• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古巴尔哲稀有稀土矿区新发现的碱性流纹岩岩石成因及其地质意义

    淡凯波 张道涵 栾钰薇 宋崇宇 于淼 刘常伟

    淡凯波, 张道涵, 栾钰薇, 宋崇宇, 于淼, 刘常伟, 2024. 内蒙古巴尔哲稀有稀土矿区新发现的碱性流纹岩岩石成因及其地质意义. 地球科学, 49(4): 1324-1338. doi: 10.3799/dqkx.2023.177
    引用本文: 淡凯波, 张道涵, 栾钰薇, 宋崇宇, 于淼, 刘常伟, 2024. 内蒙古巴尔哲稀有稀土矿区新发现的碱性流纹岩岩石成因及其地质意义. 地球科学, 49(4): 1324-1338. doi: 10.3799/dqkx.2023.177
    Dan Kaibo, Zhang Daohan, Luan Yuwei, Song Chongyu, Yu Miao, Liu Changwei, 2024. Petrogenesis and Geological Significance of Newly Discovered Alkaline Rhyolite in Baerzhe Rare Metal Deposit, Inner Mongolia. Earth Science, 49(4): 1324-1338. doi: 10.3799/dqkx.2023.177
    Citation: Dan Kaibo, Zhang Daohan, Luan Yuwei, Song Chongyu, Yu Miao, Liu Changwei, 2024. Petrogenesis and Geological Significance of Newly Discovered Alkaline Rhyolite in Baerzhe Rare Metal Deposit, Inner Mongolia. Earth Science, 49(4): 1324-1338. doi: 10.3799/dqkx.2023.177

    内蒙古巴尔哲稀有稀土矿区新发现的碱性流纹岩岩石成因及其地质意义

    doi: 10.3799/dqkx.2023.177
    基金项目: 

    国家自然科学基金项目 42072093

    详细信息
      作者简介:

      淡凯波(1997-),男,地质工程师,从事矿产普查与勘探工作.ORCID:0009-0003-0005-1633. E-mail:KDan@tfm.cmoc.com

      通讯作者:

      张道涵,E-mail: zhangdh@cug.edu.cn

    • 中图分类号: P617

    Petrogenesis and Geological Significance of Newly Discovered Alkaline Rhyolite in Baerzhe Rare Metal Deposit, Inner Mongolia

    • 摘要: 为查明在内蒙古巴尔哲超大型稀有稀土金属矿区新发现的碱性流纹岩岩石成因,及其与碱性花岗岩成矿岩体、以及邻区阿里乌拉碱性流纹岩的成因联系,开展了锆石U-Pb定年、矿物学和全岩地球化学研究.结果表明,巴尔哲碱性流纹岩喷发年龄为124.4±1.6 Ma,明显年轻于阿里乌拉碱性流纹岩(141 Ma),代表了大兴安岭中南段早白垩世新一期碱性火山岩活动.巴尔哲和阿里乌拉碱性流纹岩具有较高的SiO2、碱金属、TFe2O3、F和较低的Al2O3含量,均归属于钠闪碱流岩.两者均富集轻稀土元素(LREE)和Nb、Ta、Zr、Hf等高场强元素(HFSE),含有较高的Rb、Th、U和极低的Ba、Sr含量.另外,两者具有相同的全岩Nd同位素组成,εNdt)值分别为1.6和1.7~1.8.因此,巴尔哲和阿里乌拉碱性流纹岩均为新生地壳部分熔融的产物.巴尔哲碱性流纹岩与碱性花岗岩成矿岩体形成时代和同位素组成均一致,应属同一岩浆体系不同演化阶段的产物.鉴于火山岩出露范围更广,碱性火山岩可以作为深部稀有稀土金属矿床的重要地质找矿标志,并指出阿里乌拉地区具有该类金属矿产较好的找矿潜力.

