U-Pb ages of 1 100-500 Ma detrital and magmatic zircons in the Tarim craton (after Wu et al., 2021)
图 6 塔里木板块新元古代演化模式
a.塔里木外围950~900 Ma北部大洋俯冲;b.约850 Ma俯冲作用下的岛弧提供了阿克苏地区南华系长英质碎屑物源;c. 820~800 Ma前展俯冲达到高峰期,岩浆活动逐渐从塔里木外围向塔里木内部推进,形成俯冲后的弧后盆地与主要物源;d. 780~760 Ma变质基底形成,塔里木出现广泛的隆升,岩浆活动遍及塔里木中部与南部;e. ~760 Ma转向后撤俯冲,造成地幔柱上涌与地壳减薄,在塔里木板块产生广泛的裂谷作用,形成巨厚南华系-震旦系裂谷建造
Fig. 6. Schematic diagram of the Neoproterozoic showing advancing and retreating subduction evolution of the Tarim craton
-
Bhat, G. M., Craig, J., Hafiz, M., et al., 2012. Geology and Hydrocarbon Potential of Neoproterozoic-Cambrian Basins in Asia: An Introduction. Geological Society, London, Special Publications, 366(1): 1-17. https://doi.org/10.1144/SP366.15 Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049 Chen, H. J., Chen, Y. J., Ripley, E. M., et al., 2017. Isotope and Trace Element Studies of the Xingdi Ⅱ Mafic-Ultramafic Complex in the Northern Rim of the Tarim Craton: Evidence for Emplacement in a Neoproterozoic Subduction Zone. Lithos, 278/279/280/281: 274-284. https://doi.org/10.1016/j.lithos.2017.01.014 Collins, A. S., Pisarevsky, S. A., 2005. Amalgamating Eastern Gondwana: The Evolution of the Circum-Indian Orogens. Earth Science Reviews, 71(3): 229-270. https://doi.org/10.1016/j.earscirev.2005.02.004 Craig, J., Thurow, J., Thusu, B., et al., 2009. Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. Geological Society, London, Special Publications, 326(1): 1-25. https://doi.org/10.1144/sp326.1 Dal Zilio, L., Faccenda, M., Capitanio, F., 2018. The Role of Deep Subduction in Supercontinent Breakup. Tectonophysics, 746: 312-324. https://doi.org/10.1016/j.tecto.2017.03.006 Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Neoproterozoic to Paleozoic Long-Lived Accretionary Orogeny in the Northern Tarim Craton. Tectonics, 33(3): 302-329. https://doi.org/10.1002/2013TC003501 Guo, Z. J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016 He, J. W., Zhu, W. B., Ge, R. F., et al., 2014. Detrital Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Strata in the Aksu Area, Northwestern Tarim Craton: Implications for Supercontinent Reconstruction and Crustal Evolution. Precambrian Research, 254: 194-209. https://doi.org/10.1016/j.precamres.2014.08.016 He, J. Y., Xu, B., Li, D., 2019. Newly Discovered Early Neoproterozoic (ca. 900 Ma) Andesitic Rocks in the Northwestern Tarim Craton: Implications for the Reconstruction of the Rodinia Supercontinent. Precambrian Research, 325: 55-68. doi: 10.1016/j.precamres.2019.02.018 He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2012. Neoproterozoic Granulites from the Northeastern Margin of the Tarim Craton: Petrology, Zircon U-Pb Ages and Implications for the Rodinia Assembly. Precambrian Research, 212/213: 21-33. https://doi.org/10.1016/j.precamres.2012.04.014 Huang, Z. Y., Long, X. P., Wang, X. C., et al., 2017. Precambrian Evolution of the Chinese Central Tianshan Block: Constraints on Its Tectonic Affinity to the Tarim Craton and Responses to Supercontinental Cycles. Precambrian Research, 295: 24-37. https://doi.org/10.1016/j.precamres.2017.04.014 Jia, C. Z., 1997. Structural Characteristics and Oil and Gas