       

    • 图  1  中国东北地区构造纲要图(a);大兴安岭中南段晚中生代火山岩分布图(b); 巴尔哲矿区地质简图(c);阿里乌拉地质简图(d)

      图a据Wu et al.(2011)修改;图b据Zhang et al.(2010)修改;图c据Yang et al.(2020)修改;图d据王建国等(2013)修改. F0.蒙古-鄂霍茨克缝合带;F1.塔源-喜桂图断裂;F2.贺根山-黑河断裂;F3.索伦-西拉穆伦-长春断裂;F4.赤峰-开源断裂;F5.伊通-伊兰断裂;F6.敦化-米山断裂;F7.牡丹江断裂;NCC.华北克拉通

      Fig.  1.  Tectonic subdivisions of Northeast China (a); distribution of Late Mesozoic volcanic rocks in the central and southern sections of the Great Xing'an Range (b); simplified geological map of the Baerzhe deposit (c); simplified geological map of the Aliwula area (d)

      图  2  碱性流纹岩手标本及镜下照片

      a.巴尔哲碱性流纹岩手标本;b.巴尔哲碱性流纹岩镜下聚晶结构(透射光);c.巴尔哲尔碱性流纹岩中碱性角闪石斑晶背散射(BSE)图像;d.巴尔哲碱性流纹岩基质针状碱性角闪石流纹结构;e.巴尔哲碱性流纹岩石英斑晶中的氟化物包裹体(透射光);f.阿里乌拉碱性流纹岩与安山岩互层;g.阿里乌拉碱性流纹岩镜下聚晶结构(透射光);h.阿里乌拉碱性流纹岩针状碱性角闪石(反射光). 缩写:M-Amp.基质碱性角闪石;Pth.条纹长石;Amp.碱性角闪石斑晶/聚晶;Qtz.石英;Fl.氟化物

      Fig.  2.  Photos of hand specimens of alkaline rhyolite and related microphotographs

      图  3  部分锆石阴极发光图像(a);所有测试锆石样品U⁃Pb年龄谐和图(b);较高谐和度数据点的U⁃Pb年龄与加权平均年龄图(c)

      Fig.  3.  Cathodoluminescence (CL) images of representative zircons (a); U⁃Pb concordia diagram of all examined zircons (b); U⁃Pb concordia diagram of zircons with higher concordance (c)

      图  4  巴尔哲与阿里乌拉碱性流纹岩TAS图解(a)和FeOt-Al2O3图解(b)

      Fig.  4.  TAS diagram (a) and FeOt vs. Al2O3 plot (b) of Baerzhe and Aliwula alkaline rhyolites

      图  5  巴尔哲与阿里乌拉碱性流纹岩球粒陨石标准化稀土模式配分图(a)和原始地幔标准化微量元素蛛网图(b)

      图a据Le Bas et al.(1986)修改;图b据Macdonald(1974)修改.阿里乌拉碱性流纹岩已发表数据王建国等(2013)

      Fig.  5.  Chondrite-normalized rare-earth element pattern (a), and primitive mantle-normalized trace element spidergram (b) of Baerzhe and Aliwula alkaline rhyolites

      图  6  全岩εNd(t)值与二阶段模式年龄TDM2图解

      巴尔哲花岗岩Nd同位素数据引自Jahn et al.(2001)、Yang et al.(2017)和Su et al.(2021);贺根山蛇绿岩Nd同位素数据引自Miao et al.(2008);早白垩世幔源玄武岩数据引自Yang et al.(2017);产自新生地壳的花岗岩数据引自Wu et al.(2003b

      Fig.  6.  Whole-rock εNd(t) vs. two-stage model age (TDM2) diagram

      图  7  碱性流纹岩中碱性角闪石主量元素投图

      巴尔哲801碱性花岗岩中的碱性角闪石数据引自Su et al.(2021)和Wu et al.(2021

      Fig.  7.  Variations of major element compositions of alkali amphiboles from alkaline rhyolite

      图  8  碱性角闪石球粒陨石标准化稀土模式配分图(a)和原始地幔标准化微量元素蛛网图(b)

      巴尔哲花岗岩碱性角闪石数据引自Yang et al.(2020)和Wu et al.(2021);球粒陨石和原始地幔值引自Sun and McDonough(1989

      Fig.  8.  Chondrite-normalized rare-earth element pattern (a), and primitive mantle-normalized trace element spidergram (b) of alkali amphiboles

      图  9  巴尔哲801岩体、碱性流纹岩与阿里乌拉碱性流纹岩锆石年龄对比

      巴尔哲801碱性花岗岩年龄引自Yang et al.(20132020)和丘志力等(2014);阿里乌拉碱性流纹岩年龄王建国等(2013)

      Fig.  9.  Comparison of zircon ages of Baerzhe 801 pluton and alkaline rhyolite, and of Aliwula alkaline rhyolite

      图  10  大兴安岭晚中生代火山岩喷发年龄统计(据Tang et al. (2022)修改)

      Fig.  10.  Statistical diagram of the eruption ages of Late Mesozoic volcanic rocks from the Great Xing'an Range (modified after Tang et al. (2022))

      图  11  巴尔哲与阿里乌拉碱性流纹岩Nb*-Ta*图解

      据Niu and Batiza(1997)修改. 原始地幔与各类玄武岩数据引自Sun and McDonough(1989);各类地壳组成引自Rudnick and Gao(2003);产自新生地壳的花岗岩数据引自Li et al.(2017b2018);LCC.大陆下地壳;UCC.大陆上地壳;BCC.整个大陆地壳;PM.原始地幔;OIB.洋岛玄武岩;MORB.洋中脊玄武岩

      Fig.  11.  Nb* vs. Ta* diagram of Baerzhe and Aliwula alkaline rhyolites

    • Avanzinelli, R., Bindi, L., Menchetti, S., et al., 2004. Crystallisation and Genesis of Peralkaline Magmas from Pantelleria Volcano, Italy: An Integrated Petrological and Crystal-Chemical Study. Lithos, 73(1/2): 41-69. https://doi.org/10.1016/j.lithos.2003.10.007
      Black, S., MacDonald, R., Kelly, M. R., 1997. Crustal Origin for Peralkaline Rhyolites from Kenya: Evidence from U-Series Disequilibria and Th-Isotopes. Journal of Petrology, 38(2): 277-297. https://doi.org/10.1093/petroj/38.2.277
      Boily, M., Williams-Jones, A. E., 1994. The Role of Magmatic and Hydrothermal Processes in the Chemical Evolution of the Strange Lake Plutonic Complex, Québec-Labrador. Contributions to Mineralogy and Petrology, 118(1): 33-47. https://doi.org/10.1007/BF00310609
      Civetta, L., D'Antonio, M., Orsi, G., et al., 1998. The Geochemistry of Volcanic Rocks from Pantelleria Island, Sicily Channel: Petrogenesis and Characteristics of the Mantle Source Region. Journal of Petrology, 39(8): 1453-1491. https://doi.org/10.1093/petroj/39.8.1453
      Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
      Huang, C., Wang, H., Yang, J. H., et al., 2020. SA01-A Proposed Zircon Reference Material for Microbeam U-Pb Age and Hf-O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103-123. https://doi.org/10.1111/ggr.12307
      Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100. https://doi.org/10.1144/GSL.SP.2004.226.01.05
      Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4
      Kovalenko, V. I., Tsaryeva, G. M., Goreglyad, A. V., et al., 1995. The Peralkaline Granite-Related Khaldzan-Buregtey Rare Metal (Zr, Nb, REE) Deposit, Western Mongolia. Economic Geology, 90(3): 530-547. https://doi.org/10.2113/gsecongeo.90.3.530
      Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
      Li, C. F., Li, X. H., Li, Q. L., et al., 2012. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727(10): 54-60. https://doi.org/10.1016/j.aca.2012.03.040
      Li, J., Tang, S. H., Zhu, X. K., et al., 2017a. Production and Certification of the Reference Material GSB 04-3258-2015 as a 143Nd/144Nd Isotope Ratio Reference. Geostandards and Geoanalytical Research, 41(2): 255-262. https://doi.org/10.1111/ggr.12151
      Li, Y., Xu, W. L., Wang, F., et al., 2017b. Geochronology and Geochemistry of Late Paleozoic-Early Mesozoic Igneous Rocks of the Erguna Massif, NE China: Implications for the Early Evolution of the Mongol-Okhotsk Tectonic Regime. Journal of Asian Earth Sciences, 144: 205-224. https://doi.org/10.1016/j.jseaes.2016.12.005
      Li, X. Y., Zhang, C., Behrens, H., et al., 2020. Calculating Amphibole Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 362/363: 105469. https://doi.org/10.1016/j.lithos.2020.105469