in Tarim Basin, China. Petroleum Industry Press, Beijing(in Chinese with English abstract). Li, S. T., Ren, J. Y., Xing, F. C., et al., 2012. Dynamic Processes of the Paleozoic Tarim Basin and Its Significance for Hydrocarbon Accumulation—A Review and Discussion. Journal of Earth Science, 23(4): 381-394. https://doi.org/10.1007/s12583-012-0262-5 Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37-75. https://doi.org/10.1016/j.earscirev.2017.01.011 Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831(in Chinese with English abstract). Li, Y. J., Song, W. J., Wu, G. Y., et al., 2005. The Concealed Jinning Granodiorite and Diorite in the Central Tarim Basin. Science in China(Ser. D), 35(2): 97-104(in Chinese). Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021 Luo, J. H., Zhou, D. W., Liu, Y. Q., et al., 2007. Age Determination and Its Geological Significance of the Epimetamorphic Rocks on the Southwestern Margin of the Tarim Basin. Journal of Stratigraphy, 31(4): 391-394(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4959.2007.04.011 Ma, B. S., Tian, W. Z., Wu, G. H., et al., 2022. The Subduction-Related Great Unconformity in the Tarim Intracraton, NW China. Global and Planetary Change, 215: 103883. https://doi.org/10.1016/j.gloplacha.2022.103883 Merdith, A. S., Williams, S. E., Brune, S., et al., 2019. Rift and Plate Boundary Evolution across Two Supercontinent Cycles. Global and Planetary Change, 173: 1-14. https://doi.org/10.1016/j.gloplacha.2018.11.006 Merle, O., 2011. A Simple Continental Rift Classification. Tectonophysics, 513(1): 88-95. https://doi.org/10.1016/j.tecto.2011.10.004 Nance, R. D., Murphy, J. B., Santosh, M., 2014. The Supercontinent Cycle: A Retrospective Essay. Gondwana Research, 25(1): 4-29. https://doi.org/10.1016/j.gr.2012.12.026 Wang, C., Liu, L., Wang, Y. H., et al., 2015. Recognition and Tectonic Implications of an Extensive Neoproterozoic Volcano-Sedimentary Rift Basin along the Southwestern Margin of the Tarim Craton, Northwestern China. Precambrian Research, 257: 65-82. https://doi.org/10.1016/j.precamres.2014.11.022 Wang, C., Wang, C., Liu, L., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193-208. https://doi.org/10.1016/j.precamres.2013.02.003 Wu, G. H., 2016. The Structural Characteristics of Carbonate Recks and Their Effects on Hydrocarbon Exploration in Craton Basin. Science Press, Beijing(in Chinese). Wu, G. H., Li, H. W., Xu, Y. L., et al., 2012. The Tectonothermal Events, Architecture and Evolution of Tarim Craton Basement Palaeo-Uplifts. Acta Petrologica Sinica, 28(8): 2435-2452(in Chinese with English abstract). Wu, G. H., Xiao, Y., He, J. Y., et al., 2019. Geochronology and Geochemistry of the Late Neoproterozoic A-Type Granitic Clasts in the Southwestern Tarim Craton: Petrogenesis and Tectonic Implications. International Geology Review, 61(3): 280-295. https://doi.org/10.1080/00206814.2017.1423521 Wu, G. H., Xiao, Y., Liu, W., et al., 2018. Ca. 850 Ma Magmatic Event in the Tarim Craton: Age, Geochemistry and Its Implications for the Assemblage of the Rodinia Supercontinent. Precambrian Research, 305, 489-503. doi: 10.1016/j.precamres.2017.10.020 