      Li, Y., Xu, W. L., Tang, J., et al., 2018. Geochronology and Geochemistry of Mesozoic Intrusive Rocks in the Xing'an Massif of NE China: Implications for the Evolution and Spatial Extent of the Mongol-Okhotsk Tectonic Regime. Lithos, 304/305/306/307: 57-73. https://doi.org/10.1016/j.lithos.2018.02.001
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ma, C., Tang, Y. J., Ying, J. F., 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142 (in Chinese with English abstract).
      MacDonald, R., 1974. Nomenclature and Petrochemistry of the Peralkaline Over Saturated Extrusive Rocks. Bulletin of Volcanologique, 38(2): 498-516. https://doi.org/10.1007/BF02596896
      MacDonald, R., Davies, G. R., Bliss, C. M., et al., 1987. Geochemistry of High-Silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley. Journal of Petrology, 28(6): 979-1008. https://doi.org/10.1093/petrology/28.6.979
      Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. https://doi.org/10.1016/j.jseaes.2007.11.005
      Niu, Y., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471-483. https://doi.org/10.1016/s0012-821x(97)00048-4
      Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth—A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Qin, J. H., 2017. The Character and Geological Significance of the Nianzishan Miarolitic Alkaline Granite in Qiqihar City, Heilongjiang Province (Dissertation). China University of Geoscience, Beijing, 14-15(in Chinese with English abstract).
      Qiu, K. F., Yu, H. C., Wu, M. Q., et al., 2019. Discrete Zr and REE Mineralization of the Baerzhe Rare-Metal Deposit, China. American Mineralogist, 104(10): 1487-1502. https://doi.org/10.2138/am-2019-6890
      Qiu, Z. L., Liang, D. Y., Wang, Y. F., et al., 2014. Zircon REE, Trace Element Characteristics and U-Pb Chronology in the Baerzhe Alkaline Granite: Implications to the Petrological Genesis and Mineralization. Acta Petrologica Sinica, 30(6): 1757-1768 (in Chinese with English abstract).
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford.
      Schmitt, A. K., Emmermann, R., Trumbull, R. B., et al., 2000. Petrogenesis and 40Ar/39Ar Geochronology of the Brandberg Complex, Namibia: Evidence for a Major Mantle Contribution in Metaluminous and Peralkaline Granites. Journal of Petrology, 41(8): 1207-1239. https://doi.org/10.1093/petrology/41.8.1207
      Shao, F. L., Niu, Y. L., Regelous, M., et al., 2015. Petrogenesis of Peralkaline Rhyolites in an Intra-Plate Setting: Glass House Mountains, Southeast Queensland, Australia. Lithos, 216/217: 196-210. https://doi.org/10.1016/j.lithos.2014.12.015
      Siegel, K., Williams-Jones, A. E., Stevenson, R., 2017. A Nd- and O-Isotope Study of the REE-Rich Peralkaline Strange Lake Granite: Implications for Mesoproterozoic A-Type Magmatism in the Core Zone (NE-Canada). Contributions to Mineralogy and Petrology, 172(7): 54. https://doi.org/10.1007/s00410-017-1373-x
      Su, H. M., Jiang, S. Y., Zhu, X. Y., et al., 2021. Magmatic-Hydrothermal Processes and Controls on Rare-Metal Enrichment of the Baerzhe Peralkaline Granitic Pluton, Inner Mongolia, Northeastern China. Ore Geology Reviews, 131: 103984. https://doi.org/10.1016/j.oregeorev.2021.103984
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, Y., Lai, Y., Chen, J., et al., 2013. Rare Earth and Rare Metal Elements Mobility and Mineralization during Magmatic and Fluid Evolution in Alkaline Granite System: Evidence from Fluid and Melt Inclusions in Baerzhe Granite, China. Resource Geology, 63(3): 239-261. https://doi.org/10.1111/rge.12007