Wu, G. H., Yang, S., Liu, W., et al., 2021. Switching from Advancing to Retreating Subduction in the Neoproterozoic Tarim Craton, NW China: Implications for Rodinia Breakup. Geoscience Frontiers, 12(1): 161-171. https://doi.org/10.1016/j.gsf.2020.03.013 Wu, G. H., Yang, S., Meert, J., et al., 2020. Two Phases of Paleoproterozoic Orogenesis in the Tarim Craton: Implications for Columbia Assembly. Gondwana Research, 83: 201-216. https://doi.org/10.1016/j.gr.2020.02.009 Wu, G. H., Zhang, B. S., Su, W., et al., 2009. Detrital Zircon U-Pb Ages and Its Significance of Silurian from Tazhong Area in Tarim Basin. Chinese Journal of Geology, 44(3): 1025-1035(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2009.03.019 Wu, H. X., Zhang, F. Q., Dilek, Y., et al., 2022. Mid-Neoproterozoic Collision of the Tarim Craton with the Yili-Central Tianshan Block towards the Final Assembly of Supercontinent Rodinia: A New Model. Earth Science Reviews, 228: 103989. https://doi.org/10.1016/j.earscirev.2022.103989 Xiao, Y., Wu, G. H., Vandyk, T. M., et al., 2019. Geochronological and Geochemical Constraints on Late Cryogenian to Early Ediacaran Magmatic Rocks on the Northern Tarim Craton: Implications for Tectonic Setting and Affinity with Gondwana. International Geology Review, 61(17): 2100-2117. https://doi.org/10.1080/00206814.2019.1581847 Xu, B., Xiao, S., Zou, H., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008 Xu, Z. Q., He, B. Z., Zhang, C. L., et al., 2013a. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. https://doi.org/10.1016/j.precamres.2013.06.001 Xu, B., Zou, H. B., Chen, Y., et al., 2013b. The Sugetbrak Basalts from Northwestern Tarim Block of Northwest China: Geochronology, Geochemistry and Implications for Rodinia Breakup and Ice Age in the Late Neoproterozoic. Precambrian Research, 236: 214-226. https://doi.org/10.1016/j.precamres.2013.07.009 Yang, H. J., Wu, G. H., Kusky, T. M., et al., 2018. Paleoproterozoic Assembly of the North and South Tarim Terranes: New Insights from Deep Seismic Profiles and Precambrian Granite Cores. Precambrian Research, 305: 151-165. https://doi.org/10.1016/j.precamres.2017.11.015 Ye, X. T., Zhang, C. L., 2020. Advances in Meso- to Neoproterozoic Stratigraphy of the Southwestern Tarim. Geological Survey and Research, 43(2): 161-168(in Chinese with English abstract). Young, G. M., 2013. Precambrian Supercontinents, Glaciations, Atmospheric Oxygenation, Metazoan Evolution and an Impact That may have Changed the Second Half of Earth History. Geoscience Frontiers, 4(3): 247-261. doi: 10.1016/j.gsf.2012.07.003 Zhang, C. L., Li, H. K., Wang, H. Y., 2012. A Review on Precambrian Tectonic Evolution of Tarim Block; Possibility of Interaction between Neoproterozoic Plate Subduction and Mantle Plume. Geological Review, 58(5): 923-936(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.05.014 Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. https://doi.org/10.1016/j.jseaes.2009.02.003 Zhang, C. L., Ye, X. T., Zou, H. B., et al., 2016. Neoproterozoic Sedimentary Basin Evolution in Southwestern Tarim, NW China: New Evidence from Field Observations, Detrital Zircon U-Pb Ages and Hf Isotope Compositions. Precambrian Research, 280: 31-45. https://doi.org/10.1016/j.precamres.2016.04.011 Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315. https://doi.org/10.1016/j.gr.2012.05.009 Zhang, J., Zhang, C. L., Li, H. K., et al., 2014. Revisit to Time and Tectonic Environment of the Aksu Blueschist Terrane in Northern Tarim, NW China: New Evidence from Zircon U-Pb Age and Hf Isotope. Acta Petrologica Sinica, 30(11): 3357-3365(in Chinese with English abstract). Zhang, J. X., Li, H. K., Meng, F. C., et al., 2011. Polyphase Tectonothermal Events Recorded in "Metamorphic Basement" from the Altyn Tagh, the Southeastern Margin of the Tarim Basin, Western China: Constraint from U-Pb Zircon Geochronology. Acta Petrologica Sinica, 27(1): 23-46(in Chinese with English abstract). Zhang, N., Dang, Z., Huang, C., et al., 2018. The Dominant Driving Force for Supercontinent Breakup: Plume Push or Subduction Retreat? Geoscience Frontiers, 9(4): 997-1007. https://doi.org/10.1016/j.gsf.2018.01.010 Zhang, Y. G., Yao, X. Z., Wang, J., et al., 2022. U-Pb Ages and Europium Anomalies of Detrital Zircons from Sediments in the West Kunlun Orogenic Belt: Implications for the Proto-Tethys Ocean Evolution. Journal of Earth Science. https://doi.org/10.1007/s12583-022-1671-8 Zhou, X. J., Tian, W. Z., Wu, G. H., et al., 2022. Geochemistry and U-Pb-Hf Zircon Systematics of Cryogenian Syn-Rift Magmatic Rocks from the Subsurface of the Tarim Craton: Implications for Subduction-Related Continental Rifting. Precambrian Research. https://10.1016/j.precamres.2022.106733 doi: 10.1016/j.precamres.2022.106733 Zhu, W. B., Zheng, B. H., Shu, L. S., et al., 2011. Neoproterozoic Tectonic Evolution of the Precambrian Aksu Blueschist Terrane, Northwestern Tarim, China: Insights from LA-ICP-MS Zircon U-Pb Ages and Geochemical Data. Precambrian Research, 185(3/4): 215-230. https://doi.org/10.1016/j.precamres.2011.01.012 Zou, C. N., Zhai, G. M., Zhang, G. Y., et al., 2015. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Petroleum Exploration and Development, 42(1): 14-28. https://doi.org/10.1016/S1876-3804(15)60002-7 Zou, Y. R., Ta, J., Xing, Z. Y., et al., 2014. Evolution of Sedimentary Basins in Tarim during Neoproterozoic-Paleozoic. Earth Science, 39(8): 1200-1216(in Chinese with English abstract). 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社. 李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831. 李曰俊, 宋文杰, 吴根耀, 等, 2005. 塔里木盆地中部隐伏的晋宁期花岗闪长岩和闪长岩. 中国科学(D辑: 地球科学), 35(2): 97-104. 罗金海, 周鼎武, 柳益群, 等, 2007. 塔里木盆地西南缘浅变质岩的时代确定及其地质意义. 地层学杂志, 31(4): 391-394. 邬光辉, 2016. 克拉通碳酸盐岩构造与油气: 以塔里木盆地为例. 北京: 科学出版社. 邬光辉, 李浩武, 徐彦龙, 等, 2012. 塔里木克拉通基底古隆起构造-热事件及其结构与演化. 岩石学报, 28(8): 2435-2452. 邬光辉, 张宝收, 苏文, 等, 2009. 塔中地区志留系碎屑锆石测年及其地质意义. 地质科学, 44(3): 1025-1035. 叶现韬, 张传林, 2020. 塔里木西南中-新元古界研究进展. 地质调查与研究, 43(2): 161-168. 张传林, 李怀坤, 王洪燕, 2012. 塔里木地块前寒武纪地质研究进展评述. 地质论评, 58(5): 923-936. 张健, 张传林, 李怀坤, 等, 2014. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境: 来自锆石U-Pb年龄、Hf同位素的新证据. 岩石学报, 30(11): 3357-3365. 张建新, 李怀坤, 孟繁聪, 等, 2011. 塔里木盆地东南缘(阿尔金山)"变质基底" 记录的多期构造热事件: 锆石U-Pb年代学的制约. 岩石学报, 27(1): 23-46. 邹亚锐, 塔吉古丽, 邢作云, 等, 2014. 塔里木新元古代-古生代沉积盆地演化. 地球科学, 39(8): 1200-1216. -