      Tang, J., Xu, W. L., Wang, F., et al., 2022. Temporal Variations in the Geochemistry of Mesozoic Mafic-Intermediate Volcanic Rocks in the Northern Great Xing'an Range, Northeast China, and Implications for Deep Lithospheric Mantle Processes. Lithos, 422/423: 106721. https://doi.org/10.1016/j.lithos.2022.106721
      Tang, J., Xu, W. L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Scientia Sinica (Terrae), 48(5): 549-583 (in Chinese).
      Vasyukova, O. V., Williams-Jones, A. E., 2020. Partial Melting, Fractional Crystallisation, Liquid Immiscibility and Hydrothermal Mobilisation—A 'Recipe' for the Formation of Economic A-Type Granite-Hosted HFSE Deposits. Lithos, 356/357: 105300. https://doi.org/10.1016/j.lithos.2019.105300
      Wang, J. G., 2014. Petrogenesis and Mineralization Implication of the Alkali-Rhyolites in Keyouzhongqi, the Southern Da Hinggan MTS., China (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Wang, J. G., He, Z. Y., Xu, W. L., 2013. Petrogenesis of Riebeckite Rhyolites in the Southern Great Hinggan Mts. : Geohronological and Geochemical Evidence. Acta Petrologica Sinica, 29(3): 853-863 (in Chinese with English abstract).
      Wang, Y. X., Zhao, Z. H., 1997. Geochemistry and Origin of the Baerzhe REE Nb-Be-Zr Superlarge Deposit. Geochimica, 26(1): 25-26, 28, 30-36 (in Chinese with English abstract).
      Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006GC001283
      White, J. C., Parker, D. F., Ren, M. H., 2009. The Origin of Trachyte and Pantellerite from Pantelleria, Italy: Insights from Major Element, Trace Element, and Thermodynamic Modelling. Journal of Volcanology and Geothermal Research, 179(1/2): 33-55. https://doi.org/10.1016/j.jvolgeores.2008.10.007
      Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
      Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003a. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3-4): 241-273. https://doi.org/10.1016/S0024-4937(02)00222-0
      Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003b. Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191-204. https://doi.org/10.1016/S0024-4937(03)00015-X
      Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, M. Q., Samson, I. M., Qiu, K. F., et al., 2021. Concentration Mechanisms of Rare Earth Element-Nb-Zr-Be Mineralization in the Baerzhe Deposit, Northeast China: Insights from Textural and Chemical Features of Amphibole and Rare Metal Minerals. Economic Geology, 116(3): 651-679. https://doi.org/10.5382/econgeo.4789
      Wu, S. T., Yang, M., Yang, Y. H., et al., 2020. Improved In Situ Zircon U-Pb Dating at High Spatial Resolution (5-16 Mm) by Laser Ablation-Single Collector-Sector Field-ICP-MS Using Jet Sample and X Skimmer Cones. International Journal of Mass Spectrometry, 456: 116394. https://doi.org/10.1016/j.ijms.2020.116394
      Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
      Xu, W. L., Sun, C. Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646(in Chinese with English abstract).
      Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353(in Chinese with English abstract).
      Yang, W. B., Niu, H. C., Hollings, P., et al., 2017. The Role of Recycled Oceanic Crust in the Generation of Alkaline A-Type Granites. Journal of Geophysical Research (Solid Earth), 122(12): 9775-9783. https://doi.org/10.1002/2017JB014921
      Yang, W. B., Niu, H. C., Li, N. B., et al., 2020. Enrichment of REE and HFSE during the Magmatic-Hydrothermal Evolution of the Baerzhe Alkaline Granite, NE China: Implications for Rare Metal Mineralization. Lithos, 358/359: 105411. https://doi.org/10.1016/j.lithos.2020.105411
      Yang, W. B., Niu, H. C., Shan, Q., et al., 2014. Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite: Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 49(4): 451-470. https://doi.org/10.1007/s00126-013-0504-1
      Yang, W. B., Niu, H. C., Sun, W. D., et al., 2013. Isotopic Evidence for Continental Ice Sheet in Mid-Latitude Region in the Supergreenhouse Early Cretaceous. Scientific Reports, 3: 2732. https://doi.org/10.1038/srep02732
      Yang, W. B., Niu, H. C., Shan, Q., et al., 2009. Ore-Forming Mechanism of the Baerzhe Super-Large Rare and Rare Earth Elements Deposit. Acta Petrologica Sinica, 25(11): 2924-2932(in Chinese with English abstract).
      Yang, W. B., Su, W. C., Liao, S. P., et al., 2011a. Melt and Melt-Fluid Inclusions in the Baerzhe Alkaline Granite: Information of the Magmatic-Hydrothermal Transition. Acta Petrologica Sinica, 27(5): 1493-1499(in Chinese with English abstract).
      Yang, W. B., Shan, Q., Zhao, Z. H., et al., 2011b. Petrogenic and Metallogenic Action of the Alkaline Granitoids in Baerzhe Area: A Comparison between Mineralized and Barren Plutons. Journal of Jilin University (Earth Science Edition), 41(6): 1689-1704(in Chinese with English abstract).
      Yang, Y. J., Yang, X. P., Jiang, B., et al., 2022. Spatio-Temporal Distribution of Mesozoic Volcanic Strata in the Great Xing'an Range: Response to the Subduction of the Mongol-Okhotsk Ocean and Paleo-Pacific Ocean. Earth Science Frontiers, 29(2): 115-131(in Chinese with English abstract).
      Zhang, J. H., Gao, S., Ge, W. C., et al., 2010. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China: Implications for Subduction-Induced Delamination. Chemical Geology, 276(3/4): 144-165. https://doi.org/10.1016/j.chemgeo.2010.05.013
      Zhang, M., 2011. Study on the Metallogenic System of Copper-Polymetallic Deposits in the Middle-Southern Part of Da Hinggan Mountains, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
      秦锦华, 2017. 黑龙江齐齐哈尔碾子山晶洞碱性花岗岩体特征及其地质意义(硕士学位论文). 北京: 中国地质大学(北京), 14-15. https://cdmd.cnki.com.cn/Article/CDMD-11415-1017136523.htm
      丘志力, 梁冬云, 王艳芬, 等, 2014. 巴尔哲碱性花岗岩锆石稀土微量元素、U-Pb年龄及其成岩成矿指示. 岩石学报, 30(6): 1757-1768. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406017.htm
      唐杰, 许文良, 王枫, 等, 2018. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代-古近纪岩浆记录. 中国科学: 地球科学, 48(5): 549-583. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201805004.htm
      王建国, 2014. 大兴安岭南部科右中旗碱性流纹岩的岩石成因及成矿意义(博士学位论文). 长春: 吉林大学.
      王建国, 和钟铧, 徐文良, 2013. 大兴安岭南部碱性流纹岩的岩石成因: 年代学和地球化学证据. 岩石学报, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202308012.htm
      王一先, 赵振华, 1997. 巴尔哲超大型稀土铌铍锆矿床地球化学和成因. 地球化学, 26(1): 25-26, 28, 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX701.002.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036
      许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412008.htm
      杨武斌, 牛贺才, 单强, 等, 2009. 巴尔哲超大型稀有稀土矿床成矿机制研究. 岩石学报, 25(11): 2924-2932. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911023.htm
      杨武斌, 苏文超, 廖思平, 等, 2011a. 巴尔哲碱性花岗岩中的熔体和熔体-流体包裹体: 岩浆-热液过渡的信息. 岩石学报, 27(5): 1493-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105022.htm
      杨雅军, 杨晓平, 江斌, 等, 2022. 大兴安岭中生代火山岩地层时空分布与蒙古—鄂霍茨克洋、古太平洋板块俯冲作用响应. 地学前缘, 29(2): 115-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202202008.htm
      张梅, 2011. 大兴安岭中南段铜多金属矿床成矿系统研究(博士学位论文). 北京: 中国地质大学(北京).
    • dqkxzx-49-4-1324-附表1-4.docx
    • 加载中
    图(11)
    计量
    • 文章访问数:  212
    • HTML全文浏览量:  125
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-05
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回